Cost-Efficient Online Hyperparameter Optimization

Jingkang Wang^{*1,2}, Mengye Ren^{*1,2}, Ilija Bogunovic³, Yuwen Xiong^{1,2}, Raquel Urtasun^{1,2}

Motivation

- Online Hyperparameter Optimization (HPO) shows that one can actually tune certain hyperparameters (e.g., data augmentation, weight decay) by **constantly** evaluating on the validation set.
- Evaluating on the held-out set and taking gradient w.r.t. hyperparameters are **expensive**
- We make online HPO efficient in the evaluation cost

Problem Statement

- Model online HPO as a time varying (TV) Bayesian optimization (BO) problem with costly feedback
- requires the agent to **pay a cost** whenever it receives the feedback from the unknown function

Problem Statement

- Model online HPO as a time varying (TV) Bayesian optimization (BO) problem with costly feedback
- requires the agent to **pay a cost** whenever it receives the feedback from the unknown function

Cost-Efficient Query Strategy

- General Idea: skip those uninformative queries to save the query cost
- Cost-Efficient Query Rule:

Cost-Efficient Query Strategy

- General Idea: skip those uninformative queries to save the query cost
- Cost-Efficient Query Rule:

Results (synthetic data)

- TV Bayesian Optimization
- one-dimensional input domain $\mathcal{D}=[0,1]$, quantized to 1000 points uniformly
- T = 500, Matern5/2 kernel, sampling noise
- forgetting rate eps: 0.003 -> 0.05

Results (self-tuning networks)

- **Tuning schedule** plays a significant role when applying STN (MacKay et al., 2019) to larger network
- VGG16 on CIFAR-10 -> Train set: 40,000 images, Val set: 10,000 images
- Modeling as a two-armed bandit problem. (1) training only; (2) tuning + training

Matthew MacKay, Paul Vicol, Jon Lorraine, David Duvenaud, Roger Grosse. Self-Tuning Networks: Bilevel Optimization of Hyperparameters using Structured Best-Response Functions, ICLR 2019.

Results (unsupervised learning)

- **Eight data augmentations**: crop, cutout, flip horizontally and vertically, rotation, color distortion, gray scale, Gaussian blur.
- Baseline (fix the probability of randomly apply data augmentations as 0.5)
- Computation: grid search: 49x, TV-GP-UCB (full): 2x, CE-GP-UCB: 1.6x

> 49x Time!

50

-40

- 30

-20

-10

	Top1 (R10)	Top1 (R100)	Time
Baseline	70.91	73.20	$1.00 \times$
TV-GP-UCB (full)	75.14	77.95	$1.97 \times$
TV-GP-UCB Ber(0.6)	72.15	75.31	$1.64 \times$
CE-GP-UCB ($\kappa = 0.9$)	74.80	77.56	$1.88 \times$
<u>CE-GP-UCB ($\kappa = 0.8$)</u>	74.77	77.62	$1.71 \times$
CE-GP-UCB ($\kappa = 0.7$)	74.58	77.27	1.61 ×
Human expert [12]	75.00	77.99	-

R10/100: readout 10/100 epochs

Thank you!