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Lausanne, Switzerland

3 Department of Materials, University of California, Santa Barbara, CA 93106, USA

Abstract

Parameterizing surrogate models that capture chemical interactions at the atomistic scale
is a long-standing challenge in materials science. It is desirable to obtain highly predictive
surrogate models from the smallest possible pool of training data points. Conventional
methods parameterize these models by systematically counting over symmetrically-distinct
arrangements of chemical species with increasing periodicities. However, it is unclear if
such an approach provides an optimal route to attaining robust models with a minimal
computational cost. In this paper, we formulate the problem as a cost-sensitive experimental
design problem and propose a new algorithm to minimize the computational cost. The key
motivation is that structures with larger periodicities may lead to better modeling in earlier
stages than conventional algorithms. By a new definition of improvement called Maximum
Improvement Per Unit Cost (MI-PUC), our algorithm adaptively and efficiently deals
with the performance-cost trade-off and works well in our experiments. The methodology
described in this study provides material scientists with a rigorous benchmark of the
performance-cost trade-off and a systematic way of attaining accurate atomistic models.

1. Introduction

Atomistic models are invaluable in predicting the high-temperature properties of several
technologically important materials. These models serve as surrogates that replace com-
putationally expensive quantum mechanical calculations. Typically, a small number of
expensive quantum mechanical simulations are used to train surrogate atomistic models.
Modern regression algorithms have been very helpful in parameterizing surrogate models
that perform well on datasets that the model was not trained on. However, an outstanding
problem in the field is the identification of the smallest possible pool of training points that
can still be used to train accurate and predictive surrogate atomistic models.

Cluster expansion hamiltonians are a versatile and popular framework to construct
surrogate atomistic models. They provide a rigorous framework that can be used to describe
the properties of any arbitrary arrangement of chemical species on a crystal structure like
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Figure 1: (a) Conventional unit cell for the Rocksalt ZrN crystal. Zr atoms are represented
by green spheres, and N atoms are represented by gray spheres. Removing
some of the N atoms in larger unit cells will give different crystal configurations.
Each configuration has a different normalized free energy, plotted in (b). The
thermodynamically favored configurations have formation energies that lie on the
lower convex hull in space defined by formation energy and composition x in ZrNx.

Figure 1. In exact formulation, this model is an expansion (similar in spirit to a Taylor
expansion) with infinite terms. Practically however, the expansions are truncated to contain
a finite number of features and associated regression coefficients. Despite truncation, cluster
expansion Hamiltonians still contain more features than the number of training data points.
Feature selection algorithms such as genetic algorithms, lasso and ridge regression have been
employed in previous studies to alleviate the problem of training underdetermined linear
models. Alternately, cluster expansion models can also be parameterized with non-linear
models such as neural networks. While all of these techniques are useful in achieving excellent
surrogate models given a training dataset they do not provide any guidance on choosing the
optimal set of points that can help parameterize a predictive model.

Given a large design pool of data points, the experimental design problem studies
how to select a subset of data points to maximize the statistical efficiency regressed on
these selected points (Allen-Zhu et al., 2021). Here maximizing statistical efficiency can be
measured by minimizing several optimality criteria, including A(verage), D(eterminant),
T(race), E(igen), V(ariance), and G-optimality. To establish a robust regression model
of the formation energy w.r.t. data points, traditional method usually uses SYStematic
enumeration (SYS) to select data points with monotonically increasing periodicities. Here
the periodcity of data points can be understood as the “size”. Exactly evaluating formation
energy of a large size data point involves expensive computational cost. Therefore, SYS
uses the minimum computational cost after observing certain number of data points, it may
result in sub-optimal modeling in total practically.

In this paper, we formulate the problem as a cost-sensitive experimental design problem
which aims at minimizing the optimality criteria and computational cost at the same time.
The key motivation is that large periodcity data points may lead to good modeling in earlier
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stages of the algorithm than SYS method. We design the Maximum Improvement Per Unit
Cost (MI-PUC) algorithm, which runs sequentially to select data points to build the model.
The key idea is to select the data point that leads to the maximum optimality criterion
reduction per unit cost at each round.

Contributions. (1) We reformulate the formation energy modeling as a cost-sensitive
experimental design problem, which aims at building a robust regression model and mini-
mizing computational cost at the same time. (2) By selecting data point that leads to the
maximum optimality criterion reduction per unit cost at each round, our MI-PUC algorithm
adaptively selects data points for formation energy modeling. (3) We do experiments on a
rocksalt-structured Zirconium Nitride dataset. The crystal structure of Rocksalt Zirconium
Nitride resembles a checkerboard pattern, extended to three dimensions. Different data
points in the experiment correspond to formation energies of different atomic arrangements
on the crystal lattice. The results show that MI-PUC performs better than classical SYS
method in all three evaluation criteria. Our approach provides material scientists with a
rigorous benchmark of the performance-cost trade-off and a systematic way of attaining
accurate atomistic models.

2. Problem Statement

Recent studies have described counting algorithms to systematically generate all possible
arrangements of chemical elements on a crystal structure with a particular periodicity. These
algorithms provide a route to exhaustively generating all data points that have periodicities
smaller than a user defined maximum value. Given the large pool of chemical orderings with
periodicities smaller than a user-defined maximum, it is desirable to find the smallest set of
training points for which to perform expensive electronic structure calculations such that we
are still able to obtain an accurate atomistic model, which is the cost-sensitive experimental
design problem defined as follows.

Definition 1 (Cost-sensitive experimental design problem) Let x1, ..., xn ∈ Rd be n
data points, c(x) be computational cost of x, and f : S+d → R+ be a non-negative function
defined over S+p , the class of all d-dimensional positive definite matrices. Given a constant
λ, the cost-sensitive experimental design problem is to select k data points such that:

min
s∈Sk

f
( n∑

i=1

si · xix⊤i
)
+ λ

n∑
i=1

c(xi), s.t. Sk =
{
s ∈ {0, 1}n,

n∑
i=1

si ≤ k
}
. (1)

Let Σ denote the summation over data point outer products, then Eq. (1) becomes A-optimal
and V-optimal design problem when f(Σ) = tr(Σ−1) and f(Σ, Xtest) = tr(XtestΣ

−1X⊤
test),

respectively. From material science literature (Kresse and Furthmüller, 1996), we know that
given a data point x and its periodicity sx, its computational cost c(x) ∝ s2x log(sx).

3. Method

In this section, we first propose the Maximum Improvement Per Unit Cost (MI-PUC)
algorithm. To run the algorithm in practice, we simplify the algorithm and introduce
dimension reduction methods to address the singular matrix issue.
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Algorithm 1 MI-PUC

Input: Initial selected points {X0, Y0} = {xi, yi}N0
i=1, unselected pointsXU = {xi}NU

i=1, testing
set Xtest = {xi}Ntest

i=1 , time horizon T .

1: for t = [T ] do
2: xt is selected according to eq. (2) or eq. (3).
3: Query yt for xt and update Xt ← {Xt−1, xt}, Yt ← {Yt−1, yt}.
4: Update XU ← XU \ xt.
5: end for

Output: A regression model ŵ trained on {XT , YT }.

3.1 Our Algorithm

MI-PUC is a greedy algorithm that runs in the online fashion. At each time step t, the
algorithm select one data point xt. The key idea of MI-PUC is to select data point that
leads to the maximum optimality criterion reduction per unit cost. It works with all kinds
of optimality criteria. For example, At round t, A-optimality of previous data points is
defined as tr((X⊤

t−1Xt−1)
−1). Given a new point x, the new A-optimality would become

tr(([Xt−1;x
⊤]⊤[Xt−1;x

⊤])−1). Therefore, the acquisition function of MI-PUC-A is

xt = argmax
x∈XU

tr((X⊤
t−1Xt−1)

−1)− tr(([Xt−1;x
⊤]⊤[Xt−1;x

⊤])−1)

c(x)
. (2)

Note V-optimality is able to access the testing set Xtest. Similarly, the acquisition function
of MI-PUC-V is

xt = argmax
x∈XU

tr(Xtest(X
⊤
t−1Xt−1)

−1X⊤
test)− tr(Xtest([Xt−1;x

⊤]⊤[Xt−1;x
⊤])−1X⊤

test)

c(x)
. (3)

3.2 Practical Considerations

Lemma 2 Eq. (2) is equivalent to xt = argmaxx∈XU

x⊤(X⊤
t−1Xt−1)−2x

c(x)(1+x⊤(X⊤
t−1Xt−1)−1x)

, and eq. (3) is

equivalent to xt = argmaxx∈XU

x⊤(X⊤
t−1Xt−1)−1X⊤

testXtest(X⊤
t−1Xt−1)−1x

c(x)(1+x⊤(X⊤
t−1Xt−1)−1x)

.

The Sherman-Morrsion formula is used in the proof which is shown in Appendix B. The
simplification allows us to save cost in acquisition function calculation. In equations above,
(X⊤

t−1Xt−1)
−1 is needed to be calculated only once, and then matrix computations in

acquisition functions are performed only in dimension d rather than number of data points.

Also, in early stages of our algorithm, e.g., t < d, the dimension d maybe too high for
very few data points, which leads to singular matrices. We use the Principal Component
Analysis (PCA) method to do dimension reduction to avoid this problem.
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Table 1: Statistics of datasets.

Periodicity s 1 2 3 4 5 6 7 8

No. of points Ns 2 2 6 19 28 80 102 388

Cumulative No. of points N1:s 2 4 10 29 57 137 239 627

No. of initial selected points N0 25 47 111 193

No. of unselected points NU 478 456 392 310

4. Experiments

4.1 Experimental Settings

Dataset. Our dataset represents a collection of atomic configurations for Zirconium Nitride
in a Rocksalt crystal structure. The crystal structure is composed of two sublattices; there
is one sublattice occupied by Zirconium, and another occupied by Nitrogen. The Zirconium
sublattice is left unchanged across all data points, but Nitrogen atoms can be removed. An
absence of a Nitrogen atom is called a vacancy. Different arrangements of vacancies and
Nitrogen atoms on the Nitrogen sublattice can produce different formation energies. The
formation energy of an arrangement is related to the arrangement’s thermodynamic stability.
Each arrangement is represented by a data point in the “cluster” or “correlation” basis. The
total number of data points is 627, each of which have 253 dimensions. To fairly compare
our MI-PUC method with SYS, we randomly sample 20% of data points with periodicity
= 4, 5, 6, 7, 8 reserved as testing set where Ntest = 124. We repeat the whole process for 10
rounds and report mean performance. See Table 1 for more details.

Model training. We use LASSO in Scikit-Learn (Pedregosa et al., 2011) with fixed
penalty parameter α = 0.000025 to train the regression model, i.e., ŵ = argminw∈Rd ∥Xw −
y∥22 + α∥w∥21. Also, in our experiments, we set T = NU meaning all unselected points will
be selected in the end of experiments.

Evaluation criteria. Totally we use three criteria, all of which are the lower the better.
The first criterion is Model Approximation Error (MAE). Ideally, we could generate infinite
number of data points and their formation energies, which could lead to a perfect model w∗.
However, given a fixed dataset, the best empirical model ŵ∗ can only be obtained through
all data points in the set. Therefore, ŵ∗ is defined as the coefficient trained with all 627 data
points in our problem, using the same LASSO model as above. Formally, we define MAE as
the difference between ŵ and ŵ∗ normalized by the magnitude of ŵ∗, which is between 0
and 1: MAE(ŵ) = ∥ŵ − ŵ∗∥22/∥ŵ∗∥22.

The second criterion is testing error (TestErr), which is measured as the Root Mean

Square Error (RMSE) of ŵ on the testing set: TestErr(ŵ) =
√

1
Ntest

∑Ntest
i=1 (Xtest,iŵ − ytest,i)2.

Our last criterion is ground state prediction error (GSE), which measures the fraction of
incorrectly predicted ground states of ŵ. A ground state is defined as an atomic configuration
on the lower convex hull of all data points in the space defined by composition and formation
energy. If the simplices of the convex hull are defined by the outward-facing normal vectors,
the lower hull is constructed by all simplices that have surface normals facing in the negative
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formation energy direction. In the case of Zirconium Nitride, composition x is a scalar
between 0 and 1 corresponding to the fraction of Nitrogen in the chemical formula ZrNx.
Let S(ŵ) denote the set of predicted ground states by ŵ and S∗ denote the set of true
ground states. Formally, GSE(ŵ) = |S(ŵ)− S∗|/|S∗|.

4.2 Experimental Results
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Figure 2: MAE of MI-PUC-V and SYS.
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Figure 3: TestErr of MI-PUC-V and SYS

We mainly report the performance comparison between MI-PUC-V (working with V-
optimality) and SYS with unselected data point periodicities starting from 6 and 7. In
Appendix C, we show detailed results of the experiments, e.g., cost, periodicities, training
error, and testing error w.r.t. time horizon.

From Figure 2, we learn that MI-PUC approximates the ideal model ŵ∗ significantly
better than SYS, especially when round is between 80 and 200. In Figure 3, note the testing
error is measured w.r.t. evaluation cost. MI-PUC performs similarly to SYS when unselected
data point periodicity starts from 6, but it’s different when starting from 7. In Figure 3(b),
MI-PUC achieves the minimum testing error at cost of only 10, 000, where testing error of
SYS is much higher than MI-PUC.
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Figure 4: GSE of MI-PUC-V and SYS.

In Figure 4(a), the red line is lower than
the green line, meaning MI-PUC predicts
the ground states better than SYS. The phe-
nomena is more obvious in Figure 4(b). All
of these six figures show that MI-PUC is
able to build a nearly optimal model at the
early stages of the experiments. Moreover, in
Appendix C, we report comparison between
MI-PUC-A (working with A-optimality) and
SYS, which shows similar results.

5. Impacts in Material Science

This study provides a first step in experimental design scheme that is sensitive to not only
the quality of regression model but also computational cost of creating training dataset. Our
results show that accounting for computational cost when choosing the next data point can
result in more accurate fits at smaller costs than conventional methods while also being able
to capture the essential physics of the underlying material system. Our work also serves as a
benchmark of existing state-of-the art methods to explore the configurational space of alloys.
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Appendix A. Related Work

Given a collection of data points, experimental design studies how to select a subset of
data points to build a statistical efficient regression model, which is widely used in applied
science (Park et al., 2018; Eng et al., 2022). The statistical efficiency is measured by some
optimality criteria (Pukelsheim, 2006). Exact optimizing T-optimality is trivial however
exact optimizing D/E-optimality is NP-hard (Černỳ and Hlad́ık, 2012). Recently, Allen-
Zhu et al. (2021) proposes a polynomial-time regret algorithm approximately solves the
A/D/T/E/V/G-optimality problem.

Unlike experimental design, Bayesian optimization (Frazier, 2018; Shahriari et al., 2015)
tries to optimize a black-box function defined on a continuous domain. It models the
objective function with Gaussian process. Then at each round, it applies acquisition function
to select data point to query. Popular choices of acquisition functions include expected
improvement (Jones et al., 1998) and upper confidence bound (Srinivas et al., 2010). Our
work is closely related to the expected improvement per unit cost (EI-PUC) algorithm
(Snoek et al., 2012) which selects the maximum expected improvement per unit cost and
efficiently solves the Bayesian optimization with constrained cost.

The challenge of accounting for computational cost while parameterizing atomistic
models has largely remained uninvestigated in the field of materials science. Recent work by
Gubaev et al. (2019) employs the D-optimality criteria with an active learning scheme to
learn off-lattice interatomic models. With Gaussian approximation, Jinnouchi et al. (2019)
uses machine learning-driven isothermal-isobaric simulations to give direct insight into the
underlying microscopic mechanisms.

Appendix B. Missing Details in the Main Paper

Definition 3 (Optimality criteria) The objective function f can be chosen from:

fA(Σ) =
tr(Σ−1)

d
, (4)

fD(Σ) = (detΣ)−
1
d , (5)

fT (Σ) =
d

tr(Σ)
, (6)

fE(Σ) = ∥Σ−1∥2, (7)

fV (Σ) =
tr(XΣ−1X⊤)

n
, (8)

fG(Σ) = maxdiag(XΣ−1X⊤), (9)

where X = [x⊤1 , ..., x
⊤
n ]

⊤ ∈ Rn×d is the data matrix.

Lemma 4 (Restatement of Lemma 2) The acquisition function of MI-PUC-A (eq. (2))
is equivalent to

xt = argmax
x∈XU

x⊤(X⊤
t−1Xt−1)

−2x

c(x)(1 + x⊤(X⊤
t−1Xt−1)−1x)

. (10)
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And the Acquisition function of MI-PUC-V (eq. (3)) is equivalent to

xt = argmax
x∈XU

x⊤(X⊤
t−1Xt−1)

−1X⊤
testXtest(X

⊤
t−1Xt−1)

−1x

c(x)(1 + x⊤(X⊤
t−1Xt−1)−1x)

. (11)

Proof First we rewrite ([Xt−1;x
⊤]⊤[Xt−1;x

⊤])−1, which is([
Xt−1

x⊤

]⊤ [
Xt−1

x⊤

])−1

=

([
X⊤

t−1 x
] [Xt−1

x⊤

])−1

= (X⊤
t−1Xt−1 + xx⊤)−1. (12)

The following proof relies on the Sherman-Morrison formula, shown below.

Lemma 5 (Sherman-Morrison Formula (Sherman and Morrison, 1950)) Let A de-
note a matrix and b, c denote two vectors. Then

(A+ bc⊤)−1 = A−1 − A−1bc⊤A−1

1 + c⊤A−1b
. (13)

Apply Sherman-Morrison Formula (Lemma 5),

([Xt−1;x
⊤]⊤[Xt−1;x

⊤])−1 = (X⊤
t−1Xt−1)

−1 −
(X⊤

t−1Xt−1)
−1xx⊤(X⊤

t−1Xt−1)
−1

1 + x⊤(X⊤
t−1Xt−1)−1x

. (14)

Therefore, eq. (2) can be written as

tr((X⊤
t−1Xt−1)

−1)− tr(([Xt−1;x
⊤]⊤[Xt−1;x

⊤])−1)

cost(x)
=

tr((X⊤
t−1Xt−1)

−1xx⊤(X⊤
t−1Xt−1)

−1)

cost(x)(1 + x⊤(X⊤
t−1Xt−1)−1x)

(15)

=
tr(x⊤(X⊤

t−1Xt−1)
−2x)

cost(x)(1 + x⊤(X⊤
t−1Xt−1)−1x)

,

(16)

where the second equation is due to property of trace. The proof for MI-PUC-V works
similarly.

Appendix C. More Experimental Results
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Figure 5: Details of MI-PUC-V with unselected periodicity (supercell volume) starting from
6.

0 100 200 300 400
Time horizon

0

10000

20000

30000

40000

50000

Co
st

System
MI-PUC

0 100 200 300 400
Time horizon

7.0

7.2

7.4

7.6

7.8

8.0

Su
pe

rc
el

l v
ol

um
e

System
MI-PUC

0 100 200 300 400
Time horizon

0.0086

0.0087

0.0088

0.0089

0.0090

0.0091

0.0092

0.0093

Tr
ai

ni
ng

 e
rro

r

System
MI-PUC

0 100 200 300 400
Time horizon

0.0094

0.0096

0.0098

0.0100

0.0102

0.0104

0.0106

0.0108

Te
st

in
g 

er
ro

r

System
MI-PUC

Figure 6: Details of MI-PUC-V with unselected periodicity (supercell volume) starting from
7.
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Figure 7: Details of MI-PUC-A with unselected periodicity (supercell volume) starting from
6.
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Figure 8: Details of MI-PUC-A with unselected periodicity (supercell volume) starting from
7.
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(a) Unselected periodicity starts from 6
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(b) Unselected periodicity starts from 7

Figure 9: MAE of MI-PUC-A and SYS.
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(a) Unselected periodicity starts from 6
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(b) Unselected periodicity starts from 7

Figure 10: TestErr of MI-PUC-A and SYS.
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(a) Unselected periodicity starts from 6
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(b) Unselected periodicity starts from 7

Figure 11: GSE of MI-PUC-A and SYS.
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