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Sparse Linear Contextual Bandit Problem 
- Arm Set:  each arm 𝑖 is associated with a feature(context) 𝑥𝑖

𝑡 ∈ ℛ𝑑. 

- Noisy Reward:          𝑟𝑖
𝑡 = (𝑥𝑖

𝑡)⊤𝜃∗ + 𝜂𝑡, |𝜃∗|0 ≤ 𝑘, 𝜃∗ is unknown to the learner.

❖ 𝑘 ≪ 𝑑 and 𝑑 could be very large, e.g.,  𝑑 ≫ 𝑇. Denote the set of non-zero entries of 𝜃∗ by 𝑆 (effective dimension 
set). 

Estimate 𝜽∗ (Lasso regression) reward vector 𝑌𝑡 = 𝑟𝑎1
1 , ⋯ , 𝑟𝑎𝑡

𝑡 ⊤
; Context matrix Xt = 𝑥𝑎𝑡

𝑡 , ⋯ , 𝑥𝑎𝑡
𝑡 .

min
𝜃

|| 𝑌𝑡 − (𝑋𝑡)⊤𝜃||2
2 + 𝜆𝑡||𝜃||1,

Lasso regression has a strong requirement for 𝑋𝑡 to achieve sampling efficiency.

Null Space Condition (Cohen et al., 2009), 
Restricted Isometry Property(RIP) (Donoho, 2006), 
Restricted Eigenvalue(RE) condition (Bickel et al., 2009), 
Compatibility condition (Van De Geer et al., 2009),
…..

“Online-to-Conversion” (Abbasi et al. 2012)
Bandit with C.S. (Carpentier and Munos, 2012) 
Hypercube Arm Bandit (Lattimore et al. 2015)
Doubly-robust Lasso Bandit (Kim and Paik, 2019)
High Covariate Sparse Bandit (Bastani et al. 2020)  

Compressed Sensing(C.S.) Sparse Bandit



Smoothed Contexts
To improve the sampling efficiency, we consider the perturbed adversary setting (Kannan et al. 2018).

Perturbed Adversary

1)  Arms’ contexts (𝜇𝑖
𝑡, ⋯ , 𝜇𝑚

𝑡 ) are produced adversarially. 

2)  Perturbed adversary adds small random perturbations (𝑒𝑖
1, ⋯ , 𝑒𝑚

𝑡 ) (i.i.d., non-adaptive) to the context and outputs 

them as arm features to the learner, that is,  𝑥𝑖
𝑡, ⋯ , 𝑥𝑚

𝑡 = (𝜇𝑖
𝑡 + 𝑒𝑖

1, ⋯ , 𝜇𝑚
𝑡 + 𝑒𝑚

𝑡 ).

Online Lasso For Sparse Bandit Under Perturbed Adversary

Initialize 𝜃0, 𝑋0 and 𝑌0

For 𝑡 = 1, 2, 3,⋯ , 𝑇:

Perturbed adversary produce 𝑚 contexts 𝑥𝑖
𝑡 , ⋯ , 𝑥𝑚

𝑡 .

The learner greedily chooses arm 𝑎𝑡 = arg𝑖max 𝑥𝑖
𝑡 ⊤

𝜃𝑡, receives the reward           

𝑟𝑎𝑡
𝑡 and Update 𝑋𝑡, 𝑌𝑡 to 𝑋𝑡+1, 𝑌𝑡+1 . Calculate 𝜃𝑡+1 by Lasso regression:

𝜃𝑡+1 = arg min𝜃 || 𝑌
𝑡+1 − (𝑋𝑡+1)⊤𝜃||2

2 + 𝜆𝑡+1||𝜃||1



Sparse Bandit: low dimensional case   

When 𝑑 < 𝑇, we prove a linearly strong convex condition which leads to the optimal 
sparse recovery.

Key Result

With the perturbed adversary and 𝑡 >
2𝑅2

𝑔
2𝑞

𝜎1
,0 𝜎1

2
log 𝑑𝑇 , the following is satisfied with probability 1 −

1

𝑇
:

where 𝜏 =
2𝑅2

𝑔
2𝑞

𝜎1
,0 𝜎1

2
log 𝑑𝑇 .

𝜆min 𝑋𝑡 𝑋𝑡 ⊤ ≥ 𝑔
2𝑞

𝜎1
, 0 1 − 𝜏 𝜎1

2𝑡,

Perturbed Diversity

𝜆𝑚𝑖𝑛(𝔼𝑒𝑖
𝑡∼𝐷[𝑥𝑖

𝑡 𝑥𝑖
𝑡 ⊤

]) ≥ 𝜆 Random Matrix Theory Linearly Strong Convex

2𝑅2

𝑔
2𝑞
𝜎1

, 0 𝜎1
2
log 𝑑𝑇

Number of necessary samplings (exploration length)

Linearly strong convex guarantees the optimal 

sparse recovery 𝒪(
klog 𝑑

𝑡
). 



Sparse Bandit: high dimensional case   

RE with high probability

Consider perturbation 𝑒𝑖
𝑡 ∼ 𝒩(0, Σ) where ||Σ

1

2Δ||2 ≥ 𝛾||Δ||2 for Δ ∈ 𝒞 𝑆; 3 . If 

then with the probability 1 −
𝑐′

𝑒𝑐𝑡
+

1

𝑇𝑎
,

where 𝑐, 𝑐′, 𝑐′′ are universal constants, 𝑞 Σ = max
𝑖

Σ𝑖𝑖 and ℎ =
𝛾2

64
− 𝑅||Δ||2

2 2𝑎𝜆𝑚𝑎𝑥 Σ log 𝑇

𝑡
.

𝑡 > max(
4𝑐′′𝑞 Σ

𝛾2
klog𝑑 ,

8196𝑎𝑅2𝜆𝑚𝑎𝑥 Σ log 𝑡

𝛾4
)

Δ⊤Xt(Xt)⊤Δ ≥ ℎ𝑡||Δ||2
2,

• The larger perturbation does not indicate the better regret.  Cond Σ ≥
𝑞 Σ

𝛾2
≥ 1.

• Condition number and SPR (the signal to perturbation ratio).

𝑅2𝜆𝑚𝑎𝑥 Σ

𝛾4
=

𝑅2

𝛾2
𝜆𝑚𝑎𝑥(Σ)

𝛾2

Condition number SPR

We prove both cases will achieve the optimal regret 

𝒪 𝑘𝑇 log𝑑 .

Exploration 
length


