Efficient Black-Box Combinatorial Optimization

Hamid Dadkhahi Karthikeyan Shanmugam Jesus Rios Payel Das

IBM Research NY

RealML @ ICML2020

Overview

Black-box function optimization over purely categorical variables

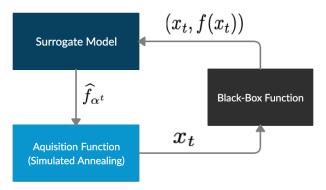
The black-box functions of interest:

- > Intrinsically expensive to evaluate
- ▶ Noisy
- No trivial means to find the minimum

Problem Statement

Problem: Given the categorical domain $\mathcal{X} = [k]^n$, with n variables each of cardinality k, the objective is to find

$$x^* = \arg\min_{x \in \mathcal{X}} f(x)$$


where $f: \mathcal{X} \mapsto \mathbb{R}$ is a real-valued combinatorial function.

- \triangleright Find x^* (or an approximation of it) in as few function evaluations as possible

Learning Framework

Learning framework at each time step t:

- ▷ Surrogate model provides an estimate for the black-box function via observations $\{(x_i, f(x_i)) : i \in [t]\}$ seen so far.
- \triangleright Acquisition function selects a new candidate point x_t .
- \triangleright The black-box function returns the evaluation $f(x_t)$.

Surrogate Model

Boolean Case: Multilinear Polynomial Representation (Fourier expansion)

$$f(x) = \sum_{\mathcal{I} \subseteq [n]} \alpha_{\mathcal{I}} \psi_{\mathcal{I}}(x)$$

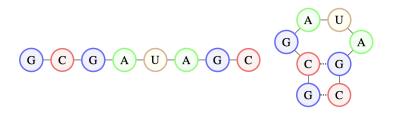
- $\triangleright \alpha_{\mathcal{I}}$: Fourier coefficient of f on \mathcal{I}
- $\triangleright \ \psi_{\mathcal{I}}(x) = \prod_{i \in \mathcal{I}} x_i$: monomials of order $|\mathcal{I}|$

Categorical Case: Fourier representation on finite Abelian groups

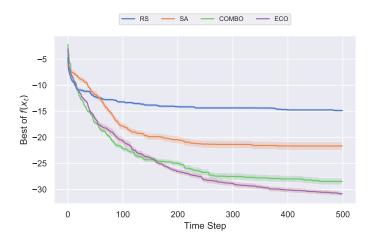
$$f(x) = \sum_{\mathcal{I} \in [k]^n} \alpha_{\mathcal{I}} \psi_{\mathcal{I}}(x)$$

- $\triangleright \alpha_{\mathcal{I}}$: Fourier coefficients
- ho $\psi_{\mathcal{I}}(x) = \exp(2\pi j \langle x, \mathcal{I} \rangle / k)$: characters (k-th roots of unity)

The ECO Algorithm


Surrogate Model Update Rule:

- Exponential weight update rule from the Hedge algorithm
- We maintain a pool of monomials (Boolean case) or characters (categorical case) where each term plays the role of an expert
- \triangleright Find the optimal coefficient α_i for expert ψ_i .


Acquisition Function: A version of simulated Annealing

Results: RNA Sequence Optimization Problem

- \triangleright RNA sequence as a string $A = a_1 \dots a_n$ of n letters (nucleotides) over the alphabet $\Sigma = \{A, U, G, C\}$
- \triangleright Given a sequence length n, find a sequence with Minimum Free Energy (MFE)
- \triangleright Experiments: RNA sequences of length n=30

Results: RNA Sequence Optimization Problem

Results: Computation Times

Average computation time per step (in Seconds)

Dataset	n	k	СОМВО	ECO
Sequence Optimization	30	4	253.8	5.7

Thank you!

Questions?
hdadkhahi@ibm.com
karthikeyan.shanmugam2@ibm.com
jriosal@us.ibm.com
daspa@us.ibm.com