A Large-scale Open Dataset for Bandit Algorithms

Yuta Saito1, Shunsuke Aihara2,
Megumi Matsutani2, and Yusuke Narita3

1Tokyo Institute of Technology 2ZOZO Technologies, Inc. 3Yale University.
Project’s Goal and Components

We attempt to enable realistic and reproducible experiments on

- Bandit Algorithms
- Off-Policy Evaluation (OPE)

Open Bandit Dataset
& Open Bandit Pipeline
Open Bandit Dataset Features

- **over 25M records** collected by online experiments of bandit algorithms on a large-scale fashion e-commerce (ZOZOTOWN)

- log data collected by multiple bandit policies

- true propensity scores and rich context vectors

 enabling realistic experiments on bandit algorithms and OPE
Open Bandit Pipeline Features

We implement a pipeline to streamline the experiments on bandit algorithms and off-policy evaluation.

```python
# a case for implementing OPE of the BernoulliTS policy using log data generated by the Random policy
from obp.dataset import OpenBanditDataset
from obp.policy import BernoulliTS
from obp.simulator import run_bandit_simulation
from obp.ope import OffPolicyEvaluation, ReplayMethod

# (1) Data loading and preprocessing
dataset = OpenBanditDataset(behavior_policy='random', campaign='women')
bandit_feedback = dataset.obtain_batch_bandit_feedback()

# (2) Offline Bandit Simulation
counterfactual_policy = BernoulliTS(n_actions=dataset.n_actions, len_list=dataset.len_list)
selected_actions = run_bandit_simulation(bandit_feedback=bandit_feedback, policy=counterfactual_policy)

# (3) Off-Policy Evaluation
ope = OffPolicyEvaluation(bandit_feedback=bandit_feedback, ope_estimators=[ReplayMethod()])
estimated_policy_value = ope.estimate_policy_values(selected_actions=selected_actions)

# estimated performance of BernoulliTS relative to the ground-truth performance of Random
relative_policy_value_of_bernoulli_ts = estimated_policy_value['rm'] / bandit_feedback['reward'].mean
print(relative_policy_value_of_bernoulli_ts) # 1.128574...
```

![Graph showing Estimated Policy Value (± 95% CI) for different estimators: RM, DM, DR.](image)
Thank you for Listening!

Email: saito.y.bj at m.titech.ac.jp
GitHub: https://github.com/st-tech/zr-obp

Full paper will be available on arXiv soon!