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q Many scientific and engineering applications has following challenges

Ø Find the Pareto set of designs that trade-off multiple objectives 
Ø Minimize the total resource cost for function evaluations for optimization     



MULTI-OBJECTIVE BAYESIAN OPTIMIZATION
q Bayesian optimization (BO) is a framework to optimize expensive black-box functions 

using the following elements: 
Ø Statistical models as a prior for the functions: Gaussian processes (GPs) can provide prediction 

𝜇 𝑥 and uncertainty via variance 𝜎(𝑥)
Ø Acquisition function to score the utility of evaluating input 𝑥
Ø Optimization procedure to select the best input 𝑥 for evaluation
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MESMO: OUTPUT SPACE ENTROPY SEARCH ALGORITHM 
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OUTPUT SPACE ENTROPY SEARCH VS.
INPUT SPACE ENTROPY SEARCH front Y⇤. This is equivalent to expected reduction in entropy over the Pareto front Y⇤, which relies

on a computationally cheap and low-dimensional (m ·K dimensions, which is significantly less than
m · d as K ⌧ d in practice) distribution P (Y⇤

| D). Our acquisition function that maximizes the
information gain between the next candidate input for evaluation x and Pareto front Y⇤ is given as:

↵(x) = I({x,y},Y⇤
| D) (4.4)

= H(Y⇤
| D)� Ey[H(Y⇤

| D [ {x,y})] (4.5)
= H(y | D,x)� EY⇤ [H(y | D,x,Y⇤)] (4.6)

The first term in the r.h.s of equation 4.6 (entropy of a factorizable K-dimensional gaussian distribution
P (y | D,x)) can be computed in closed form as shown below:

H(y | D,x) =
K(1 + ln(2⇡))

2
+

KX

i=1

ln(�i(x)) (4.7)

where �2
i (x) is the predictive variance of ith GP at input x. The second term in the r.h.s of equation 4.6

is an expectation over the Pareto front Y⇤. We can approximately compute this term via Monte-Carlo
sampling as shown below:

EY⇤ [H(y | D,x,Y⇤)] '
1

S

SX

s=1

[H(y | D,x,Y⇤
s )] (4.8)

where S is the number of samples and Y
⇤
s denote a sample Pareto front. The main advantages of our

acquisition function are: computational efficiency and robustness to the number of samples. Our
experiments demonstrate these advantages over input space entropy based acquisition function.

There are two key algorithmic steps to compute Equation 4.8: 1) How to compute Pareto front
samples Y⇤

s ?; and 2) How to compute the entropy with respect to a given Pareto front sample Y
⇤
s ?

We provide solutions for these two questions below.

1) Computing Pareto front samples via cheap multi-objective optimization. To compute a
Pareto front sample Y

⇤
s , we first sample functions from the posterior GP models via random fourier

features [8, 20] and then solve a cheap multi-objective optimization over the K sampled functions.

Sampling functions from posterior GP. Similar to prior work [8, 7, 26], we employ random
fourier features based sampling procedure. We approximate each GP prior as f̃ = �(x)T ✓, where
✓ ⇠ N(0, I). The key idea behind random fourier features is to construct each function sample
f̃(x) as a finitely parametrized approximation: �(x)T ✓, where ✓ is sampled from its corresponding
posterior distribution conditioned on the data D obtained from past function evaluations: ✓|D ⇠

N(A�1�Tyn,�
2A�1), where A = �T�+ �

2I and �T = [�(x1), · · · ,�(xt�1)].

Cheap MO solver. We sample f̃i from GP model Mi for each of the K functions as described
above. A cheap multi-objective optimization problem over the K sampled functions f̃1, f̃2, · · · , f̃k
is solved to compute sample Pareto front Y⇤

s . This cheap multi-objective optimization also allows us
to capture the interactions between different objectives. We employ the popular NSGA-II algorithm
[3] to solve the MO problem with cheap objective functions noting that any other algorithm can be
used to similar effect.

2) Entropy computation with a sample Pareto front. Let Y⇤
s = {z1, · · · , zm} be the sample

Pareto front, where m is the size of the Pareto front and each zi = {z
1
i , · · · , z

K
i } is a K-vector

evaluated at the K sampled functions. The following inequality holds for each component yj of the
K-vector y = {y

1
, · · · , y

K
} in the entropy term H(y | D,x,Y⇤

s ):

y
j
 max{zj1, · · · z

j
m} 8j 2 {1, · · · ,K} (4.9)

The inequality essentially says that the j
th component of y (i.e., yj) is upper-bounded by a value

obtained by taking the maximum of jth components of all m K-vectors in the Pareto front Y⇤
s . This

inequality can be proven by a contradiction argument. Suppose there exists some component yj of
y such that yj > max{zj1, · · · z

j
m}. However, by definition, y is a non-dominated point because no

point dominates it in the jth dimension. This results in y 2 Y
⇤
s which is a contradiction. Therefore,

our hypothesis that yj > max{zj1, · · · z
j
m} is incorrect and inequality 4.9 holds.

4

Information gain about the optimal Pareto front
Equivalent to expected reduction in entropy 

over the pareto front

By combining the inequality 4.9 and the fact that each function is modeled as a GP, we can model
each component yj as a truncated Gaussian distribution since the distribution of yj needs to satisfy
y
j
 max{zj1, · · · z

j
m}. Furthermore, a common property of entropy measure allows us to decompose

the entropy of a set of independent variables into a sum over entropies of individual variables [2]:

H(y | D,x,Y⇤
s ) '

KX

j=1

H(yj |D,x,max{zj1, · · · z
j
m}) (4.10)

Equation 4.10 and the fact that the entropy of a truncated Gaussian distribution[13] can be computed
in closed form gives the following mathematical expression for the entropy term H(y | D,x,Y⇤

s ).
We provide the complete details of the derivation in the Appendix.

H(y | D,x,Y⇤
s ) '

KX

j=1

"
(1 + ln(2⇡))

2
+ ln(�j(x)) + ln�(�j

s(x))�
�
j
s(x)�(�

j
s(x))

2�(�j
s(x))

#
(4.11)

where �
j
s(x) =

yj⇤
s �µj(x)
�j(x)

, yj⇤s = max{zj1, · · · z
j
m}, and � and � are the p.d.f and c.d.f of a standard

normal distribution respectively. By combining equations 4.7 and 4.11 with Equation 4.6, we get the
final form of our acquisition function as shown below:

↵(x) '
1

S

SX

s=1

KX

j=1

"
�
j
s(x)�(�

j
s(x))

2�(�j
s(x))

� ln�(�j
s(x))

#
(4.12)

A complete description of the MESMO algorithm is given in Algorithm 1. The blue colored steps
correspond to computation of our output space entropy based acquisition function via sampling.

Algorithm 1 MESMO Algorithm
Input: input space X; K blackbox objective functions f1(x), f2(x), · · · , fK(x); and maximum no.
of iterations Tmax

1: Initialize Gaussian process models M1,M2, · · · ,MK by evaluating at N0 initial points
2: for each iteration t = N0 + 1 to Tmax do
3: Select xt  argmaxx2X ↵t(x), where ↵t(.) is computed as:
4: for each sample s 2 1, · · · , S:
5: Sample f̃i ⇠Mi, 8i 2 {1, · · · ,K}

6: Y
⇤
s  Pareto front of cheap multi-objective optimization over (f̃1, · · · , f̃K)

7: Compute ↵t(.) based on the S samples of Y⇤
s as given in Equation 4.12

8: Evaluate xt: yt  (f1(xt), · · · , fK(xt))
9: Aggregate data: D  D [ {(xt,yt)}

10: Update models M1,M2, · · · ,MK

11: t t+ 1
12: end for
13: return Pareto front of f1(x), f2(x), · · · , fK(x) based on D

4.1 Theoretical Analysis

In this section, we provide a theoretical analysis for the behavior of MESMO algorithm. Multi-
objective optimization literature has multiple metrics to assess the quality of Pareto front approxi-
mation. The two commonly employed metrics include Pareto Hypervolume indicator [26] and R2

indicator[15]. R2 indicator is a natural extension of the cumulative regret measure in single-objective
BO as proposed in the well-known work by Srinivasan et al., [22] to prove convergence results. Prior
work [14] has shown that R2 and Pareto Hypervolume indicator show similar behavior. Indeed,
our experiments validate this claim for MESMO. Therefore, we present the theoretical analysis of
MESMO with respect to R2 indicator. Let x⇤ be a point in the optimal Pareto set X ⇤. Let xt be a
point selected for evaluation by MESMO at the t

th iteration. Let R(x⇤) = kR1
, · · · , R

K
k, where

R
j =

PT 0

t=1(fj(x
⇤)� fj(xt)) and k.k is the norm of the K-vector. We discuss asymptotic bounds

for this measure over the input set X.
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OUTPUT SPACE ENTROPY SEARCH VS.
INPUT SPACE ENTROPY SEARCH 

next input for evaluation. ParEGO is simple and fast, but more advanced approaches often outperform
it. Many methods optimize the Pareto hypervolume (PHV) metric [5] that captures the quality of a
candidate Pareto set. This is done by extending the standard acquisition functions to PHV objective,
e.g., expected improvement in PHV (EHI) [5] and probability of improvement in PHV (SUR)[17].
Unfortunately, algorithms to optimize PHV based acquisition functions scale very poorly and are
not feasible for more than two objectives. SMSego is relatively faster method [19]. To improve
scalability, the gain in hypervolume is computed over a limited set of points: SMSego finds those
set of points by optimizing the posterior means of the GPs. A common drawback of this family of
algorithms is that reduction to single-objective optimization can potentially lead to more exploitation
behavior with sub-optimal results.

PAL [31] and PESMO [7] are principled algorithms based on information theory. PAL tries to
classify the input points based on the learned models into three categories: Pareto optimal, non-Pareto
optimal, and uncertain. In each iteration, it selects the candidate input for evaluation towards the
goal of minimizing the size of uncertain set. PAL provides theoretical guarantees, but it is only
applicable for input space X with finite set of discrete points. PESMO [7] relies on input space
entropy based acquisition function and iteratively selects the input that maximizes the information
gained about the optimal Pareto set X ⇤. Unfortunately, optimizing this acquisition function poses
significant challenges: a) requires a series of approximations, which can be potentially sub-optimal;
and b) optimization, even after approximations, is expensive c) performance is strongly dependent
on the number of Monte-Carlo samples. In comparison, our proposed output space entropy based
acquisition function overcomes the above challenges, and allows efficient and robust optimization.
More specifically, the time complexities of acquisition function computation in PESMO and MESMO
ignoring the time to solve cheap MO problem that is common for both algorithms are O(SKm

3)
and O(SK) respectively, where S is the number of Monte-Carlo samples, K is the number of
objectives, and m is the size of the sample Pareto set in PESMO. Additionally, as demonstrated in
our experiments, MESMO is very robust and performs very well even with one sample.

4 MESMO Algorithm for Multi-Objective Optimization
In this section, we explain the technical details of our proposed MESMO algorithm. We first mathe-
matically describe the output space entropy based acquisition function and provide an algorithmic
approach to efficiently compute it. Subsequently, we theoretically analyze MESMO in terms of
asymptotic regret bounds.

Surrogate models. Gaussian processes (GPs) are shown to be effective surrogate models in prior
work on single and multi-objective BO [8, 27, 26, 25, 7]. Similar to prior work [7], we model the
objective functions f1, f2, · · · , fK using K independent GP models M1,M2, · · · ,MK with zero
mean and i.i.d. observation noise. Let D = {(xi,yi)}

t�1
i=1 be the training data from past t�1 function

evaluations, where xi 2 X is an input and yi = {y
1
i , y

2
i , · · · , y

K
i } is the output vector resulting from

evaluating functions f1, f2, · · · , fK at xi. We learn surrogate models M1,M2, · · · ,MK from D.

Output space entropy based acquisition function. Input space entropy based methods like PESMO
[7] selects the next candidate input xt (for ease of notation, we drop the subscript in below discussion)
by maximizing the information gain about the optimal Pareto set X ⇤. The acquisition function based
on input space entropy is given as follows:

↵(x) = I({x,y},X ⇤
| D) (4.1)

= H(X ⇤
| D)� Ey[H(X ⇤

| D [ {x,y})] (4.2)
= H(y | D,x)� EX⇤ [H(y | D,x,X ⇤)] (4.3)

Information gain is defined as the expected reduction in entropy H(.) of the posterior distribution
P (X ⇤

| D) over the optimal Pareto set X ⇤ as given in Equations 4.2 and 4.3 (resulting from
symmetric property of information gain). This mathematical formulation relies on a very expensive
and high-dimensional (m · d dimensions) distribution P (X ⇤

| D), where m is size of the optimal
Pareto set X ⇤. Furthermore, optimizing the second term in r.h.s poses significant challenges: a)
requires a series of approximations [7] which can be potentially sub-optimal; and b) optimization,
even after approximations, is expensive c) performance is strongly dependent on the number of
Monte-Carlo samples.

To overcome the above challenges of computing input space entropy based acquisition function, we
take an alternative route and propose to maximize the information gain about the optimal Pareto

3

front Y⇤. This is equivalent to expected reduction in entropy over the Pareto front Y⇤, which relies
on a computationally cheap and low-dimensional (m ·K dimensions, which is significantly less than
m · d as K ⌧ d in practice) distribution P (Y⇤

| D). Our acquisition function that maximizes the
information gain between the next candidate input for evaluation x and Pareto front Y⇤ is given as:

↵(x) = I({x,y},Y⇤
| D) (4.4)

= H(Y⇤
| D)� Ey[H(Y⇤

| D [ {x,y})] (4.5)
= H(y | D,x)� EY⇤ [H(y | D,x,Y⇤)] (4.6)

The first term in the r.h.s of equation 4.6 (entropy of a factorizable K-dimensional gaussian distribution
P (y | D,x)) can be computed in closed form as shown below:

H(y | D,x) =
K(1 + ln(2⇡))

2
+

KX

i=1

ln(�i(x)) (4.7)

where �2
i (x) is the predictive variance of ith GP at input x. The second term in the r.h.s of equation 4.6

is an expectation over the Pareto front Y⇤. We can approximately compute this term via Monte-Carlo
sampling as shown below:

EY⇤ [H(y | D,x,Y⇤)] '
1

S

SX

s=1

[H(y | D,x,Y⇤
s )] (4.8)

where S is the number of samples and Y
⇤
s denote a sample Pareto front. The main advantages of our

acquisition function are: computational efficiency and robustness to the number of samples. Our
experiments demonstrate these advantages over input space entropy based acquisition function.

There are two key algorithmic steps to compute Equation 4.8: 1) How to compute Pareto front
samples Y⇤

s ?; and 2) How to compute the entropy with respect to a given Pareto front sample Y
⇤
s ?

We provide solutions for these two questions below.

1) Computing Pareto front samples via cheap multi-objective optimization. To compute a
Pareto front sample Y

⇤
s , we first sample functions from the posterior GP models via random fourier

features [8, 20] and then solve a cheap multi-objective optimization over the K sampled functions.

Sampling functions from posterior GP. Similar to prior work [8, 7, 26], we employ random
fourier features based sampling procedure. We approximate each GP prior as f̃ = �(x)T ✓, where
✓ ⇠ N(0, I). The key idea behind random fourier features is to construct each function sample
f̃(x) as a finitely parametrized approximation: �(x)T ✓, where ✓ is sampled from its corresponding
posterior distribution conditioned on the data D obtained from past function evaluations: ✓|D ⇠

N(A�1�Tyn,�
2A�1), where A = �T�+ �

2I and �T = [�(x1), · · · ,�(xt�1)].

Cheap MO solver. We sample f̃i from GP model Mi for each of the K functions as described
above. A cheap multi-objective optimization problem over the K sampled functions f̃1, f̃2, · · · , f̃k
is solved to compute sample Pareto front Y⇤

s . This cheap multi-objective optimization also allows us
to capture the interactions between different objectives. We employ the popular NSGA-II algorithm
[3] to solve the MO problem with cheap objective functions noting that any other algorithm can be
used to similar effect.

2) Entropy computation with a sample Pareto front. Let Y⇤
s = {z1, · · · , zm} be the sample

Pareto front, where m is the size of the Pareto front and each zi = {z
1
i , · · · , z

K
i } is a K-vector

evaluated at the K sampled functions. The following inequality holds for each component yj of the
K-vector y = {y

1
, · · · , y

K
} in the entropy term H(y | D,x,Y⇤

s ):

y
j
 max{zj1, · · · z

j
m} 8j 2 {1, · · · ,K} (4.9)

The inequality essentially says that the j
th component of y (i.e., yj) is upper-bounded by a value

obtained by taking the maximum of jth components of all m K-vectors in the Pareto front Y⇤
s . This

inequality can be proven by a contradiction argument. Suppose there exists some component yj of
y such that yj > max{zj1, · · · z

j
m}. However, by definition, y is a non-dominated point because no

point dominates it in the jth dimension. This results in y 2 Y
⇤
s which is a contradiction. Therefore,

our hypothesis that yj > max{zj1, · · · z
j
m} is incorrect and inequality 4.9 holds.

4
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By combining the inequality 4.9 and the fact that each function is modeled as a GP, we can model
each component yj as a truncated Gaussian distribution since the distribution of yj needs to satisfy
y
j
 max{zj1, · · · z

j
m}. Furthermore, a common property of entropy measure allows us to decompose

the entropy of a set of independent variables into a sum over entropies of individual variables [2]:

H(y | D,x,Y⇤
s ) '

KX

j=1

H(yj |D,x,max{zj1, · · · z
j
m}) (4.10)

Equation 4.10 and the fact that the entropy of a truncated Gaussian distribution[13] can be computed
in closed form gives the following mathematical expression for the entropy term H(y | D,x,Y⇤

s ).
We provide the complete details of the derivation in the Appendix.

H(y | D,x,Y⇤
s ) '

KX

j=1

"
(1 + ln(2⇡))

2
+ ln(�j(x)) + ln�(�j

s(x))�
�
j
s(x)�(�

j
s(x))

2�(�j
s(x))

#
(4.11)

where �
j
s(x) =

yj⇤
s �µj(x)
�j(x)

, yj⇤s = max{zj1, · · · z
j
m}, and � and � are the p.d.f and c.d.f of a standard

normal distribution respectively. By combining equations 4.7 and 4.11 with Equation 4.6, we get the
final form of our acquisition function as shown below:

↵(x) '
1

S

SX

s=1

KX

j=1

"
�
j
s(x)�(�

j
s(x))

2�(�j
s(x))

� ln�(�j
s(x))

#
(4.12)

A complete description of the MESMO algorithm is given in Algorithm 1. The blue colored steps
correspond to computation of our output space entropy based acquisition function via sampling.

Algorithm 1 MESMO Algorithm
Input: input space X; K blackbox objective functions f1(x), f2(x), · · · , fK(x); and maximum no.
of iterations Tmax

1: Initialize Gaussian process models M1,M2, · · · ,MK by evaluating at N0 initial points
2: for each iteration t = N0 + 1 to Tmax do
3: Select xt  argmaxx2X ↵t(x), where ↵t(.) is computed as:
4: for each sample s 2 1, · · · , S:
5: Sample f̃i ⇠Mi, 8i 2 {1, · · · ,K}

6: Y
⇤
s  Pareto front of cheap multi-objective optimization over (f̃1, · · · , f̃K)

7: Compute ↵t(.) based on the S samples of Y⇤
s as given in Equation 4.12

8: Evaluate xt: yt  (f1(xt), · · · , fK(xt))
9: Aggregate data: D  D [ {(xt,yt)}

10: Update models M1,M2, · · · ,MK

11: t t+ 1
12: end for
13: return Pareto front of f1(x), f2(x), · · · , fK(x) based on D

4.1 Theoretical Analysis

In this section, we provide a theoretical analysis for the behavior of MESMO algorithm. Multi-
objective optimization literature has multiple metrics to assess the quality of Pareto front approxi-
mation. The two commonly employed metrics include Pareto Hypervolume indicator [26] and R2

indicator[15]. R2 indicator is a natural extension of the cumulative regret measure in single-objective
BO as proposed in the well-known work by Srinivasan et al., [22] to prove convergence results. Prior
work [14] has shown that R2 and Pareto Hypervolume indicator show similar behavior. Indeed,
our experiments validate this claim for MESMO. Therefore, we present the theoretical analysis of
MESMO with respect to R2 indicator. Let x⇤ be a point in the optimal Pareto set X ⇤. Let xt be a
point selected for evaluation by MESMO at the t

th iteration. Let R(x⇤) = kR1
, · · · , R

K
k, where

R
j =

PT 0

t=1(fj(x
⇤)� fj(xt)) and k.k is the norm of the K-vector. We discuss asymptotic bounds

for this measure over the input set X.

5

Closed-form 

q Output space entropy-based acquisition function

q Input space entropy-based acquisition function



Thank You 


