PareCO: <u>Pareto-aware</u> <u>Channel</u> <u>Optimization</u> for Slimmable Neural Networks

The University of Texas at Austin **Electrical and Computer** Engineering Cockrell School of Engineering

Ari S. Morcos

Diana Marculescu

Slimmable Neural Networks

One set of weights, multiple networks on the trade-off front!

#FLOPs

Why Slimmable Neural Networks?

Reduce model maintenance cost

Runtime optimization

The Gap

0.25× FLOPs

0.56× FLOPs

 $0.12 \times FLOPs$

How can we optimize slimmable neural networks with flexible widths?

The objective of our problem

$\min_{\theta} \mathbb{E}_{x,y} \mathbb{E}_{\lambda} L_{CE}(\theta; x, y, \alpha^*)$

A Flexible Framework for Multi-Objective Bayesian Optimization using **Random Scalarizations**

Biswajit Paria MLD, Carnegie Mellon University bparia@cs.cmu.edu

Kirthevasan Kandasamy* EECS, UC Berkeley kandasamy@eecs.berkeley.edu

Barnabás Póczos MLD, Carnegie Mellon University bapoczos@cs.cmu.edu

s.t. $\alpha^* = \arg \min T_{\lambda}(\alpha; \theta, x, y)$

Augmented Tchebyshev Scalarization

ImageNet: Compared to conventional slimmable neural networks

MobileNetV2

MobileNetV3

Takeaways

- Optimizing the layer-wise channel counts for the sub-networks in slimmable neural networks allows for better trade-off between prediction error and FLOPs
- This work provides a principled formulation and a practical algorithm for optimizing the layer-wise channel counts for slimmable neural networks