
Promoting Fairness in Learned Models
by Learning to Active Learn under Parity Constraints

Amr Sharaf
University of Maryland
amr@cs.umd.edu

Hal Daumé III
University of Maryland

Microsoft Research
me@hal3.name

Abstract

Machine learning models can have consequential effects, and disparities in error
rate can lead to harms suffered more by some groups than others. Past algorithmic
approaches mitigate such disparities for fixed training data; we ask: what if we can
gather more data? We develop a meta-learning algorithm for parity-constrained
active learning that learns a policy to decide which labels to query so as to maximize
accuracy subject to parity constraints, using forward-backward splitting at the meta-
learning level. Empirically, across three classification tasks and different parity
metrics, our approach outperforms alternatives by a large margin.

1 Introduction

Machine learning models often lead to harms due to disparities in behavior across social groups: an
automated hiring system may be more likely to recommend hiring people of privileged races, genders,
or age groups (Wachter-Boettcher, 2017; Giang, 2018). These disparities are typically caused by
biases in historic data (society is biased); a substantial literature exists around “de-biasing” methods
for algorithms, predictions, or models (, i.a.). Such approaches always assume that the training data
is fixed, leading to a false choice between efficacy (e.g., accuracy, AUC) and “fairness” (typically
measured by a metric of parity across subgroups (Chen et al., 2018; Kallus and Zhou, 2018)). This is
in stark contrast to how machine learning practitioners address disparities in model performance:
they collect more data that’s more relevant or representative of the populations of interest (Veale and
Binns, 2017; Holstein et al., 2019). This disconnect leads to a mismatch between sources of bias, and
the algorithmic interventions developed to mitigate them (Zarsky, 2016).

We consider a different trade-off: given a pre-existing dataset, which may have been collected in a
highly biased manner, how can we manage an efficacy vs annotation cost trade-off under a target
parity constraint? We call this problem parity-constrained active learning, where a maximal disparity
(according to any of a number of different measures, see Table 1) is enforced during a data collection
process. We specifically consider the case where some “starting” dataset has already been collected,
distinguishing our procedure from more standard active learning settings in which we typically start
from no data ((Settles, 2009), see §2). The goal then is to collect as little data as is needed to keep
accuracy high while maintaining a constraint on parity (as a measure of fairness). As an example,
consider disparities in pedestrian detection by skin tone (Wilson et al., 2019): A pedestrian detector is
trained based on a dataset of 100k images, but an analysis shows that it performs significantly better
at detecting people with light skin than people with dark skin. Our goal is to label few additional
samples while achieving a high accuracy under a constraint on the disparity between these groups.1

We propose to solve the parity-constrained active learning problem using a meta-learning approach,
very much in the style of recent work on meta-learning for active learning (Konyushkova et al., 2017;

1Code: https://www.dropbox.com/sh/sbao1hdrxvgmdfw/AAC0LsyQsIxNIYxVaolLhKj_a?dl=0

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

1

Can we learn to active learn
under fairness parity constraints?

2

Pre-existing data
D = (U,)

PANDA Test Time Behavior

U

3

Pre-existing data
D = (U,)

Transformer
Selection Policy π

PANDA Test Time Behavior

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

Fe
ed

 F
or

w
ar

d
D

ec
od

er
U

4

Pre-existing data
D = (U,)

Transformer
Selection Policy π

PANDA Test Time Behavior

Distribution Q Over U, Y

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

Fe
ed

 F
or

w
ar

d
D

ec
od

er
U

Gumbel(0)

+

Q=π(h0,D)

x B sampled items

5

Pre-existing data
D = (U,)

Transformer
Selection Policy π

PANDA Test Time Behavior

Train Classifier
hB = A(DB)

 on B Samples

Distribution Q Over U, Y

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

Fe
ed

 F
or

w
ar

d
D

ec
od

er
U

Gumbel(0)

+

Q=π(h0,D)

x B sampled items

6

Pre-existing data
D = (U,)

Transformer
Selection Policy π

PANDA Test Time Behavior

Train Classifier
hB = A(DB)

 on B Samples

Evaluate Meta-Loss
on held-out data V

on accuracy / parity:
𝔼Vℓ(hB) / Δv(hB)

Distribution Q Over U, Y

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

Fe
ed

 F
or

w
ar

d
D

ec
od

er

Gumbel(0)

+

Q=π(h0,D)

x B sampled items

U

7

https://en.wiktionary.org/wiki/%E2%84%93
https://en.wiktionary.org/wiki/%E2%84%93

Goal: can we manage an efficacy vs annotation
cost trade-off under a target parity constraint?

8

Transformer
Selection Policy π

PANDA Train Time Behavior

Train Classifier
hB = A(DB)

 on B Samples

Evaluate Meta-Loss
on held-out data V

on accuracy / parity:
𝔼Vℓ(hB) / Δv(hB)

Distribution Q Over U, Y

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

Fe
ed

 F
or

w
ar

d
D

ec
od

er
U

Gumbel(0)

+

Q=π(h0,D)

x B sampled items

9

https://en.wiktionary.org/wiki/%E2%84%93
https://en.wiktionary.org/wiki/%E2%84%93

Pre-existing data
D = (U, Y)

Transformer
Selection Policy π

PANDA Train Time Behavior

Train Classifier
hB = A(DB)

 on B Samples

Evaluate Meta-Loss
on held-out data V

on accuracy / parity:
𝔼Vℓ(hB) / Δv(hB)

Distribution Q Over U, Y

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

Fe
ed

 F
or

w
ar

d
D

ec
od

er
UY

Gumbel(0)

+

Q=π(h0,D)

x B sampled items

10

https://en.wiktionary.org/wiki/%E2%84%93
https://en.wiktionary.org/wiki/%E2%84%93

Pre-existing data
D = (U, Y)

Transformer
Selection Policy π

PANDA Train Time Behavior

Train Classifier
hB = A(DB)

 on B Samples

Evaluate Meta-Loss
on held-out data V

on accuracy / parity:
𝔼Vℓ(hB) / Δv(hB)

Compute Gradients w.r.t
 parameters of π

update π to minimize
performance/parity loss

Distribution Q Over U, Y

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

Fe
ed

 F
or

w
ar

d
D

ec
od

er
UY

Gumbel(0)

+

Q=π(h0,D)

x B sampled items

11

https://en.wiktionary.org/wiki/%E2%84%93
https://en.wiktionary.org/wiki/%E2%84%93

Experimental ResultsF-Score vs Budget for different
Active Learning Algorithms

F-
sc

or
e

0.3

0.4

0.5

0.6

0.7

Budget
0 100 200 300 400

Demographic Disparity vs Budget for
different Active Learning Algorithms

De
m

og
ra

ph
ic

Di
sp

ar
ity

0

0.035

0.07

0.105

0.14

Budget
0 100 200 300 400

F-Score vs Budget for different
Active Learning Algorithms

F-
sc

or
e

0.3

0.4

0.5

0.6

0.7

Budget

0 100 200 300 400

Random Sampling Fairlearn PANDA Fair Active Learning Entropy Sampling Group Aware Random Sampling

Figure 2: Learning curves for all algorithms, with (Left) budget (x-axis) versus F-score (y-axis) and
(Right) budget (x-axis) versus demographic disparity (y-axis). The constraint value for fairlearn and
PANDA is 0.04. Overall, we see that PANDA and fairlearn are able to (approximately) achieve the
target parity, with PANDA achieving a higher F-score even than FAL (which has higher disparity).

optimizes for the trade-off. Finally, fairlearn and PANDA dominate in terms of the trade-off, with
PANDA achieving higher accuracy, better error rate balance, but worth demographic disparity.

We also wish to consider the dynamic nature of these algorithms as they collect more data. In Figure 2,
we plot budget versus f-score and disparity for a fixed parity constraint of 0.04. Unsurprisingly, we
see that entropy sampling outperforms random sampling (in F-score), though they perform essentially
the same for disparity. We also see a clear trade-off in FAL between F-score (goes up as the budget
increases) and disparity (also goes up).

Here, we see that both fairlearn and PANDA are able to keep the disparity low (after an initial peak
for PANDA). There is a generalization gap between PANDA’s training disparity (which always exactly
satisfies the 0.04 constraint) and its validation disparity, which is somewhat higher, as anticipated by
concentration bounds on disparity like those of Agarwal et al. (2018). The initial peak in disparity
(where it does not satisfy the constraint) for PANDA is not surprising: it is trained end-to-end to pick
a good sample of 400 points; it is not optimized for smaller budgets. Similarly, in terms of F-score,
PANDA achieves a very high initial F-score, essentially a zero-shot learning type effect. However, as
it lowers the disparity, the F-score also drops slightly.

5 Discussion, Limitations and Conclusion

We presented PANDA, a meta-learning approach for learning to active learn under parity constraints,
motivated by the desire to build an algorithm to mitigate unfairness in machine learning by collecting
more data. We have seen that empirically PANDA is effective experimentally, even in a setting in
which it essentially has to choose all 400 points to label at once, rather than one at a time. An obvious
direction of future work is to incorporate features of the underlying classifier into the selection policy;
the major challenge here is the computational expense of unrolling the corresponding computational
graph. One major advantage of PANDA over all other alternatives is that in principle it does not need
access to group information at test time. So long as it can be trained with group information available
(for measuring disparities on the meta-test data), there is nothing in the algorithm that requires this
information at test time. The only other setting in which this is possible is FAL with demographic
disparity (precisely because demographic disparity does not need access to labels). Exploring this
experimentally is a potential next step. Finally, there is the broader question of: how does one know
what is the right intervention to mitigate disparities? Should we constrain our classifier? Should
we collect more data? More features? Change the architecture? These are all important questions
that are only beginning to be explored (Chen et al., 2018; Galhotra et al., 2017; Udeshi et al., 2018;
Angell et al., 2018).

8

12

F-Score vs Budget for different
Active Learning Algorithms

F-
sc

or
e

0.3

0.4

0.5

0.6

0.7

Budget
0 100 200 300 400

Demographic Disparity vs Budget for
different Active Learning Algorithms

De
m

og
ra

ph
ic

Di
sp

ar
ity

0

0.035

0.07

0.105

0.14

Budget
0 100 200 300 400

F-Score vs Budget for different
Active Learning Algorithms

F-
sc

or
e

0.3

0.4

0.5

0.6

0.7

Budget

0 100 200 300 400

Random Sampling Fairlearn PANDA Fair Active Learning Entropy Sampling Group Aware Random Sampling

Figure 2: Learning curves for all algorithms, with (Left) budget (x-axis) versus F-score (y-axis) and
(Right) budget (x-axis) versus demographic disparity (y-axis). The constraint value for fairlearn and
PANDA is 0.04. Overall, we see that PANDA and fairlearn are able to (approximately) achieve the
target parity, with PANDA achieving a higher F-score even than FAL (which has higher disparity).

optimizes for the trade-off. Finally, fairlearn and PANDA dominate in terms of the trade-off, with
PANDA achieving higher accuracy, better error rate balance, but worth demographic disparity.

We also wish to consider the dynamic nature of these algorithms as they collect more data. In Figure 2,
we plot budget versus f-score and disparity for a fixed parity constraint of 0.04. Unsurprisingly, we
see that entropy sampling outperforms random sampling (in F-score), though they perform essentially
the same for disparity. We also see a clear trade-off in FAL between F-score (goes up as the budget
increases) and disparity (also goes up).

Here, we see that both fairlearn and PANDA are able to keep the disparity low (after an initial peak
for PANDA). There is a generalization gap between PANDA’s training disparity (which always exactly
satisfies the 0.04 constraint) and its validation disparity, which is somewhat higher, as anticipated by
concentration bounds on disparity like those of Agarwal et al. (2018). The initial peak in disparity
(where it does not satisfy the constraint) for PANDA is not surprising: it is trained end-to-end to pick
a good sample of 400 points; it is not optimized for smaller budgets. Similarly, in terms of F-score,
PANDA achieves a very high initial F-score, essentially a zero-shot learning type effect. However, as
it lowers the disparity, the F-score also drops slightly.

5 Discussion, Limitations and Conclusion

We presented PANDA, a meta-learning approach for learning to active learn under parity constraints,
motivated by the desire to build an algorithm to mitigate unfairness in machine learning by collecting
more data. We have seen that empirically PANDA is effective experimentally, even in a setting in
which it essentially has to choose all 400 points to label at once, rather than one at a time. An obvious
direction of future work is to incorporate features of the underlying classifier into the selection policy;
the major challenge here is the computational expense of unrolling the corresponding computational
graph. One major advantage of PANDA over all other alternatives is that in principle it does not need
access to group information at test time. So long as it can be trained with group information available
(for measuring disparities on the meta-test data), there is nothing in the algorithm that requires this
information at test time. The only other setting in which this is possible is FAL with demographic
disparity (precisely because demographic disparity does not need access to labels). Exploring this
experimentally is a potential next step. Finally, there is the broader question of: how does one know
what is the right intervention to mitigate disparities? Should we constrain our classifier? Should
we collect more data? More features? Change the architecture? These are all important questions
that are only beginning to be explored (Chen et al., 2018; Galhotra et al., 2017; Udeshi et al., 2018;
Angell et al., 2018).

8

Experimental ResultsF-Score vs Budget for different
Active Learning Algorithms

F-
sc

or
e

0.3

0.4

0.5

0.6

0.7

Budget
0 100 200 300 400

Demographic Disparity vs Budget for
different Active Learning Algorithms

De
m

og
ra

ph
ic

Di
sp

ar
ity

0

0.035

0.07

0.105

0.14

Budget
0 100 200 300 400

F-Score vs Budget for different
Active Learning Algorithms

F-
sc

or
e

0.3

0.4

0.5

0.6

0.7

Budget

0 100 200 300 400

Random Sampling Fairlearn PANDA Fair Active Learning Entropy Sampling Group Aware Random Sampling

Figure 2: Learning curves for all algorithms, with (Left) budget (x-axis) versus F-score (y-axis) and
(Right) budget (x-axis) versus demographic disparity (y-axis). The constraint value for fairlearn and
PANDA is 0.04. Overall, we see that PANDA and fairlearn are able to (approximately) achieve the
target parity, with PANDA achieving a higher F-score even than FAL (which has higher disparity).

optimizes for the trade-off. Finally, fairlearn and PANDA dominate in terms of the trade-off, with
PANDA achieving higher accuracy, better error rate balance, but worth demographic disparity.

We also wish to consider the dynamic nature of these algorithms as they collect more data. In Figure 2,
we plot budget versus f-score and disparity for a fixed parity constraint of 0.04. Unsurprisingly, we
see that entropy sampling outperforms random sampling (in F-score), though they perform essentially
the same for disparity. We also see a clear trade-off in FAL between F-score (goes up as the budget
increases) and disparity (also goes up).

Here, we see that both fairlearn and PANDA are able to keep the disparity low (after an initial peak
for PANDA). There is a generalization gap between PANDA’s training disparity (which always exactly
satisfies the 0.04 constraint) and its validation disparity, which is somewhat higher, as anticipated by
concentration bounds on disparity like those of Agarwal et al. (2018). The initial peak in disparity
(where it does not satisfy the constraint) for PANDA is not surprising: it is trained end-to-end to pick
a good sample of 400 points; it is not optimized for smaller budgets. Similarly, in terms of F-score,
PANDA achieves a very high initial F-score, essentially a zero-shot learning type effect. However, as
it lowers the disparity, the F-score also drops slightly.

5 Discussion, Limitations and Conclusion

We presented PANDA, a meta-learning approach for learning to active learn under parity constraints,
motivated by the desire to build an algorithm to mitigate unfairness in machine learning by collecting
more data. We have seen that empirically PANDA is effective experimentally, even in a setting in
which it essentially has to choose all 400 points to label at once, rather than one at a time. An obvious
direction of future work is to incorporate features of the underlying classifier into the selection policy;
the major challenge here is the computational expense of unrolling the corresponding computational
graph. One major advantage of PANDA over all other alternatives is that in principle it does not need
access to group information at test time. So long as it can be trained with group information available
(for measuring disparities on the meta-test data), there is nothing in the algorithm that requires this
information at test time. The only other setting in which this is possible is FAL with demographic
disparity (precisely because demographic disparity does not need access to labels). Exploring this
experimentally is a potential next step. Finally, there is the broader question of: how does one know
what is the right intervention to mitigate disparities? Should we constrain our classifier? Should
we collect more data? More features? Change the architecture? These are all important questions
that are only beginning to be explored (Chen et al., 2018; Galhotra et al., 2017; Udeshi et al., 2018;
Angell et al., 2018).

8

13

Experimental Results

Demographic Disparity vs F-Score

F-
Sc

or
e

0.45

0.488

0.525

0.563

0.6

Demographic Disparity
0.025 0.044 0.062 0.081 0.1

Error Rate Balance vs F-Score

F-
Sc

or
e

0.45

0.488

0.525

0.563

0.6

Error Rate Balance
0.025 0.119 0.213 0.306 0.4

Demographic Disparity vs F-Score

F-
Sc

or
e

0.45

0.488

0.525

0.563

0.6

Demographic Disparity
0.025 0.044 0.062 0.081 0.1

Random Sampling Fairlearn PANDA Fair Active Learning Entropy Sampling Group Aware

Figure 1: (Left) A scatterplot of demographic disparity versus F-score for a fixed budget B = 400,
for PANDA and baseline approaches. (Right) A similar scatterplot for error rate balance versus
F-score. In both cases, the upper-left is optimal behavior. Overall, we see that fairlearn and PANDA
are the most competitive algorithms, with flipped behavior with respect to disparity on the two metrics.
Dotted curves are algorithms unaware of parity/groups; solid lines are algorithms that are.

Fair Active Learning – the fair active learning approach described in §2 that optimizes an interpo-
lation between Entropy Sampling and expected disparity.

Fairlearn – select examples to label uniformly at random, and the run fairlearn to train a classifier
to optimize accuracy subject to a parity constraint (Agarwal et al., 2018).

4.2 Implementation Details and Hyperparameter Tuning

We use the Transformer Model (Vaswani et al., 2017) implemented in PyTorch (Paszke et al., 2019).
We use the standard transformer encoder with successive encoder layers. Each layer contains a
self-attention layer, followed by a fully connected feed-forward layer. We use the feed-forward
layer for decoding, where we sample B items from the predicted probability distribution in a single
decoding step. To ensure a fair-comparison among all approaches, we use the same Transformer
architecture as a feature extractor for all approaches. This ensures that PANDA has no additional
advantage by observing more training data.

The model is optimized with Adam (Kingma and Ba, 2014). We optimize all hyper-parameters
with the Bayes search algorithm implemented in comet.ml using an adaptive Parzen-Rosenblatt
estimator. We search for the best parameters for learning rate (10�2 to 10�7), number of layers in the
transformer encoder (1, 3, 5), embedding dimensions for the encoder hidden-layer (16, 32, 64), as
well as the initial value for the Gumbel-Softmax temperature parameter (1 to 10�6) which is then
learned adaptively as meta-training progresses. The sampled examples are used to train a linear
classifier, again we optimize the hyper-parameters for the learning rate and batch size using Bayes
search. For active learning model selection, we sweep over parameters using the random sampling
active learning method. We found that hyper-parameters for random sampling work well for other
alternative approaches too. We scale all the features to have a mean zero and unit standard deviation.

4.3 Evaluation Metrics and Results

We evaluate the performance of the learned classifiers using the overall F-score on the evaluation
set V , and report violations for parity-constrains in terms of demographic disparity and error rate
balance (Table 1), as these account for different ends of the constrained spectrum of parity metrics.
In order to set trade-off parameters (the convex combination for FAL and the constraints for fairlearn
and PANDA), we first run FAL with several different trade-off parameters to find a value large enough
that disparity matters but small enough that a non-zero F-score is possible. All results are with 0.6.
We then observed the final disparity for FAL of 0.8 and set a constraint for PANDA and FAL of half
of that: 0.4. This choice was made to ensure that FAL has an overall advantage over PANDA.

The main results are shown in Figure 1, where we consider performance for a fixed budget. Here,
we first observe (unsurprisingly) that the baselines that do not take parity into account (Random
Sampling and Entropy Sampling) do quite poorly (we do not plot margin-based sampling as it was
dominated by Entropy sampling in all experiments). For example, while entropy sampling gets a
very high F-score, it has quite poor disparity. Somewhat surprisingly, group-aware random sampling
does worse in terms of disparity than even plain random sampling. FAL is able to achieve higher
accuracy than random sampling, but, again, it’s disparity is no better despite the fact that it explicitly

7

Demographic Disparity vs F-Score

F-
Sc

or
e

0.45

0.488

0.525

0.563

0.6

Demographic Disparity
0.025 0.044 0.062 0.081 0.1

Error Rate Balance vs F-Score

F-
Sc

or
e

0.45

0.488

0.525

0.563

0.6

Error Rate Balance
0.025 0.119 0.213 0.306 0.4

Demographic Disparity vs F-Score
F-

Sc
or

e

0.45

0.488

0.525

0.563

0.6

Demographic Disparity
0.025 0.044 0.062 0.081 0.1

Random Sampling Fairlearn PANDA Fair Active Learning Entropy Sampling Group Aware

Figure 1: (Left) A scatterplot of demographic disparity versus F-score for a fixed budget B = 400,
for PANDA and baseline approaches. (Right) A similar scatterplot for error rate balance versus
F-score. In both cases, the upper-left is optimal behavior. Overall, we see that fairlearn and PANDA
are the most competitive algorithms, with flipped behavior with respect to disparity on the two metrics.
Dotted curves are algorithms unaware of parity/groups; solid lines are algorithms that are.

Fair Active Learning – the fair active learning approach described in §2 that optimizes an interpo-
lation between Entropy Sampling and expected disparity.

Fairlearn – select examples to label uniformly at random, and the run fairlearn to train a classifier
to optimize accuracy subject to a parity constraint (Agarwal et al., 2018).

4.2 Implementation Details and Hyperparameter Tuning

We use the Transformer Model (Vaswani et al., 2017) implemented in PyTorch (Paszke et al., 2019).
We use the standard transformer encoder with successive encoder layers. Each layer contains a
self-attention layer, followed by a fully connected feed-forward layer. We use the feed-forward
layer for decoding, where we sample B items from the predicted probability distribution in a single
decoding step. To ensure a fair-comparison among all approaches, we use the same Transformer
architecture as a feature extractor for all approaches. This ensures that PANDA has no additional
advantage by observing more training data.

The model is optimized with Adam (Kingma and Ba, 2014). We optimize all hyper-parameters
with the Bayes search algorithm implemented in comet.ml using an adaptive Parzen-Rosenblatt
estimator. We search for the best parameters for learning rate (10�2 to 10�7), number of layers in the
transformer encoder (1, 3, 5), embedding dimensions for the encoder hidden-layer (16, 32, 64), as
well as the initial value for the Gumbel-Softmax temperature parameter (1 to 10�6) which is then
learned adaptively as meta-training progresses. The sampled examples are used to train a linear
classifier, again we optimize the hyper-parameters for the learning rate and batch size using Bayes
search. For active learning model selection, we sweep over parameters using the random sampling
active learning method. We found that hyper-parameters for random sampling work well for other
alternative approaches too. We scale all the features to have a mean zero and unit standard deviation.

4.3 Evaluation Metrics and Results

We evaluate the performance of the learned classifiers using the overall F-score on the evaluation
set V , and report violations for parity-constrains in terms of demographic disparity and error rate
balance (Table 1), as these account for different ends of the constrained spectrum of parity metrics.
In order to set trade-off parameters (the convex combination for FAL and the constraints for fairlearn
and PANDA), we first run FAL with several different trade-off parameters to find a value large enough
that disparity matters but small enough that a non-zero F-score is possible. All results are with 0.6.
We then observed the final disparity for FAL of 0.8 and set a constraint for PANDA and FAL of half
of that: 0.4. This choice was made to ensure that FAL has an overall advantage over PANDA.

The main results are shown in Figure 1, where we consider performance for a fixed budget. Here,
we first observe (unsurprisingly) that the baselines that do not take parity into account (Random
Sampling and Entropy Sampling) do quite poorly (we do not plot margin-based sampling as it was
dominated by Entropy sampling in all experiments). For example, while entropy sampling gets a
very high F-score, it has quite poor disparity. Somewhat surprisingly, group-aware random sampling
does worse in terms of disparity than even plain random sampling. FAL is able to achieve higher
accuracy than random sampling, but, again, it’s disparity is no better despite the fact that it explicitly

7

14

Conclusion

- Q: Can we learn to active learn under fairness parity constraints?

- A: Yes, using meta-learning + Forward Backward Splitting;

- We compare to alternative active learning strategies;

- PANDA outperforms alternative strategies in most setting.

15

Questions?
amr@cs.umd.edu

16

mailto:amr@cs.umd.edu
mailto:amr@cs.umd.edu

