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Background and Contribution

Background and Challenges

The complicated correlations in multi-agent systems.

Large multi-agent systems result in an exponential growth of the
capacity of the joint action space with the number of agents.

The central controller is usually costly to install in practice.

Our Solution

Mean field approximation: each agent has the same reward function
and state transition function, which depends on the rest of the agents
only through their aggregated effect.

A novel decentralized algorithm (MF-DPGM) to effectively learn the
optimal policy for mean-field MARL.

A global convergence guarantee for MF-DPGM under mild
assumptions and initial simulation results.
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Problem Formulation and Algorithm

Problem Formulation
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Problem Formulation and Algorithm

(a) Policy running for estimating gradients of costs.

(b) Updating policies with neighborhood information.
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Theoretical Results

Assumptions

The parameters of MF-DPGM are chosen to satisfy for any k ≥ 1:
1

2

(
Ωθ + Γ2

θ

)
� (2c + 1)Φθ

n
+

4κ

n2
ΦθΓ−2θ Φθ, (1.4)

c = max{1, 6κ}, Γ2
θ � ΦθΓ−2θ Φθ/n

2, (1.5)

where κ = 1/λmin

(
ΩFH−1FTΩ

)
is a constant of the network.

Main theorem

Given assumptions above, for time-step t MF-DPGM gives

min
s∈[t]
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+
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t
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Some Empirical Results

0 100 200 300 400 500 600
Steps

0.020

0.025

0.030

0.035

0.040

0.045

0.050

Op
tim

al
ity

 G
ap

complete
random
grid
circle

(c) 3-dimension
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(d) 4-dimension
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(e) 5-dimension

Figure: Simulation results (convergence curves) on complete (blue), random
(orange), grid (green) and circle (red) networks, with different d = 3, 4, 5.
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(a) Curves for different pop-
ulation sizes.

(b) Comparison on a cir-
cle.
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