Learning Algorithms for Dynamic Pricing: A Comparative Study

Chaitanya Amballa¹, Narendhar Gugulothu¹, Manu K. Gupta² and Sanjay P. Bhat¹

¹TCS Research and Innovation
²Indian Institute of Technology Roorkee

{chaitanya.amballa, narendhar.g, sanjay.bhat}@tcs.com
manu.gupta@ms.iitr.ac.in

Workshop on Real World Experiment Design and Active Learning, ICML 2020

July 18, 2020
Dynamic Pricing

- Maximize cumulative revenue over T periods by selecting a price p_t at each period t.
- Revenue at period t is a noisy observation from a revenue function:
 \[r_t = g(p_t) + \xi_t, \quad \xi_t \sim \mathcal{N}(0, \sigma^2) \]
 (1)
- The revenue function is an unknown polynomial:
 \[g(p_t) = \tilde{\mu}_0 + \tilde{\mu}_1 p_t + \tilde{\mu}_2 p_t^2 + \cdots + \tilde{\mu}_n p_t^n \]
- Optimal revenue:
 \[r^* = \max_{p \in [p_{\text{min}}, p_{\text{max}}]} g(p) \]
- Cumulative regret:
 \[R(T) = \sum_{t=1}^{T} [r^* - \mathbb{E}(r_t)] \]
Goal

Objective

Learn the unknown parameters $\tilde{\mu}_0, \tilde{\mu}_1, \ldots, \tilde{\mu}_n$ from noisy observations of price and revenue pairs $\{(p_t, r_t)\}_{t=1}^T$ to suggest the optimal price while reducing the T-period expected cumulative regret, $R(T)$.

Figure: Dynamic pricing architecture
Algorithms Compared

- **Standard Algorithms**
 - Iterated leastsquare (ILS)
 - Constrained Iterated leastsquares (CILS)
 - Action Space Exploration (ASE)
 - Parameter Space Exploration (PSE)
 - Thompson Sampling (TS)

- **Improved algorithms**
 - Initial querying at Barycentric prices and doing a least squares fit
 - Controlled sampling by stopping criterion in TS
 - Controlled sampling by varying the exploration parameter σ in TS
Performance and Robustness Checks

- Regret performance for various degrees of the true revenue polynomial
- Robustness to mis-specification of the true degree
 - true polynomial degree $>\$ assumed model degree
 - true polynomial degree $<\$ assumed model degree
- Robustness to polynomial assumption