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« Consider a safety-constrained Markov Decision Processes (MDPSs).
« Both reward and safety are unknown a priori.
* Qur objective is to maximize the cumulative reward while guarantee safety.
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« To solve this problem, we need to balance the three-way tradeoff.

« This work takes a step-wise approach.
1. Exploration of safety. 2 esiel
2. Optimization of the cumulative reward
in the certified safe region. , X
* Our algorithm provides theoretical guarantees
In terms of both near-optimality and safety. -
of Reward of Reward
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« Developed a new simulation environment, called GP-Safety-Gym,
which is based on Open Al SafetyGym (Ray et al., 2019).

« Achieved better empirical performance than other baselines.
« SafeMDP (Turchetta et al., 2016)
« SafeExpOpt-MDP (Wachi et al., 2018)

« Also proposed Early-Stopping of Exploration of Safety (ES?) algorithm for faster convergence.
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