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Introduction
- Active Learning is a promising, but rarely used due to practical challenges

- Labeling is imperfect/noisy

- Some instances are difficult to label

- Quality can change over time

- Related Work

- End to end frameworks: Modify model or loss function [1, 2]

- Standard frameworks: Learn, then label

2[1] Gaurav Gupta, Anit Kumar Sahu, and Wan-Yi Lin.  Learning in confusion:  Batch activelearning with noisy oracle, 2019.
[2] Emmanouil Antonios Platanios, Maruan Al-Shedivat, Eric Xing, and Tom Mitchell. Learning from imperfect annotations, 2020.



Pushkar Kolhe, Georgia Institute of TechnologyBatch Acquisition for Deep Bayesian Active Learning with Imperfect Oracles

Repeated Labeling works [1]

Number of human responses to be considered correct

- 67.87%  of  the  words  required  two transcribtions
- 17.86% required three
- 7.10% required four
- 3.11% required five
- 4.06% required six [2]

3[1] Panagiotis G Ipeirotis, Foster Provost, Victor S Sheng, and Jing Wang.  Repeated labeling using  multiple  noisy  labelers.
[2] Luis  Von  Ahn,  Benjamin  Maurer,  Colin  McMillen,  David  Abraham,  and  Manuel  Blum.recaptcha:  Human-based character recognition via web security measures.
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Bayesian Neural Network
Algorithm: Input (Dtrain, Dpool, Dtest)

1. Learn a model on Dtrain

2. Run a MC dropout pass on Dpool

3. Find batch using BatchBALD acquisition function

4. Generate a candidate query Dbatch with
a. Control Queries
b. High Uncertainty Queries {x1*, …, xb*}

5. Update label uncertainty while gathering labels from 
multiple labelers (see next slide)

6. Transfer Dbatch from Dpool to Dtrain

7. Repeat

4

Model Uncertainty with MC dropout [1] 

[1] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty in deep learning.
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Repeated labeling on a candidate batch

5

Batch 1
Control Queries: Use to model proficiency of labeler

High Uncertainty Queries: Improve uncertainty based on labelsBatch 2

P(C): Current Uncertainty or prior on labels
P(D|C): Proficiency of labeler
P(C|D): Updated Uncertainty after the labeler labels this batch
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Results

- X axis shows the number of labelers used for a batch
- Y axis shows uncertainty in the labels
- As we increase the batch size, fewer labelers are needed to gather labels which are considered correct
- Loss also decreases as we gather labels, this shows that the labels are accurate

6
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Conclusion

7

- BatchBALD can be extended easily to use labels from imperfect oracles

- A candidate batch with control and high uncertainty query points can be used to model proficiency of 

the labelers and gather labels with confidence

- Future Work

- Find the best control queries for a given batch

- Experiment with different models of proficiency of labeler

- Applications

- Peer Review in Online Classrooms


