Improved Regret Bounds for Agnostic Gaussian Process Bandits using Local Polynomial Estimators

Shubhanshu Shekhar¹ Tara Javidi² ECE Department, UCSD ECE Department, UCSD

REALML Workshop at ICML 2020

¹shshekha@eng.ucsd.edu ²tjavidi@eng.ucsd.edu We consider the problem of maximizing a black-box function f which can be accessed via noisy and expensive evaluation queries.

- We assume that $f : [0,1]^D \mapsto \mathbb{R}$ has bounded norm in the RKHS of a kernel K, i.e., $\|f\|_{\mathcal{H}_K} \leq B$.
- Observation model: $y = f(x) + \eta$ with $\eta \sim \sigma^2$ -sub-Gaussian.
- Budget = n evaluations
- ▶ Goal: Select queries {X₁, X₂,..., X_n} sequentially to minimize Simple (S_n) and Cumulative (R_n) regret:

$$S_n = f(x^*) - f(X_n), \qquad \mathcal{R}_n = \sum_{t=1}^n f(x^*) - f(X_t)$$

LP-GP-UCB Algorithm

Key Idea: Augment the global GP surrogate (as used in GP-UCB algorithm) with Local Polynomial (LP) estimators over non-uniform partitions of the domain to construct tighter UCBs.

Repeat the following steps for all times $t \ge 1$:

- Maintain a partition $\mathcal{P}_t = \{E_1, E_2, \dots, E_{m_t}\}.$
- Use Local Polynomial (LP) Estimators along with global GP surrogate to construct UCB.
- Select query point $x_t \sim \text{Unif}(E_t)$ where $E_t = \arg \max_{E \in \mathcal{P}_t} UCB(E)$.
- Update the partition \mathcal{P}_t and the GP posterior.

Key Observation: For Matérn kernels with $\nu > 0$, we can show an embedding of the RKHS into the space $C^{k,\alpha}$ for $k = \lceil \nu - 1 \rceil$ and $\alpha = \nu - k$.

- ► For Matérn kernels, the LP-GP-UCB algorithms achieves uniformly tighter bounds on both S_n and R_n, for all ν > 0.
- In particular, the bounds on S_n (resp. R_n) match the algorithm independent lower bounds for v ≤ D(D + 1) (resp. v ≤ 1).
- Besides Matérn kernels, we also obtain the first explicit in n regret bounds for some other important kernels such as Rational-Quadratic and Gamma-Exponential.

We use the 2-dim Branin function (g_B) to construct an objective function (f) on \mathbb{R}^8 as follows:

$$f(x) = \sum_{i=1}^{4} c_i g_B \left(x[2i-1:2i] \right),$$

where $c_1 = 1.0$ and $c_i = 0.1$ for i = 2, 3, 4.

Informally, f has 2 *active* dimensions and an *ambient* dimension of 8.

