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How can we learn difficult tasks with little online fine-tuning by
using prior datasets?
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Challenges Fine-tuning with Existing Methods

1. Data Efficiency from Prior Data
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1. On-policy fine-tuning methods exhibit slow online improvement.

[30] Advantage Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning. Peng et al. 2019.
[35] Learning Complex Dextrous Manipulation with Deep Reinforcement Learning and Demonstrations. Rajeswaran et al. 2017.



Challenges Fine-tuning with Existing Methods

2. Actor-Critic Methods
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2. Standard actor-critic methods do not take advantage of offline
training, even if the policy is pretrained with behavioral cloning.

[11] Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. Haarnoja et al. 2019.
[43] Leveraging Demonstrations for Deep Reinforcement Learning on Robotics Problems with Sparse Rewarsd. Vecerik et al. 2017.



Challenges Fine-tuning with Existing Methods

Policy Improvement Step Maximize
estimated
returns
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Actor-critic methods can be stabilized for offline training by incorporating a
policy constraint in the policy improvement step.



Challenges Fine-tuning with Existing Methods

3. Policy Constraint Methods 4. Log Likelihood of 7;
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3. Existing policy constraint methods (BEAR [21], ABM [38], BRAC [46])
rely on behavior models of prior data, which are difficult to train online.

[21] Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction. Kumar et al. 2019.
[38] Keep Doing What Worked: Behavior Modelling Priors for Offline Reinforcement Learning. Siegel et al. 2019.
[46] Behavior Regularized Offline Reinforcement Learning. Yifan Wu et al. 2019.



Advantage Weighted Actor Critic (AWAC)

Policy Improvement Step

Tk+1 = alglnax Canr(s)[A™* (s, a)]

s.t. D(m(+[s)]|mp(-[s)) < €

AWAC incorporates a KL constraint into
the actor-critic framework implicitly
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AWAC trains well offline, fine-tunes quickly online, and does not need to
estimate a behavior model.



Dextrous Manipulation Tasks
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Our algorithm can be used to solve difficult dextrous manipulation tasks - it
solves door opening in under 1 hour of online interaction.
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