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Abstract

Conventional machine learning systems that operate on natural images assume the presence
of attributes within the images that lead to some decision. However, decisions in medical
domain are a resultant of attributes within medical diagnostic scans and electronic medical
records (EMR). Hence, active learning techniques that are developed for natural images are
insufficient for handling medical data. We focus on reducing this insufficiency by designing
a deployable clinical active learning (DECAL) framework within a bi-modal interface so as
to add practicality to the paradigm. Our approach is a plug-in method that makes natural
image based active learning algorithms generalize better and faster. We find that on two
medical datasets on three architectures and five learning strategies, DECAL increases gen-
eralization across 20 rounds by approximately 4.81%. DECAL leads to a 5.59% and 7.02%
increase in average accuracy as an initialization strategy for optical coherence tomography
(OCT) and X-Ray respectively. Our active learning results were achieved using 3000 (5%)
and 2000 (38%) samples of OCT and X-Ray data respectively.
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1. Introduction and Related Work

Active learning aims to find the optimal subset of samples from a dataset for a machine
learning model to learn a task well (Dasgupta (2011); Settles (2009)). It is studied because of
its ability to reduce the costly and laborious burden on experts to provide data annotations.
Typical setups focus on acquisition functions that measure the informativeness of samples
using constructs from ensemble learning (Beluch et al. (2018)), probabilistic uncertainty
(Gal et al. (2017); Hanneke et al. (2014)) and data representation (Geifman and El-Yaniv
(2017); Sener and Savarese (2017)). These works were originally developed for the natural
image domain and although several studies have adapted these and other techniques to
medical imagery (Logan et al. (2022); Melendez et al. (2016); Nath et al. (2020); Otálora
et al. (2017); Shi et al. (2019)), they have not been adopted or utilized in real clinical
settings.

One reason for this non-adoption is that conventional active learning does not follow
the diagnostic process. This is because of the experimental settings in natural images that
aided the development of existing active learning algorithms (Ash et al. (2019); Hsu and Lin
(2015); Sener and Savarese (2017)). Natural images typically contain homogeneous class
attributes that can be extracted from the images themselves. Also, these attributes are
usually enough to distinguish between classes. However, in medicine, pathologies manifest
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themselves in visually diverse formats across multiple patients. For example, the character-
istics of an aged healthy person are visually different from a young healthy person. So how
do doctors overcome this? They include clinical data from EMR to assist with their arrival
at a diagnostic decision (Brundin-Mather et al. (2018); Brush Jr et al. (2017)). EMR con-
sists of patient ID, demographics, diagnostic imaging and test results that allow a clinician
to make a diagnosis. We recommend that active learning frameworks for medical image clas-
sification be designed within a bi-modal interface so as to add practicality to the paradigm.
With this in mind, we design and evaluate a DECAL framework that integrates EMR data.
We show that DECAL aids existing active learning algorithms in finding the best subset for
labeling as well as initializing the active learning framework. As such, DECAL is a plug-in
approach on top of existing active learning based methods.

2. Assessing Active Learning Framework for Medical Domain

We conduct a set of controlled experiments to evaluate the effectiveness of a DECAL frame-
work relative to conventional frameworks.

2.1 Dataset Descriptions

We use images and EMR data from the OCT dataset by Kermany et al. (2018). The dataset
consists of grayscale, cross-sectional, foveal scans having varying sizes. We use images from
3 retinal diseases: 10488 choroidal neovascularization (CNV), 36345 diabetic macular edema
(DME) and 7756 Drusen annotated at the image level. Samples in training and oracle sets
are from 1852 unique patients. The test set consists of 250 images from each diseased class
from 486 unique patients.

We also use images and EMR data from the X-Ray dataset also by Kermany et al.
(2018). The X-rays are grayscale, cross-sectional chest scans from children belonging to a
healthy class and 2 types of pneumonia: viral and bacterial annotated at the image level.
We use 1349 healthy, 1345 viral and 2538 bacterial samples in the combined training and
oracle sets from 2650 unique patients. The test set consists of 234 healthy, 148 viral and 242
bacterial images from 431 unique patients. There is also no overlap in patients or imagery
in train or test sets for both datasets. This means the imagery in the train and test sets
come from different patient cohorts. EMR data used for our analysis was patient identity
from both datasets.

Table 1: Information about dataset size and the number of samples added after each train-
ing round.

Details
Dataset

OCT X-Ray

Oracle + Training Set Images 54589 5232
Images in Initial Training Set 128 128
Images Queried per Iteration 128 128
Unique Patients per Iteration 128 128

Total Unique Patients 2338 3081
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Figure 1: Sample imagery of visual characteristics of disease states across patient cohorts.

2.2 Active Learning with EMR Data

Figure 1 shows sample scans from each dataset with patients having the same disease. The
visual characteristics across patients are noticeably different. This intra-class diversity is a
typical occurrence in medical datasets. Existing active learning paradigms fail to properly
account for disease manifestations from whom there is less data. This oversight is very
dangerous for safety critical domains like medicine. Thus, we posit that EMR data, in
the form of patient identity, be leveraged to account for the intra-class diversity present in
medical datasets. We use patient identity as a plug-in constraint that can be applied prior
to sample selection with any query acquisition function. The next batch of informative
samples will have unique patient identity from the unlabeled pool and be appended to the
training set. This process is repeated to determine the minimum number of labeled samples
needed to maximize model performance.

2.3 Experiments

Implementation Details We assess our active learning framework on Resnet-18, Resnet-
50 and Densenet-121 (He et al. (2016); Huang et al. (2017)). We do not use pre-trained
models in any of our analysis. We use the Adam optimizer with a learning rate of 1.5e-4.
Hyper-parameters are tuned based on the OCT dataset and then the same parameters are
used for the X-Ray dataset. For each round, the Resnet and Densenet models are trained
until 98% and 94% accuracy is achieved on the training set respectively. Following each
round, the model’s weights are reset and randomly initialized. This is repeated with five
different random seeds. We aggregate and report average accuracy and standard deviation.
All images are resized to 128×128 and OCT scans are normalized with µ = 0.1987 and σ =
0.0786 while X-Rays with µ = 0.4823 and σ = 0.0379. Table 1 shows more implementation
details for each dataset.

2.3.1 Initializing Active Learning with EMR Data

Existing frameworks typically start active learning by randomly selecting a small amount
of samples to train the initial model. Subsequently, they apply methods of ranking sample
informativeness. By doing this they naively assume that the data distribution is even, which
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is hardly the case in medical datasets as shown in Figure 1. Randomly selecting from an
unbalanced distribution is not guaranteed to gather a representative sample of the classes
present (Zhu et al. (2008)). Therefore, we recommend the integration of EMR data from
the outset to circumvent this.

To do this, we first compute the distribution of patients throughout the unlabeled pool.
Then, we select a fixed number of images from unique patients IDs and pair it with its
annotation for the initial training set. The intuition behind this strategy is for the first
training samples to have maximally dissimilar images. These samples are then used to start
our DECAL paradigm. We present two experimental modalities in the initialization phase
depending upon the availability of data.

Large Initial Training Set We select 1000 samples at random from the unlabeled pool
and train a model for each architecture and dataset for the first round only as our baseline.
Then, we perform DECAL initialization by selecting one image from a 1000 unique patients
in the unlabeled pool. We then train a model for each architecture and dataset for the first
round only and compare it to the baseline by reporting the average accuracy and standard
deviation on the test set. The results are presented in Section 3 Table 2.

Small Initial Training Set We select 128 samples with DECAL initialization then start
both conventional active learning and DECAL methods and record the earliest round where
average accuracy is greater than random chance (33%). Next we compute the percentage
increase/decrease that DECAL achieves relative to the corresponding baseline. The results
are presented in Section 3 Table 3.

2.3.2 Baseline Sample Acquisition Algorithms

We apply patient ID as a modular ”plug-in” constraint prior to sample selection with each
of these baseline algorithms to make our framework clinically deployable. The first baseline
is standard random sampling, the next three are margin, least confidence and entropy
uncertainty based sampling (Settles (2009)) and the last is an amalgamation of diversity
and uncertainty-based sampling approaches known as BADGE (Ash et al. (2019)).

3. Results

Initializing Active Learning with EMR Data First, we show results to validate the
importance of integrating patient ID from the onset. When a large initial train set is used,
Table 2 shows in yellow that DECAL initialization always leads to higher accuracy regardless
of architecture or dataset type. DECAL initialization lead to a 5.59% and 7.02% increase
in average accuracy for OCT and X-Ray data respectively. However, evaluating the impact
of DECAL initialization with a small initial training set mandates a different approach.
Since we use non-pre-trained models, training with a small set will unsurprisingly result in
over-fitting. This means generalization on the test set will be that of random chance until
the training pool becomes large enough. Table 3 highlights in yellow the instances when
DECAL initialization lead to a percentage increase in average accuracy during early rounds
of training. From these results we see DECAL initialization leads to better generalization
for at least 5 of the 10 query strategies across all architectures and datasets.
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Active Learning with EMR Data We use learning curves to evaluate how DECAL
can better characterize disease states. Due to space constraints, we show learning curves
for only Resnet-18 and Densenet-121 architectures in Figure 2 and Figure 3. In these plots
x-axis corresponds to the number of samples in the train set and y-axis corresponds to
the performance accuracy on the test set. Each colored curve is the average of five trials,
with standard errors being shown by the shaded regions. We see that DECAL consistently
matches or surpasses the baseline algorithms. Furthermore, we see DECAL often having an
edge over baseline algorithms from the early rounds of training onward like in Figures 2b,
3a. This is an indicator that DECAL methods not only generalize better but also generalize
faster than the baselines.

Table 2: DECAL vs random initialization using large train set.
OCT Dataset

Initialization Resnet-18 Resnet-50 Densenet-121

Random 61.38 ± 4.53 64.4 ± 6.75 76.93 ± 4.64
DECAL 64.53 ± 9.83 69.28 ± 3.41 80.16 ± 5.34

X-Ray Dataset

Initialization Resnet-18 Resnet-50 Densenet-121

Random 52.24 ± 9.47 66.95 ± 3.98 70.12 ± 7.44
DECAL 58.2 ± 9.42 71.08 ± 4.17 72.82 ± 7.44

Table 3: DECAL vs random initialization during early rounds of training. +/- numbers
show the percentage increase/decrease in average accuracy relative to random.

Dataset OCT X-Ray
Round 4 2 1 2 2 1
Query Resnet-18 Resnet-50 Densenet-121 Resnet-18 Resnet-50 Densenet-121

R
an

d
om

In
it
ia
li
za
ti
on

Random 54.37 46.18 42.66 63.91 69.64 46.37
Entropy 53.62 46.88 49.97 55.88 51.18 46.18
BADGE 60.53 48.69 35.3 57.50 65.8 40.32
Margin 55.57 47.01 47.52 56.28 68.34 54.03

Least Conf 49.49 49.46 46.85 55.03 57.30 47.46
DECAL Random 61.44 54.5 48.48 64.16 63.42 46.37
DECAL Entropy 64.48 50.72 52.66 51.92 67.27 51.57
DECAL BADGE 63.97 53.44 46.9 64.8 69.55 47.08
DECAL Margin 58.88 48.64 50.4 57.14 62.5 47.03

DECAL Least Confidence 60.48 49.30 49.78 60.06 64.42 40.99

D
E
C
A
L
In
it
ia
li
za
ti
on

Random +9.21% +3.76% +5.95% +2.03% -5.11% -0.75%
Entropy -6.95% +3.45% -10.74% +11.90% +24.73% +25.52%
BADGE +5.73% +8.64% +21.38% +9.91% 1.70% -2.48%
Margin -1.87% +6.53% -16.45% -3.02% -10.43% +2.17%

Least Confidence +17.61% -6.08% -12.23% +5.23% +9.68% -6.27%
DECAL Random -1.17% -6.01% +14.35% +4.09% +8.04% +22.88%
DECAL Entropy +4.67% -0.53% -16.71% +4.31% -5.90% +3.83%
DECAL BADGE +3.25% -7.99% +0.80% +4.55% +1.01% +0.89%
DECAL Margin +0.66% +5.53% +5.55% +9.87% +2.91% +20.69%

DECAL Least Confidence -4.19% -2.86% -3.37% +3.15% -0.24% +10.85%
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(a) (b) (c) (d)

Figure 2: Test accuracy vs sample count during training for the OCT on Resnet-18.

(a) (b) (c) (d)

Figure 3: Test accuracy vs sample count during training for the X-Ray on Densenet-121.

4. Conclusion and Next Steps

In this work we motivate the design of a DECAL framework for medical applications.
Augmenting active learning paradigms with EMR data creates the perfect setting for which
active learning can be of true utility within the medical domain. In this study we have
demonstrated this by designing an active learning framework constrained on a medically
grounded prior gleaned from clinical EMR data about patient identity.

Determining what other forms of EMR best serve active learning paradigms remains
an open research question. Our next steps include investigating additional EMR data to
inject into our framework for a more holistic analysis. Towards these efforts, we have
collaborated alongside Retina Consultants of Texas (Houston, TX, USA) to create our own
dataset (Logan* et al. (2022 Under Review)) that contains a plethora of EMR specific to
ophthalmology. The clinical information consists of patient identity, general demographics,
ocular disease state (Best Corrected Visual Acuity, Central Sub-field Thickness) and detailed
ocular imaging in the form of spectral domain OCT, fundus photography and fluorescein
angiography collected per the protocol. These were measured and recorded during routine
visits to the clinic. In addition to DECAL, clinical context also aids research in supervised
contrastive learning (Kokilepersaud et al. (2022)).
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