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Sparse Linear Contextual Bandit Problem

- Arm Set: each arm i is associated with a feature(context) xit e R%,
- Noisy Reward: rf = (x)T8* +1t, 0%y < k, 8* is unknown to the learner.

¢ k «< dandd could be very large, e.g., d > T. Denote the set of non-zero entries of 8" by S (effective dimension
set).

Estimate 0" (Lasso regression) reward vector Yt = [ral, rat] Context matrix Xt = [xat, xat]

min || Y* — (X9)76]]2 + 2%)16]]s,

Lasso regression has a strong requirement for X! to achieve sampling efficiency.

Compressed Sensing(C.S.) Sparse Bandit
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’ ’ ~~ ) Bandit with C.S. (Carpentier and Munos, 2012
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Hypercube Arm Bandit (Lattimore et al. 2015
Restricted Eigenvalue(RE) condition (Bickel et al., 2009), M) P ( )

. . Doubly-robust Lasso Bandit (Kim and Paik, 2019)
Compatibility condition (Van De Geer et al., 2009), High Covariate Sparse Bandit (Bastani et al. 2020)
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Smoothed Contexts

To improve the sampling efficiency, we consider the perturbed adversary setting (Kannan et al. 2018).

Perturbed Adversary

1) Arms’ contexts (uf, -+, ut,) are produced adversarially.

2) Perturbed adversary adds small random perturbations (el-l, .+, el ) (i.i.d., non-adaptive) to the context and outputs
them as arm features to the learner, that is, (xf, ,x,tn) = (,ul-t + eil, e, ub +el).

énline Lasso For Sparse Bandit Under Perturbed Adversary \

Initialize 89, X% and Y°
Fort=1,2,3,:--,T:
Perturbed adversary produce m contexts (xit, e, x,ﬁl)

-
The learner greedily chooses arm a; = arg; max (xf) 0¢, receives the reward
1, and Update (X%, Y") to (X**1, Y1), Calculate 6*** by Lasso regression:

\ 0"t = argming || Y™ — (X**)T0]13 + 276l /




Sparse Bandit: low dimensional case

When d < T, we prove a linearly strong convex condition which leads to the optimal

sparse recovery.
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With the perturbed adversary and t > ﬁlog dT , the following is satisfied with probability 1 — %:
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Sparse Bandit: high dimensional case

GE with high probability

~

1
Consider perturbation el ~ V'(0,%) where ||22A|[, = y]||A]|, for A € C(S; 3). If
Exploration
144 2
t > max(4cyg & Klogd , 22X A}/’Z“"(Z) log b length
then with the probability 1 — (% + %) )
ATXY(XHTA = ht]|A]|5,
2
were c,c’,c'’ are universal constants, g(£) = maxX;; and h = (& — R||A]| |%\/2a/1max§2) log T)/
l
* The larger perturbation does not indicate the better regret. Cond(X) > % > 1.
e Condition number and SPR (the signal to perturbation ratio).
2 2
R Amax(%) — R Amax(¥) We prove both cases will achieve the optimal regret
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