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• Consider a safety-constrained Markov Decision Processes (MDPs).

• Both reward and safety are unknown a priori.

• Our objective is to maximize the cumulative reward while guarantee safety.
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• To solve this problem, we need to balance the three-way tradeoff.

• This work takes a step-wise approach.

1. Exploration of safety.

2. Optimization of the cumulative reward 

in the certified safe region.

• Our algorithm provides theoretical guarantees 

in terms of both near-optimality and safety.
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• Developed a new simulation environment, called GP-Safety-Gym, 

which is based on Open AI SafetyGym (Ray et al., 2019).

• Achieved better empirical performance than other baselines.

• SafeMDP (Turchetta et al., 2016)

• SafeExpOpt-MDP (Wachi et al., 2018)

• Also proposed Early-Stopping of Exploration of Safety (ES2) algorithm for faster convergence.
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