Promoting Fairness in Learned Models by Learning to Active Learn under Parity Constraints

Amr Sharaf University of Maryland amr@cs.umd.edu

Hal Daumé III University of Maryland Microsoft Research me@hal3.name

Can we learn to active learn under fairness parity constraints?

Pre-existing data $\mathsf{D} = (\mathsf{U},)$

x B sampled items

x B sampled items

Evaluate Meta-Loss

Goal: can we manage an efficacy vs annotation cost trade-off under a target parity constraint?

PANDA Train Time Behavior

Evaluate Meta-Loss

PANDA Train Time Behavior

Evaluate Meta-Loss

PANDA Train Time Behavior

С	40
moli	ba

С	40
moli	ba

Demographic Disparity vs F-Score Apergraphic Disparity vs F-Score

0.6

0 \$ 563

0.563525

Conclusion

- A: Yes, using meta-learning + Forward Backward Splitting;
- We compare to alternative active learning strategies;
- PANDA outperforms alternative strategies in most setting.

– Q: Can we learn to active learn under fairness parity constraints?

Questions? amr@cs.umd.edu