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Abstract

We investigate adaptive design based on a single sparse pilot scan for generating effective scan-
ning strategies for computed tomography reconstruction. We propose a novel approach using
the linearised deep image prior. It allows incorporating information from the pilot measurements
into the angle selection criteria, while maintaining the tractability of a conjugate Gaussian-linear
model. On a synthetically generated dataset with preferential directions, linearised DIP design
allows reducing the number of scans by up to 30% relative to an equidistant angle baseline.

1. Introduction and related work

Linear inverse problems in imaging aim to recover an unknown image x ∈ Rdx from measure-
ments y ∈ Rdy , which are often described by the application of a forward operator A ∈ Rdy×dx ,
and the addition of Gaussian noise ϵ ∼ N (0, σ2

y Idy) as

y = Ax+ ϵ. (1)

This acquisition model is ubiquitous in machine vision, computed tomography (CT), and mag-
netic resonance imaging among other applications. Due to the inherent ill-posedness of the task
(e.g. dy ≪ dx), suitable regularisation or prior assumptions are crucial for the stable and accu-
rate recovery of x (Tikhonov and Arsenin, 1977; Ito and Jin, 2014). In this work, we focus on
X-ray imaging, a setting with application to both medical and industrial settings (Buzug, 2011).

In CT, an emitter sends X-ray quanta through the object being scanned. The quanta are
captured by dp detector elements placed opposite the emitter. Each row of A tells us about
which regions (pixels) the X-ray quanta will pass through before reaching a detector element
(cf. fig. 1). The number of X-ray quanta measured by a detector pixel conveys information about
the attenuation coefficient of the material present along the quanta’s path. This procedure is
repeated at dB angles, yielding a measurement of dimension dy = dp · dB.

∗. Authors contributed equally. Our code is at github.com/educating-dip/bayesian experimental design
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Figure 1: Left: A schematic diagram of 2D parallel beam CT geometry, used in the experiments.
Top row: the linearised DIP assigns prior variance to pixels where edges are present,
guiding angle selection so that X-ray quanta cover these pixels. Bottom row: the
isotropic linear model’s variance does not depend on the measurements. Angles 45, 135
are chosen since they are oblique and maximise quanta path-length in the image.

In CT, Bayesian experimental design employs prior assumptions to select scanning angles
which will yield the highest fidelity reconstruction. Adaptive design further incorporates infor-
mation gained at previous angles to inform subsequent angle selections (Chaloner and Verdinelli,
1995). These methods are of great practical interest since they promise to reduce radiation
dosages and scanning times. Alas, existing CT design methods often struggle to improve over
equidistant angle choice (Shen et al., 2022). Furthermore, the requisite of additional computa-
tions before subsequent scans makes adaptive methods impractical for many applications.

Critically important to experimental design is the choice of prior (Feng, 2015; Foster, 2021).
Linear models allow for tractable computation of quantities of interest for design, but their
predictive uncertainty is independent of previously measured values, disallowing adaptive de-
sign (Burger et al., 2021). More complex model choices make inference difficult, necessitating
approximations which can degrade performance (Helin et al., 2022; Shen et al., 2022).

This work aims to make adaptive design practical by considering a setting where the CT scan
is performed in two phases. First, a sparse pilot scan is performed to provide data with which to
fit adaptive methods. These are then used to select angles for a full scan. We demonstrate this
procedure with a synthetic dataset where a different “preferential” angle is most informative
for each image. Preferential directions appear commonly in industrial CT for material science
and in medical CT for medical implant assessment. We use the linearised Deep Image Prior
(DIP) (Barbano et al., 2022) as a data-dependent prior for adaptive design which preserves the
tractability of conjugate Gaussian-linear models. Unlike simple linear models, the linearised
DIP outperforms the equidistant angle baseline. Finally, we show that designs obtained with
the linearised DIP perform well under traditional (non DIP-based) regularised-reconstruction.

2. Regularised reconstruction and deep image prior

Total Variation (TV) is the most popular regulariser for CT reconstruction (Rudin et al., 1992;
Chambolle et al., 2010). The anisotropic TV semi-norm of an image vector x ∈ Rdx is given by
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TV(x) =
∑
i,j

|Xi,j −Xi+1,j |+
∑
i,j

|Xi,j −Xi,j+1|, (2)

where X ∈ Rh×w denotes the vector x ∈ Rdx reshaped into an image of height h by width w,
and dx = h · w. The corresponding regularised reconstruction is obtained by

x⋆ ∈ argmin
x∈Rdx

∥Ax− y∥2 + λTV(x), (3)

where the hyperparameter λ > 0 determines the strength of regularisation.
The DIP (Ulyanov et al., 2020; Baguer et al., 2020) reparametrises the reconstruction x as

the output of a U-net x(θ) (Ronneberger et al., 2015) with a fixed input, which we omit for
clarity, and parameters θ ∈ Rdθ . The resulting reconstruction problem reads

θ⋆ ∈ argmin
θ∈Rdθ

∥Ax(θ)− y∥2 + λTV(x(θ)) and x⋆ = x(θ⋆). (4)

We follow Barbano et al. (2021) in accelerating optimisation of eq. (4) using pre-trained U-nets.

3. Linear(ised) models for CT experimental design

Let Ba be the set of all possible angles at which we can scan. The task is to choose the
subset of angles B ⊂ Ba which produces the highest-fidelity reconstruction. We shall add
angles sequentially over T steps. The set B(t) denotes the chosen angles up to step t < T , and
B̄(t) = Ba \ B(t) the angles left to choose from. B(0) denotes the set of angles used in the initial
pilot scan, and B = B(T ) the full design. We incorporate a decision to scan at angle β ∈ B̄(t) by
concatenating the matrix Aβ ∈ Rdp×dx , which contains a row for each detector pixel at angle β,
to the operator. After step t, the operator A(t) ∈ Rdp·dB(t)×dx stacks dB(t) of these matrices, with

dB(t) = |B(t)|. Ā(t) ∈ Rdp·dB̄(t)×dx denotes the forward operator for the angles left to choose from.
For design, we place a multivariate Gaussian prior on x with zero mean and covariance

matrix Σxx ∈ Rdx×dx . Together with the Gaussian noise model in eq. (1), this gives a conjugate
Gaussian-linear model. The vector y(t) ∈ Rdp·dB(t) of all measurements at step t is distributed as

y(t)|x ∼ N (A(t)x, σ2
yIdy) with x ∼ N (0,Σxx).

Thus, Σ
(t)
yy = A(t)Σxx(A

(t))⊤+σ2
yI is the measurement covariance and the posterior over x is

x|y(t) ∼ N (µx|y(t) ,Σx|y(t)), with

µx|y(t) = Σxx(A
(t))⊤(Σ(t)

yy )
−1y(t), and Σx|y(t) = Σxx − Σxx(A

(t))⊤(Σ(t)
yy )

−1A(t)Σxx. (5)

The predictive covariance Σx|y(t) completely characterises the uncertainty of the reconstruction
at step t and is the building block for the angle selection criteria in section 3.1. Note that
natural images often exhibit heavy-tailed non-Gaussian statistics (Seeger and Nickisch, 2011).
Additionally, by eq. (5), Σx|y(t) depends on the choice of angles through A(t), but not on the

measurements made at said angles y(t), precluding adaptive design. In section 3.2, we construct
Σxx with correlations between nearby pixels, imitating the effects of the TV regulariser eq. (2),
and with dependence on previous measurements, recovering adaptive design capability. In the
experiments, we use linear models for angle selection and afterwards we discard the predictive
mean µx|y and employ the regularised approaches from section 2 for reconstruction.
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3.1 Experimental design with linear models

Acquisition objectives. Since the linear design task is submodular (Seeger, 2009), we greedily
add one single angle per acquisition step 1. We consider two popular acquisition objectives.

The first objective, Expected Information Gain (EIG) (Mackay, 1992a), is the expected
reduction in the posterior entropy H(x|y) from scanning at angle β. At step t, it is given by

EIG := H(x|y(t))− Ep(yβ |y(t))[H(x|y
(t), yβ)] = logdet(σ2

yIdB(t)
+AβΣx|y(t)(A

β)⊤) + C (6)

where the constant C = −logdet(σ2
yI) is independent of the angle choice. We give a derivation

in appendix A for completeness. Intuitively, the determinant of the matrix AβΣx|y(t)(A
β)⊤ ∈

Rdp×dp penalises angles for which different detector elements make correlated measurements and
the log term encourages the measurements from all detector pixels to be similarly informative.

The second objective, which we find to perform better empirically, is to choose the angles
for which our prediction has the largest expected squared error (ESE) in measurement space

ESE := Ep(yβ , x|y(t))[(y
β −Aβx)⊤(yβ −Aβx)] = Tr(AβΣx|y(t)(A

β)⊤) + C. (7)

This objective is a bijection of EIG in the setting where our detector has a single pixel.

Efficient acquisition. Constructing the matrix AβΣx|y(t)(A
β)⊤ repeatedly for each can-

didate angle β ∈ B̄(t) requires O(dp · dB̄(t)) matrix vector products, which is very costly even
for moderate size scanners. Instead, we estimate the matrix for every angle simultaneously by

drawing K samples from N (0, Ā
(t)
Σx|y(t)(Ā

(t)
)⊤) with O(K) matrix vector products. That is,

we sample Rdp·dB̄(t) sized vectors built by concatenating the “pseudo measurements” for each
unused angle β ∈ B̄(t). We use Matheron’s rule (Hoffman and Ribak, 1991; Wilson et al., 2021)⊕

β∈B̄(t)

yβk = Ā
(t)
(
xk − Σxx(A

(t))⊤Σ−1
yy (ηk +A(t)xk)

)
with

xk ∼ N (0,Σxx) and ηk ∼ N (0, σ2
yI), . (8)

Here, k ∈ {1...K} indexes different samples and
⊕

denotes vector concatenation. We compute

AβΣx|y(t)(A
β)⊤ ≈ K−1∑K

k=1y
β
k (y

β
k )

⊤,

which is then used to estimate the acquisition objective eq. (6) or eq. (7). The log term makes
EIG estimates only asymptotically unbiased (i.e. as K → ∞) but we find the bias to be in-

significant. Once the angle β that maximises eq. (6) or eq. (7) is chosen, we update Σ
(t+1)
yy as

Σ(t+1)
yy =

[
Σ
(t)
yy A(t)Σxx(A

(t+1))⊤

A(t+1)Σxx(A
(t))⊤ A(t+1)Σxx(A

(t+1))⊤

]
, (9)

and repeat the procedure, i.e. return to eq. (8).

1. Submodularity guarantees this procedure obtains a score within a (1− 1/e) factor of the optimal strategy.
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Figure 2: First 20 angles selected by each method under consideration for an example image.

3.2 Construction of the prior covariance Σxx

Now we describe the construction of the Gaussian prior covariance over reconstructions Σxx ∈
Rdx×dx . We consider a range of models, building from very simple models to flexible data-driven
ones that allows for adaptive design.

Isotropic model. The simple choice Σxx = σ2
xIdx assumes uncorrelated pixels, and it

implies a ridge regulariser for the reconstruction, which is known to perform poorly in imaging.
Matern-1/2 Process. Antorán et al. (2022) employ the Matern-1/2 covariance [Σxx]ij,i′j′ =

σ2
x exp(−ℓ−1

√
(i− i′)2 + (j − j′)2), where i, j index the pixel locations in the image x, as a

surrogate for TV. With the hyperparameters σ2
x and ℓ properly chosen, the prior samples and

posterior inferences closely match those obtained with an intractable TV prior.
Linearised deep image prior (Barbano et al., 2022; Antorán et al., 2022). This data-

driven prior is constructed by first fitting a DIP model on the measurements taken during the
pilot scan with eq. (4), and then adopting a linear model on the basis expansion given by the
Jacobian of the trained U-net x(·) with respect to θ evaluated at the optimal point θ⋆, i.e.
∇θx(θ)|θ=θ⋆ =: J ∈ Rdx×dθ (Immer et al., 2021b). The resulting prior over x is given by

x = Jθ, θ ∼ N (0,Σθ) and thus x ∼ N (0, JΣθJ
⊤).

The covariance Σxx = JΣθJ
⊤ incorporates information about the pilot measurements through

the features J. It assigns higher prior variance being near the edges in the reconstruction, cf.
fig. 1, which are most sensitive to a change in U-net parameters. The covariance Σθ ∈ Rdθ×dθ

weights different Jacobian entries. We consider two different structures for Σθ.

• The filter-wise block-diagonal matrix of Antorán et al. (2022) uses a separate prior for every
block in the U-net (cf. appendix D.2). This choice uses a large number of hyperparameters.
It risks overfitting to the pilot scan measurements resulting in uncertainty underestimation.

• The neural g-prior (Zellner, 1986; Antoran et al., 2022) is a maximally uninformative diagonal
Gaussian prior with covariance matching the diagonal of U-net’s inverse Fisher information
matrix, denoted s−1, scaled by a constant g (see appendix C for extended discussion). That is

Σθ = g · s−1I, s = d−1
y(t)

dy∑
i=1

([A(t)J]i)
2 ∈ Rdθ , and we choose g = (dy(0)dθ)

−1

dy∑
i=1

((y
(0)
i )2 − σ2

y),

where [AJ]i refers to the ith row of the matrix AJ. Computing s does not require measurement
values and we update it every 5 acquired angles. We compute g once using the measurements
from the pilot scan. Our choice of s ensures that the Jacobian entries corresponding to all U-net
weights contribute equally to the marginal prior variance over measurements. Our choice of g
ensures this marginal variance is equal to the empirical second moment of pilot measurements.

All models discussed have a number of free parameters σ2
y , σ

2
x, ℓ,Σθ, which we choose to

maximise the model evidence given the pilot scan measurements. See appendix B for details.
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Figure 3: Reconstruction PSNR vs n. angles scanned, averaged across 30 images (5% noise).

4. Experiments and analysis

We simulate CT measurements y from 128×128 pixel images displaying rectangles of random
proportions aligned along a randomly chosen “preferential” direction (see fig. 2 and fig. 4). The
forward operator A is the discrete Radon transform, and either 5% or 10% white noise is added
to the measurement y. We divide the range [0◦, 180◦) into 200 selectable angles (i.e. |Ba| = 200).
The pilot scan measures at 5 equidistant angles, on which we fit all models’ hyperparameters
and the linearised DIP’s U-net (see appendix B). Then, we apply the methods in section 3.1
to produce designs consisting of 35 additional angles. For every 5 acquired angles, we evaluate
reconstruction quality using both the DIP (i.e. eq. (4)), and the traditional TV regularised
approach (i.e. eq. (3)). We include equidistant and random angle selection as baselines. On
an NVIDIA A100 GPU, a full linearised DIP acquisition step with K = 3000 samples takes 9
seconds and the full design takes 5 minutes. Appendix D contains full experimental details.

For the linearised DIP, we consider training our U-net and prior hyperparameters only on
the pilot scan, and also retraining every 5 angles. Figure 2 shows both approaches can identify
and prioritise the preferential direction, leading to reconstructions that outperform the equidis-
tant angle baseline by over 1.5 dB in the range of [10, 15] angles (see fig. 3). During this initial
stage, the linearised DIP requires roughly 30% less scanned angles to match the equidistant base-
line’s performance. The performance gap decreases as we select more angles, although linearised
DIP remains more efficient even after 40 angles. Retraining the U-net provides most benefits
in the large angle regime. It increases focus on preferential directions and consistently provides
gains >0.5dB after 20 angles. All gains over the equidistant baseline are obtained with both
DIP (i.e. eq. (4)) and traditional TV regularised reconstruction (i.e. eq. (3)). In the high 10%
noise setting, gains from experimental design are smaller, but still significant (see appendix E).

The isotropic and Matern-1/2 models’ uncertainty estimates are independent of the pilot
measurements. These models prioritise clustered sets of oblique angles which maximise the
length of quanta trajectories in the image. They perform similar to or worse than random. We
explore this negative result in appendix E, finding it due to overfitting of hyperparameters.

ESE outperforms EIG across models. For the linearised DIP, this gap is smaller when
using the g-prior. We hypothesise that model misspecification and hyperparameter overfitting
may result in poor measurement covariance estimates, in turn degrading EIG estimates.

5. Conclusion and future work

Our results suggest that dependence on the measurement data, i.e. adaptivity, is key to out-
performing equidistant angle selection in CT reconstruction, a notoriously difficult task (Shen
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et al., 2022; Helin et al., 2022). Distinctly from previous work, our methods only necessitate a
pilot scan instead of being fully online, increasing applicability. We observe the largest gains
in the 10 to 20 angle regime, where our designs reduce the angle requirement by roughly 30%
without loss of reconstruction quality. This is true for both traditional TV-regularised and DIP
reconstructions. In future, we aim to apply linearised DIP designs to real measurements.
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José Miguel Hernández-Lobato. Linearised laplace inference in networks with normalisation
layers and the neural g-prior. In Fourth Symposium on Advances in Approximate Bayesian
Inference, 2022. URL https://openreview.net/forum?id=uUH8x-h9zdB.

Javier Antorán, Riccardo Barbano, Johannes Leuschner, José Miguel Hernández-Lobato, and
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Appendix A. Discussion on acquisition objectives

The descriptions that follow are well known within the experimental design community but
may be of interest to readers with a background in CT. Thus we describe these facts for the
convenience of readers, and refer readers to Fedorov (1972); Chaloner and Verdinelli (1995) for
a comprehensive introduction to experimental design and to Mackay (1992a) for a Bayesian
perspective on experimental design.

EIG quantifies the information (in nats) we expect to gain by observing the detector elements’
measurements for an angle or set of angles (Mackay, 1992a). Since our experiments employ
greedy angle selection, we derive EIG for measurements at a single angle β. The generalisation
to the multi-angle setting is straightforward. EIG is the expected decrease in posterior entropy
from observing the detector elements’ measurements at β:

EIG = H(x|y(t−1))− Ep(yβ |y(t−1))[H(x|y
(t−1), yβ)],

where we take an expectation over the new measurement yβ, since EIG is computed before the
measurement yβ is made. For this, we use the posterior predictive distribution p(yβ|y(t−1)) given
our previous measurements y(t−1)

p(yβ|y(t−1)) =

∫
p(yβ|x)p(x|y(t−1)) dx.

For the linear-Gaussian case, this integral can be evaluated in closed form, although this will
not be necessary for our purposes.

EIG is also equal to the mutual information MI(x, yβ|y(t−1)) between the reconstruction
x and the new measurement yβ conditional on the previous measurements y(t−1), giving an
interpretation as aiming to select the angle β most informative towards the reconstruction. For
fixed model hyperparameters, EIG is always greater or equal than 0 since making additional
measurements cannot increase the uncertainty in the reconstruction.

The entropy of a multivariate Gaussian N (µ,Σ) is H = 1
2 logdet(Σ) +

d
2(log(2π) + 1). For a

fixed dimensionality d, the second term is constant across design steps and thus we only need to
focus on the log determinant. The entropy does not depend on the distribution mean but only
its covariance. Thus, taking y(t) = [y(t−1), yβ], we can write

EIG = logdet(Σx|y(t−1))− logdet(Σx|y(t)).

Since the covariance Σx|y(t−1) does not depend on the new angle choice β, maximising EIG
is equivalent to choosing the angle which minimises the updated covariance log-determinant
logdet(Σx|y(t)). Hence, the EIG objective for linear models is also known as the D(eterminant)-
optimal criterion.

We can obtain a more convenient expression for EIG by noting the sequential nature of
Bayesian learning; when data is observed, the prior is updated to a posterior. This posterior
represents the updated beliefs and, as such, acts as a prior distribution for further inferences

p(x|y(t)) = p(yβ|x)p(x|y(t−1))

p(yβ|y(t−1))
.
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For conjugate Gaussian-linear models, we can apply this principle to obtain the posterior co-
variance at time t from the covariance at time t− 1 using the matrix determinant lemma

logdet(Σx|y(t)) = −logdet(Σ−1
x|y(t−1))− logdet(σ−2

y I)− logdet(σ2
yI + A

(t)
0 Σx|y(t−1)A

⊤,(t)
0 ).

Thus, we have

EIG = logdet(Σx|y(t−1))− logdet(Σx|y(t))

= logdet(Σx|y(t−1))− [−logdet(Σ−1
x|y(t−1))− logdet(σ−2

y I)− logdet(σ2
yI + AβΣx|y(t−1)(Aβ)⊤)]

= −logdet(σ2
yI) + logdet(σ2

yI + AβΣx|y(t−1)(Aβ)⊤)

= logdet(σ2
yI + AβΣx|y(t−1)(Aβ)⊤) + C

where the constant C = −logdet(σ2
yI) is independent of angle choice, yielding the objective we

use for angle selection in practise.
The ESE objective in eq. (7) aims to minimise the squared prediction error in measure-

ment space. Objectives of this kind are commonly known as (A)verage-optimal. However,
ESE is A-optimal over measurement space y, not over image space x. ESE is crucially dif-
ferent from minimising the arguably more relevant expected squared reconstruction error, a
more computationally expensive criterion. ESE can be understood as a naive simplification of
EIG, by discarding correlations between detector pixels, making logdet(AβΣx|y(t−1)(Aβ)⊤) match∑

i<dp
log[AβΣx|y(t−1)(Aβ)⊤]ii. Then, the order of log and sum are switched, something that will

only be true if every element under the sum is the same. Having reached this point, since the
log function is monotonic, it does not affect angle selection and the criterion matches the trace
of AβΣx|y(t−1)(Aβ)⊤.

Appendix B. Hyperparameter selection via model evidence maximisation

For the conjugate linear-Gaussian model, the model evidence can be computed in closed form

log p(y) = logN (y; 0,Σyy) = −1

2

(
y⊤Σ−1

yy y + logdet(Σyy)
)
+ C

with Σyy = AΣxxA
⊤ + σ2

yIdy

and C = −dy/2 log 2π. This expression is straightforward to compute for the isotropic and
Matern-1/2 models. The linear solve against Σyy and log-determiant operations, while costly, are
tractable to perform when the dimensionality of y is low. This is the case in our experimental
setup, where we use the measurements from our 5 angle pilot scan y(0), specifically, dy = dp ·dB =
5 · 183 = 915. We refer to Antorán et al. (2022) for discussion of efficient computation of the
model evidence for the linearised DIP. For additional discussion on the motivation for the model
evidence objective, its applications and pitfalls, we refer to Mackay (1992b); Immer et al. (2021a);
Antorán et al. (2022).

Selecting prior hyperparameters with the model evidence is often claimed to be immune
from overfitting due to the flexibility of the prior model being relatively low. However, when
the number of measurements is small, e.g. after performing the pilot scan, overfitting is still
possible. Indeed we observe the Matern-1/2 model suffers due to this issue in our experiments.
We further discuss this in appendix E.
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The risk of overfitting is also high for the linearised DIP model of Barbano et al. (2022);
Antorán et al. (2022). Here, the basis expansion is selected by training a U-net on the pilot
measurements and the number of hyperparameters is twice the number of U-net blocks, making
this prior class very flexible. This has motivated the use of the neural g-prior (Antoran et al.,
2022), discussed in the following section.

Appendix C. Discussion on the neural g-prior

The neural g-prior Σθ = g · s−1I was introduced by Antoran et al. (2022) as an approach to
“normalise” the second moment of the Jacobian feature expansion analogously to standard data
normalisation. This normalisation ensures that the Jacobian entries corresponding to all network
weights contribute equally to the predictions at the train points, or in our case, to the predictions
at the already measured angles. We refer to Antoran et al. (2022) for a full derivation.

Antoran et al. (2022) learn the variance scale g with the model evidence objective. However,
it is well known that this procedure can overfit in the small-data regime. To prevent overfitting,
in this work we choose g using the heuristic

g = (dydθ)
−1

dy∑
i=1

((yi)
2 − σ2

y).

This choice is made so that the marginal predictive variance averaged across measurement lo-
cations matches the empirical second moment of the observed targets, which we will denote

E[y2] = d−1
y

∑dy
i=1 y

2
i . In other words, when using this prior over weights, our prior over mea-

surements will have roughly the “right” variance. To see this, first recall

s = d−1
y

dy∑
i=1

([AJ]i)
2

where [AJ]i refers to the ith row of the matrix AJ and we will use [AJ]ij to index each scalar
entry of this matrix. We now expand the average marginal variance across measurements when
using the neural g-prior

d−1
y

dy∑
i=1

[Σyy]ii = d−1
y

dy∑
i=1

[AJ(gs−1I)A⊤J⊤]ii + σ2
y

= gd−1
y

dy∑
i=1

s−1
i

dθ∑
j

[AJ]2ij + σ2
y

= (E[y2]− σ2
y)d

−1
θ

dy∑
i=1

dθ∑
j=1

[AJ]2ij∑dy
k=1[AJ]

2
kj

+ σ2
y

= (E[y2]− σ2
y)d

−1
θ

dθ∑
j=1

∑dy
i=1[AJ]

2
ij∑dy

k=1[AJ]
2
kj

+ σ2
y

= (E[y2]− σ2
y)

d−1
θ

dθ∑
j=1

1

+ σ2
y = E[y2],
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Figure 4: Examples of synthetic images.

showing the property.

For (Antorán et al., 2022), model evidence optimisation is the most computationally costly
step of inference. Avoiding model evidence optimisation speeds up inference and thus angle
selection, making our proposed procedure more attractive for a real deployment.

Additionally, in fig. 3, we observe that the EIG objective performs best when combined
with the neural g-prior. Arguably, EIG is a better motivated selection criterion than ESE but
performs worse than equidistant selection when combined with all models except the g-prior
linearised DIP. We hypothesise that model misspecification introduces error in our estimates of
relative marginal variances and covariances across detector pixel measurements, in turn degrad-
ing the performance of EIG. ESE is less sensitive to these, as discussed in appendix A. Since the
neural g-prior is a maximally uninformative prior, it somewhat mitigates model misspecification,
improving the performance of EIG acquisition.

Appendix D. Full experimental setup

D.1 Dataset generation

We use a synthetic dataset comprising images of rectangles with randomised shape, orientation
and intensity values, and simulate CT measurements by applying the forward operator A ∈
Rdy×dx and adding Gaussian noise with standard deviation of 5% or 10% of the average absolute
value of the noiseless measurements Ax. Each image has resolution 128× 128 px2 and shows 3
superimposed rectangles, whose orientation is sampled from a single normal distribution with
zero mean and standard deviation 2.86◦. Thus, images in this class contain edges in roughly
two perpendicular directions. Figure 4 shows example images from the dataset.

D.2 Implementation details for the linearised DIP

The key step of efficiently implementing the linearised DIP is the computation and Cholesky
decomposition of the measurement covariance matrix Σyy. We describe this step in the following
paragraphs and refer to Antorán et al. (2022), which we have followed in our implementation,
for a complete set of details.

Computing the measurement covariance matrix Σ
(t)
yy To assemble or multiply with Σ

(t)
yy ,

we employ matrix-free methods. Our workhorses are the matrix vector products v⊤x Σxx and

v⊤y Σ
(t)
yy for vx ∈ Rdx and vy ∈ Rdy . We efficiently compute these products through successive
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5% noise 10% noise

#angles: 5 10-15 20-30 35-40 5 10-15 20-30 35-40

TV strength λ 1e−2 3e−3 3e−3 3e−3 1e−2 1e−2 1e−2 3e−3
iterations 60 000 30 000 10 000 10 000 60 000 30 000 10 000 10 000

Table 1: Hyperparameters for TV reconstruction. The values for λ are found by grid search on
10 validation images using 5, 10, 20 and 40 angles, and the numbers of iterations are
chosen such that convergence is observed.

matrix vector product with the components of either Σxx, or Σ
(t)
yy , respectively. For instance,

v⊤y Σ
(t)
yy = v⊤y

(
A(t)JΣθJ

⊤
(
A(t)

)⊤
+ σ2

yI

)
.

For any vector vθ of appropriate size, we compute Jacobian vector products v⊤θ J
⊤ using forward

mode automatic differentiation (AD) and v⊤θ J using backward mode AD. For the non g-prior
model, we efficiently compute products with Σθ by exploiting its block diagonal structure. Since
the g-prior covariance matrix is diagonal, computing products with it is straightforward.

Numerically stable sample generation with Matheron’s rule eq. (8) Numerical insta-
bilities can arise during the sample generation with the Matheron’s rule due to the inversion of
Σyy, updated via eq. (9). We resort to a simple regularisation strategy, which consists in adding

to Σ
(t)
yy a small diagonal element ϵI, where ϵ is chosen from 1% to 10% of the diagonal mean,

similarly to Lee et al. (2020).

D.3 Hyperparameters for TV and DIP reconstruction

The TV strength (i.e. λ) used in the DIP optimisation and the TV regularised objective, reported
in table 2 and table 1, are found by grid search on 10 validation images. The DIP reconstruction
quality from some images degrades when using many iterations Baguer et al. (2020), so an early
stopping would be beneficial. For the PSNR evaluations of DIP reconstructions, we iterate
for 30 000 steps and select the maximum PSNR for each image; this resembles the ideal early
stopping by using the (in practice unknown) ground truth image, and is done in order to exclude
the complexity of the stopping mechanism from our evaluations. For the DIP optimisations
used for angle selection (i.e. the initial DIP on B(0) and the DIPs retrained every 5 angles),
the numbers of iterations in table 2 are used, which were found by grid search on 10 validation
images.
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5% noise 10% noise

#angles: 5 10-15 20-30 35-40 5 10-15 20-30 35-40

TV strength λ 3e−3 3e−3 3e−3 1e−3 1e−2 1e−2 3e−3 3e−3
iterations 19 000 9400 12 000 13 000 11 000 7500 12 000 7100

Table 2: Hyperparameters for DIP reconstruction (including TV regularisation). The values are
found by grid search on 10 validation images using 5, 10, 20 and 40 angles.

1x1 conv + leaky ReLU

bilinear upsampling

3x3 conv with stride 2 + leaky ReLU

3x3 conv + leaky ReLU

1x1 conv + sigmoid

2x (3x3 conv + leaky ReLU)

1 14+3232

32 32

32 32

32 4+32

32

Figure 5: U-net architecture. Each light-blue box corresponds to a multi-channel feature map.
The number of channels is set to 32 at every scale. The arrows denote the different
operations.
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Appendix E. Additional experimental results and analysis

In this section, we include additional experimental figures and discuss them.

Figure 6: First 20 angles selected by each method under consideration for the example image
shown in fig. 1

Figure 6 completes fig. 2 by showing the angles selected by all methods under consideration.
Both linear DIP and linear DIP with g-prior choose very similar angles, with the g-prior resulting
in a very slightly more diverse angle set. Retraining the linearised DIP every 5 angles to update
the basis expansion results in a stronger focus on angles close to the preferential direction. As
expected, the differences with the non-retrained DIP are more pronounced for later selected
angles, i.e. angles 16-20.

The Matern-1/2 model concentrates its selection on oblique angles much more strongly than
the isotropic model. This results in a very non-diverse angle set which achieves very poor
performance. To understand why this happens we first remark that the Matern-1/2 model
generalises the isotropic model and the two are equal when the lengthscale is set to ℓ = 0. We
investigate the hyperparameters chosen by the model evidence for the Matern-1/2 model and
find that for all images the lengthscale is in the range [40-70]. This value is very large relative
to the size of the image (128× 128) and represents an assumption that the reconstructed image
has only 2 or 3 regions with different pixel intensity values. Under this assumption, only taking
measurements at 3 different angles is justified.

We verify this explanation by examining the ESE scores assigned by the isotropic and Matern-
1/2 models to the first 8 angles chosen in fig. 7 and fig. 8 respectively. The isotropic model chooses
oblique angles. After each new angle is included in the updated operator A(t), the predictive
variance in a region spanning roughly 10◦ around the chosen angles decreases. This is the span
of the detector elements. The uncertainty at other angles remains unchanged because the model
assumes reconstruction pixels to be uncorrelated. By modelling correlations among detector
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Isotropic model, first 8 acquisitions

Figure 7: Variance assigned to each candidate angle during the first 8 design steps by our
Isotropic model.

Matern-1/2 model, first 8 acquisitions

Figure 8: Variance assigned to each candidate angle during the first 8 design steps by our
Matern-1/2 model.

pixels, each additional angle should reduce the Matern-1/2 model’s uncertainty in a larger angle
range (set via the lengthscale), promoting exploration. However, because the lengthcale, which
has overfit the pilot measurements, is very large, each new angle introduced into the operator
reduces the predictive variance of every angle almost equally. As a result, the relative assignment
of predictive variance in angle space remains roughly constant throughout design steps, and all
of the chosen angles become very similar to each other.

Although, it is well known that experimental design is very sensitive to the choice of prior
(Feng, 2015; Foster, 2021), the ease with which the relatively very simple Matern-1/2 model can
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overfit the degree to which this degrades performance was unexpected to us. In future work we
will investigate alternative methods for setting model hyperparameters.

Figure 9 and fig. 10 show the variance assigned to each angle in the first 8 acquidition steps
on an example image (first image from fig. 4) for the linearised DIP and the linearised DIP
with g-prior, respectively. Although the angles selected by the two models are different, both
prioritise similar angle regions.

Linearised DIP, first 8 acquisitions

Figure 9: Variance assigned to each candidate angle during the first 8 design steps by our lin-
earised DIP model.

Linearised DIP with g-prior, first 8 acquisitions

Figure 10: Variance assigned to each candidate angle during the first 8 design steps by our
linearised DIP model with the g-prior.

Figure 11 is a more complete version of fig. 3, including the standard error. Given our 30
image runs, we can conclude that the linearised DIP provides a statistically significant improve-
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ment over the equidistant baseline up to 20 selected angles. By retraining the DIP Jacobians
every 5 angles, we can extend the significant improvements up to 35 scanned angles. In future
we aim to make these statements stronger by running more experiments.

Figure 12 shows our findings on measurement data simulated adding 10% noise. The gains
from experimental design are slightly reduced in the noisier setting, although the conclusions
remain the same. From the EIG expression eq. (6), we can see that noisier measurements should
push our score assignment to be more uniform across angles and thus closer to the equidistant
baseline.

10 15 20 25 30 35 40
#total acquired angles

29

30

31

32

33

34

35

36

PS
NR

 [d
B]

DIP reconstructions  angle selection by ESE

DIP trained on pilot scan ( (0))
DIP retrained every 5 angles

10 15 20 25 30 35 40
#total acquired angles

26

28

30

32

34

PS
NR

 [d
B]

TV reconstructions  angle selection by ESE

DIP trained on pilot scan ( (0))
DIP retrained every 5 angles

10 15 20 25 30 35 40
#total acquired angles

24

26

28

30

32

PS
NR

 [d
B]

TV reconstructions

ESE
EIG

Figure 11: Reconstruction PSNR vs n. angles scanned, averaged across 30 images (5% noise).
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Figure 12: Reconstruction PSNR vs n. angles scanned, averaged across 30 images (10% noise).
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