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Abstract

Multi-armed bandit algorithms minimize experimentation costs required to converge on op-
timal behavior. They do so by rapidly adapting experimentation effort away from poorly
performing actions as feedback is observed. But this desirable feature makes them sensitive
to confounding factors or delayed feedback. We highlight, for instance, that popular ban-
dit algorithms cannot address the problem of identifying the best action when day-of-week
effects may confound inferences. In response, this paper formulates a general model of
contextual bandit experiments with nonstationary contexts, which act as the confounders
for inferences and can be also viewed as the distribution shifts in the earlier periods of the
experiments. In addition, this general model allows the target distribution or population
distribution that is used to determine the best action to be different from the empirical
distribution over the contexts observed during the experiments. The paper proposes decon-
founded Thompson sampling, which makes simple, but critical, modifications to the way
Thompson sampling is usually applied. Theoretical guarantees suggest the algorithm strikes
a delicate balance between adaptivity and robustness. It attains asymptotic lower bounds
on the number of samples required to confidently identify the best action — suggesting
optimal adaptivity — but also satisfies strong performance guarantees in the presence of
day-of-week effects and delayed observations — suggesting unusual robustness.

Keywords: contextual bandit, best-arm identification, deconfounded Thompson sam-
pling, randomized controlled trials

1. Extended Abstract

Multi-armed bandit algorithms are designed to adapt their experimentation rapidly as ev-
idence is gathered. By quickly shifting measurements away from less promising actions
or ‘arms’, they focus measurement effort where it is most useful. This desirable feature
can make these same algorithms brittle in the face of delayed observations or confounding
factors. We highlight this challenge through an example of a week-long experiment where
observations are influenced by specific day-of-week effects.

Example 1 (Day-of-week effects) In any period t ∈ [T ] := {1, · · · , T}, the decision-
maker observes context Xt ∈ [7], selects arm It ∈ [k], and observes a noisy reward Rt that
reflects the performance of the chosen arm in the current context. For concreteness, one
might imagine that a period corresponds to a customer visiting an online retailer, the context
indicates the day of the week, an arm indicates the price set for a particular product, and
the reward is the resulting revenue. The context at time t is Xt = ⌈t/m⌉, meaning the first
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m periods are Sunday, the next m are Monday and so on. Assume that Rt = θIt,Xt +Wt

where Wt | θ, It ∼ N(0, 1) is independent Gaussian noise and θ ∈ R7k is an unknown
parameter vector that encodes the day and arm specific mean rewards. By intelligently
adapting measurement effort, the decision-maker hopes to identify the arm

I∗(θ) = argmax
i∈[k]

θi,1 + · · ·+ θi,7
7

(1)

that maximizes expected revenue if employed throughout the entire week. The goal is to learn
a single price and not a sequence of seven prices to charge on separate days of the week.
Such predictable price variations might, for instance, lead to unintended strategic customer
behavior if implemented across many future weeks.

There are at least two reasons this may be preferable to the goal of identifying the seven
arms that maximize expected revenue on each specific day. First, it requires less data and
therefore limits experimentation costs. Second, it avoids undeseriable strategic behavior from
customers that might result if prices vary predictably throughout the week.

The decision-maker begins with prior belief under which θ ∼ N(µ,Σ). This might, for

instance, arise from a latent variable model where θi,x = θidioi,x + θarmi + θdayx is determined

by an effect θidioi,x that is idiosyncratic to a specific arm and day, an effect θarmi associated

with the chosen arm, and a shared day-of week effect θdayx . Placing an independent nor-
mal prior on the idiosyncratic, arm-specific, and day-specific effects induces a structured
covariance matrix Σ. When the idiosyncratic terms have large variance, the decision-maker
must guard against almost arbitrary non-stationary patterns. If these are believed to have
smaller magnitude, the decision-maker may be able rule out some very poor arms early in
the experiment.

Day-of-week effects are a standard concern when practitioners run A/B tests (Kohavi
et al., 2020), so it is concerning that popular bandit algorithms like Thompson sampling and
upper confidence bound (Lattimore and Szepesvári, 2020) fail in this example. The issue
is that these algorithms either risk confounding by ignoring contextual information or aim
to find the best action for every specific context, which is often not the experimenter’s goal
(see the discussion of coarse segmentation below). In light of this discussion, it may not be
surprising that many real life experiments implement uniformly random arm selection. This
experimental design is highly robust, but it is inefficient when there are many arms and
some can be quickly identified as inferior. The adaptivity of multi-armed bandit algorithms
is important in those settings.

We propose deconfounded Thompson sampling (DTS). This method involves simple but
critical modifications to Thompson sampling — an algorithm that is widely used in industry
in academia. Our results suggest that DTS strikes a delicate balance: it is aggressive in
shifting measurement effort away from alternatives that appear inferior while being robust
to observed confounders like the day-of-week effects in Example 1.

1.1 A Model of Contextual Bandit Experiments

We formulate a general model of contextual bandit experiments that encompasses Example
1 as a special case. The model captures the defining features of Example 1 including:
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• Coarse segmentation: The ultimate decision-rule (1) pools together all seven contexts
into a single segment over which decisions are held constant. If we think of the
customers as belonging to one of seven different groups, then specifying a price for
each day would be the most granular segmentation and (1) specifies the coarsest. In
settings where the context contains all information available about a customer, coarse
segmentation reduces data requirements, reduces the risk of bias, and avoids complex
strategic incentives that occur when customers’ interactions affect their future service.
In practice, products, public policies, and health interventions are often designed to
serve a segment of the population (e.g. rural millennials) without being specialized
to each individual.

• Nonstationary confounders: The experimenter needs to account for day-of-week effects
in order to correctly infer which arm is best. They may need to model granular
contextual information when performing inference even if they want to employ a
coarse segmentation for the decisions they implement. The nonstationary contexts
act as the confounders for inferences and can be also viewed as the distribution shifts
in the earlier periods of the experiments.

• Pure exploration: In the lingo of the multi-armed bandit literature, what we have
described is a “pure-exploration” problem (Bubeck et al., 2009). In common bandit
formulations, experimentation continues indefinitely but is costly only if suboptimal
action is selected. In our formulation, one hopes to quickly stop the experimentation
process and commit to given strategy for selecting actions going forward. This is
natural in settings where the process of experimentation is inherently costly, as it is
in clinical trials or many public policy experiments. Even in internet experiments,
the dominant workflow involves running a finite length experiment to validate or
select among alternatives. After an option is selected, engineering resources might
be invested toward productionizing it. One salient feature of the model is that the
target distribution or population distribution that is used to determine the best action
can be different from the empirical distribution over the contexts observed during the
experiments.

We formulate a general model that combines these features. A decision-maker experiments
across a sequence of periods. In each, they observe a context vector, select from a finite set of
possible actions, and observe a reward whose probability distribution depends on the chosen
context and action. After the experimentation process stops, the decision-maker commits
to a given strategy for selecting actions going forward. Specifically, they pick among a class
of candidate policies, each of which is a rule that prescribes an action for every context. Re-
stricting the class of candidate policies enforces coarse segmentation. The decision-maker’s
choice is judged by how it performs on average under contexts drawn from a population
distribution, effectively capturing how that policy will perform when employed throughout
an extremely large number of remaining periods. We assume the population distribution
is known, which would be essential if the contexts observed during the experiment are not
representative of the distribution anticipated in the future. In Example 1, the population
distribution is simply uniform, as reflected in (1). More generally, web companies typically
have rich historical data on their users and should not try to estimate this population’s
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attributes separately in each experiment they run. This model requires grappling with a
number of realistic challenges, including delayed feedback, leveraging prior knowledge, and
distributions shift.

Inferences are enabled through a statistical model. A likelihood function specifies the
distribution of rewards as a function of the chosen arm, the context, and an unknown and
possibly high dimensional parameter vector. Uncertainty about these parameters induces
uncertainty about which policy to select at the end of the experiment. We model this
uncertain parameter as a random variable drawn from some prior distribution. This has two
distinct advantages. First, as discussed further below, it gives practitioners a natural way of
leveraging data from outside the experiment. Second, since the posterior distribution gives
an unabigious way of performing inference, this choice allows us to focus our research on
the principles of sequential decision making and not e.g. the design of confidence intervals.

1.2 Failure of Popular Bandit Algorithms

The two most popular approaches to (stochastic) multi-armed bandit problems are upper
confidence bound (UCB) and Thompson sampling (TS) algorithms (see e.g. Slivkins et al.,
2019; Lattimore and Szepesvári, 2020). In classical multi-armed bandit problems, UCB al-
gorithms can be viewed as an asymptotic approximation to an exact dynamic programming
solution of Gittins (1979). See Chang and Lai (1987); Gutin and Farias (2016); Russo (2021)
for further discussion. UCB selects the arm with the highest UCB on its mean reward. TS
is a randomized strategy under which the probability of sampling an arm is “matched” to
the posterior probability that arm is optimal. It was proposed in a simplified form almost
ninety years ago (Thompson, 1933), but only in the past decade has it become a leading
approach to exploration in industry and academia. Both algorithm have been applied to a
variety of complex and interesting online decision-making problems.

We show that neither TS nor UCB, as usually applied, can address Example 1. In
problems with contexts, TS and UCB aim to select an action that could plausibly maximize
the expected reward earned in the current context. UCB does this by forming a confidence
bound on each arm’s performance under the current context and TS performs probability
matching with respect to the optimal arm in the current context. These strategies do
not gather sufficient information about arms that are suboptimal on the current day but
might be optimal throughout the week. They also could waste measurement effort on arms
that appear almost certain to offer suboptimal average performance throughout the week.
Heuristic versions of TS or UCB that disregard contextual information when performing
inference would risk confounding due to un-modeled day-of-week effects.

A potential adaptation of UCB to Example 1 would form UCBs on the weeklong average
reward in (1). We show this may sample only a single arm on a given day because UCBs
do not diminish until later days are observed. As a result, the data it collects cannot be
used to identify the best arm in (1), regardless of the length of the problem’s time horizon.

1.3 Deconfounded Thompson Sampling

Our proposed algorithm makes two modifications to Thompson sampling as it is usually
defined in contextual bandit problems. The first makes the algorithm suitable for learning
about a target policy with coarse segmentation. In the setting of Example 1, rather than
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perform probability matching with respect to the best action for the current day, it performs
probability matching with respect to the arm with best performance throughout the week as
in (1). More generally, the proposed algorithm performs probability matching with respect
to the action prescribed at the current context by the target policy in the policy class. This
idea limits exploration to important distinctions between the candidate policies. The second
modification makes the algorithm suitable for pure-exploration problems by adapting the
top-two sampling strategy of Russo (2020). This modification explores suboptimal arms
more aggressively by running Thompson sampling until two distinct actions are drawn
and then randomly picking among those “top-two”. We call this algorithm deconfounded
Thompson sampling (DTS). Unlike standard TS, it can control for confounding factors
without segmenting its decisions on the basis of those confounders.

While DTS requires only simple algorithmic modifications to TS, substantial new thought
was required to understand that these modifications were sufficient. Previous work on
TS has emphasized connections to UCB algorithms (Agrawal and Goyal, 2013; Russo and
Van Roy, 2014; Abeille and Lazaric, 2017). But, as described above, the natural form of
Deconfounded UCB fails completely in Example 1. One of this paper’s primary insights is
that the randomized nature of DTS allows it to succeed where UCB does not.

1.4 Theoretical Results

It is difficult to give a single theoretical analysis that illuminates all the issues that are
relevant in practice. Instead, we focus on a single algorithm and prove three distinct results
that stress different capabilities. All results study simple regret (Bubeck et al., 2009), which
measures the shortfall in the expected future per-period reward earned by the decision-
maker’s selected policy relative to the best the best policy in the policy class. We elaborate
on the results below:

1. Robustness to delay and confounding: Our first result removes the assumption that
contexts are drawn i.i.d. For analytical tractability, we assume a Gaussian linear
model governs reward observations and focus on a best-arm learning problem, where
the goal is to identify the best fixed arm to employ in the future. Example 1 serves
as a special case. We study the expected simple regret incurred by DTS, conditioned
on an arbitrary sequence of contexts. We provide a bound that depends only on the
information contained in the contexts and is completely independent of the order in
which they arrive, demonstrating robustness to non-stationary confounders that are
modeled by the algorithm. This result also allows for an arbitrary delay in observing
reward realizations. The analysis in this section seems to offer substantial innovation.
Our proofs use inverse propensity weights implicitly in the analysis, highlighting the
importance of randomization and offering an interesting connection to the causal
inference literature.

2. Adapting optimally to the problem instance: Our next result fixes some arbitrary
parameter vector and studies expected simple regret conditioned on this vector being
the true draw from nature. This can be thought of as a “frequentist” bound, whereas
the previous two were “Bayesian.” This section again imposes the assumption that
contexts are drawn i.i.d. and, for analytical tractability, again assumes a Gaussian
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linear model governs reward observations and focuses on a best-arm learning problem.
Our results in this section are in the style of the classic work by Chernoff (1959) on
the asymptotics of sequential experimental design and its application in best-arm
identification by Russo (2020); Garivier and Kaufmann (2016). A fundamental lower
bound shows how the expected sample size of an adaptive experiment must grow in
order to guarantee some vanishing level of simple regret. The sampling requirements
are milder for problem instances where some arms are far from optimal and can
be effectively discarded with few samples. We prove that DTS meets attains this
asymptotic lower bound. In this sense it optimally adapts its experimentation to the
problem instance.

It may not be difficult to design an algorithm that attains one of the results above. It is
remarkable, however, that these distinct properties are satisfied simultaneously by one sim-
ple heuristic algorithm. Attaining both simultaneously seems to require a delicate balance
between robustness and adaptivity.
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Appendix A.

Here is the link to the full paper:
https://anonymous.4open.science/r/ReALML2022-CB54/ReALML2022 full paper.pdf.
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