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Motivation
e Training neural nets ——)> expensive
e Bayesian Optimization (BO) =) limited hyperparameters
e Low-fidelity observations

Pros Cons
e Increased # of explored hyperparameters via: e  Adds to the randomness/noise of BO
o Cheap partially trained models e Challenging extrapolation

o Extrapolate to fully trained models
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Proposed Solution
e Decrease randomness by using Information of each training example
e BO - Importance Sampling (IS)

Pros Cons
e High-fidelity observation e Large overhead cost challenging
e More accurate models ~
Solve via multi-task BO over importance sampling design

e Less # of observations required
Learn when high-fidelity is worth the cost

GP with many noisy points GP with few noiseless points
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Proposed Solution

< IS-SGD [1]
e Importance dist ——) Initially similar to uniform sampling & expensive

/4

L< Pl

Start from uniform sampling
Track variance reduction
Switch to IS if variance reduction large

Select a random super-batch of size B
Select mini-batches with IS from super-batch

[1] Katharopoulos & Fleuret., ICML 2018

To learn the trade-off parameter B =) Maximize oy (z, B)

1 [ * _ . x* _ " o
o B) H(P[z* | B=D|,Dy]) ~ E, [H(P[z" | B |D|,pnu{,3,y}])_],

an(z,B) =

Expected entropy reduction from training on hyperparameter x via

Expected training cost
ale N IS-SGD routine with super-batch size B

forx, B




Results- ResNet on CIFAR100
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e Improved worst-case performance
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