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Heterogenous Multi-Task Online Learning
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* A group of assistive robots deployed to provide personalized healthcare services.

preferences of its
paired individuals
through interactions.
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* Question: If the robots receive similar yet nonidentical feedback, how do they
learn to perform their respective tasks faster in an online learning setting?



(Stochastic) e-Multi-Player Multi-Armed Bandit

* A set of M players (robots) concurrently interact with K arms.
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* [n each round, every player pulls one arm and the players share

information at the end of each round.



Results and Future Work

Approach: Adaptively and robustly aggregate rewards shared by other
players to construct “high probability” confidence intervals

Results:

* When ¢ is sufficiently small, we can obtain a problem-dependent upper

bound on expected collective regret (sum of each player’s regret) that has
an inconsiderable dependence on M;

* Fall-back guarantee: for large €’s, our performance guarantee is never (by

a constant factor) worse than that of running UCB-1 for each player
individually.

Future Directions: unknown &, extension to linear contextual bandits, etc.



