Assistive Robust Reward Design RSS IDA Workshop 2020

Jerry Zhi-Yang He UC Berkeley

Anca D. Dragan UC Berkeley AI systems treat reward functions as set in stone.

 $R_{\omega}(s,a)$

The AI system should account for the *iterative nature* of the reward design process, rather than treat the currently specified reward as *set in stone*.

1. Realize that the current proxy reward is an "evidence".

1. Realize that the current proxy reward is an "evidence".

- 1. Realize that the current proxy reward is an "evidence".
- 2. Account for "future evidence".

- 1. Realize that the current proxy reward is an "evidence".
- 2. Account for "future evidence".

- 1. Realize that the current proxy reward is an "evidence".
- 2. Account for "future evidence".

- 1. Realize that the current proxy reward is an "evidence".
- 2. Account for "future evidence".
- 3. Act to influence the designer.

- 1. Realize that the current proxy reward is an "evidence".
- 2. Account for "future evidence".
- 3. Act to influence the designer.

- 1. Realize that the current proxy reward is an "evidence".
- 2. Account for "future evidence".
- 3. Act to influence the designer.

Key Insight

An assistive reward design system should actively expose the designer to the environments that have the most potential to narrow down what the reward should be.

