Bypassing the Monster: A Faster and Simpler Optimal Algorithm for Contextual Bandits under Realizability

Yunzong Xu
MIT

Joint work with David Simchi-Levi (MIT)

July 18
RealML @ ICML 2020
Stochastic Contextual Bandits

• For round $t = 1, \cdots, T$
 • Nature generates a random context x_t according to a fixed unknown distribution $D_{context}$
 • Learner observes x_t and makes a decision $a_t \in \{1, \cdots, K\}$
 • Nature generates a random reward $r_t(x_t, a_t) \in [0,1]$ according to an unknown distribution D_{x_t,a_t} with (conditional) mean

$$\mathbb{E}[r_t(x_t, a_t)|x_t = x, a_t = a] = f^*(x, a)$$

• We call f^* the ground-truth reward function

• In statistical learning, people use a function class F to approximate f^*. Some examples of F:
 • Linear class / high-dimension linear class / generalized linear models
 • Reproducing kernel Hilbert spaces
 • Lipschitz and Hölder spaces
 • Neural networks
Challenges

• We are interested in contextual bandits with a general function class F
• Realizability assumption: $f^* \in F$

• **Statistical challenges**: how to achieve the minimax optimal regret for a general function class F?
• **Computational challenges**: how to make the algorithm computational efficient?

• Existing contextual bandits approaches cannot simultaneously address the above two challenges in practice, as they typically
 • Rely on strong parametric/structural assumptions on F (e.g., UCB variants and Thompson Sampling)
 • Become computationally intractable for large F (e.g., EXP4)
 • Assume computationally expensive or statistically restrictive oracles that are only implementable for specific F (a series of work on oracle-based contextual bandits)
Research Question

• Observation: the statistical and computational aspects of “offline regression with a general \(F \)” are very well-studied in ML

• Can we reduce general contextual bandits to general offline regression?

• Specifically, for any \(F \), given an offline regression oracle, i.e., a least-squares regression oracle (ERM with square loss):

\[
\min_{f \in F} \sum_{t=1}^{S} (f(x_t, a_t) - r_t(x_t, a_t))^2 ,
\]

can we design an algorithm that achieves the optimal regret via a few calls to this oracle?

• An open problem mentioned in Agarwal et al. (2012), Foster et al. (2018), Foster and Rakhlin (2020)
Our Contributions

• We provide the first optimal and efficient offline-regression-oracle-based algorithm for general contextual bandits (under realizability)
 • The algorithm is much simpler and faster than existing approaches to general contextual bandits

• We provide the first universal and optimal black-box reduction from contextual bandits to offline regression
 • Any advances in offline (square loss) regression immediately translate to contextual bandits, statistically and computationally