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Abstract

Few-shot class-incremental learning (FSCIL) has addressed challenging real-world scenarios
where unseen novel classes continually arrive with few samples. In these scenarios, it is
required to develop a model that recognizes the novel classes without forgetting prior
knowledge. In other words, FSCIL aims to maintain the base performance and improve
the novel performance simultaneously. However, there is little study to investigate the two
performances separately. In this paper, we first decompose the entire model into four types
of parameters and demonstrate that the tendency of the two performances varies greatly
with the updated parameters when the novel classes appear. Based on the analysis, we
propose a simple method for FSCIL, coined as NoNPC, which uses normalized prototype
classifiers without further training for incremental novel classes. It is shown that our
straightforward method has comparable performance with the sophisticated state-of-the-
art algorithms.

Keywords: Few-shot class-incremental learning, parameter decomposition, prototype
classifier

1. Introduction

Deep learning has achieved considerable success under the IID (independent and identically
distribution) and stationary assumption. However, in real-world scenarios, dynamic and
open environments are more natural, discouraging practitioners from developing deep mod-
els in many applications. To address this concern, class-incremental learning (CIL) has
gained much attention (Belouadah and Popescu, 2019; Masana et al., 2020; Zhu et al., 2021;
Shim et al., 2021; Mai et al., 2022), where the unseen novel classes continually appear. CIL
aims to learn novel classes without forgetting the past knowledge, where previously seen
data are not available due to privacy (Mai et al., 2022; Joseph et al., 2022) and memory (Fini
et al., 2020) issues.

Conventional CIL methods have been studied based on a large amount of data for
the novel classes. However, when only a small amount of training data for the novel
classes is available, they are known to suffer from severe performance degradation (Shi
et al., 2021). To address this challenging scenario, few-shot class-incremental learning (FS-
CIL) (Tao et al., 2020; Zhang et al., 2021; Shi et al., 2021; Zhou et al., 2022) has emerged.
FSCIL learns base classes consisting of a huge amount of data (i.e., many-shot), and then
learns novel classes incrementally with very few data (i.e., few-shot). In this regime, FSCIL
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Figure 1: Overview of NoNPC (No Training with Normalized Prototype Classifiers). f
indicates a feature extractor. h0 and hi indicate classifiers for base and novel classes for
session i (i > 0), respectively. Our algorithm does not learn a model during novel sessions.

aims to recognize novel classes from few novel data that arrive sequentially without forget-
ting the knowledge of base classes. Namely, it is required to maintain the base performance
and improve the novel performance simultaneously.

Recent methods for FSCIL have improved the weighted performance, which weighs the
base and novel performances based on the number of base and novel classes. However,
the improved weighted performance does not mean that base and novel performances are
both improved. In this paper, we analyze which components in a model are responsible for
the base and novel performances by parameter decomposition. Based on this analysis, we
propose a simple yet effective method, NoNPC, which uses normalized prototype classifiers
without training when novel classes appear. This simple algorithm achieves comparable
performance to SOTA algorithms.

2. Related Work

Few-shot Class-incremental Learning (FSCIL). FSCIL is a combination of class-
incremental learning (CIL) and few-shot learning (FSL), aiming to incrementally update a
classifier with limited data from novel classes to discriminate all classes seen before. The
incremental learning procedure consists of a base session followed by novel sessions. Recent
FSCIL methods (Tao et al., 2020; Mazumder et al., 2021; Shi et al., 2021; Zhang et al.,
2021; Zhou et al., 2022) can be categorized by which session they focus on, i.e., base or
novel session. The former prepares to learn novel classes in the base session by revising
the standard training process in the base session (Shi et al., 2021; Zhou et al., 2022) or
training an additional network for the incoming novel classes (Zhang et al., 2021). On the
other hand, the latter devise how to fine-tune a model incrementally when they encounter
unseen classes in the novel sessions by imposing regularization on fine-tuning in the novel
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Table 1: Notations of decomposed parameters and models according to the update parts
for the current novel session i (i > 0).

Notation Description Model Description

f Feature extractor M1 No update
h0 Classifier for base classes M2 Update hi

h1:i−1 Classifiers for novel classes before session i M3 Update h1:i−1 and hi

(i.e., {h1, · · · , hi−1}) M4 Update h0, h1:i−1 and hi

hi Classifier for novel classes in session i M5 Update f, h0, h1:i−1 and hi

session (Mazumder et al., 2021; Hersche et al., 2022). Previous studies focus on improving
the weighted performance, while we analyze the base and novel performances separately
and propose a simple yet effective method without additional costs.

Parameter Decomposition. Parameter decomposition is widely used technique for in-
depth analysis or improved algorithms in many fields such as long-tailed distribution (Kang
et al., 2020; Yu et al., 2020), federated learning (Arivazhagan et al., 2019; Collins et al., 2021;
Oh et al., 2022), meta-learning (Lee and Choi, 2018; Raghu et al., 2020; Oh et al., 2021), and
continual learning (Shi et al., 2021; Davari et al., 2022). Most of the prior works decompose
the entire model into two parts, feature extractors and classifiers. Feature extractors can
be transferred well, while classifiers are easily distorted under non-IID environments, mean-
ing that they are susceptible to bias (Kang et al., 2020; Oh et al., 2022). We decompose
entire parameters into four parts under FSCIL environments: extractors and three types of
classifiers, described in Table 1, to investigate the base and novel performances for FSCIL.

3. Problem Setup

In this section, we formally summarize the problem setup. The procedure of FSCIL includes
continuous sessions, where each session consists of training and evaluation. For the first
session that we call base session (defined as session 0), a model h0 ◦ f is trained using Dbase

consisting of base classes, where f is a feature extractor and h0 is a classifier for the base
classes. Note that during the base session, we can use abundant data from base classes. Let
x be an input and d be the output dimension of f , then f(x) ∈ Rd and h0 ∈ RK×d where
K is the number of base classes. We define h0j as the j-th row vector of h0.

For the subsequent session i (i ∈ {1, · · · , S}) that we call novel sessions, an extended
model (concat [h0, h1, · · · , hi])◦f is trained using Dnovel(i) consisting of novel classes, where
hi is a classifier for novel classes in session i. Unlike Dbase, Dnovel(i) consists of few samples,
in general nk samples, where n is the number of incremental novel classes and k is the
number of samples per class. k is 5 in our experiments. The incrementally extended model
(concat[h, h1, · · · , hi]) ◦ f is evaluated for both base and incremental novel classes until
session i. After S sessions, the final classifier (concat[h, h1, · · · , hS ]) is in R(K+nS)×d.

For evaluation, we use three metrics: base, novel, and weighted performances. The base
and novel performance indicate accuracy on base and novel classes, respectively. These
performances are weighted based on the number of classes for calculating the weighted
performance. All results are averaged by five runs. The detailed implementation is described
in Appendix A.
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Figure 2: Base, novel, and weighted performances according to the update parts on CI-
FAR100. Models are described in Table 1.
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Figure 3: Logit distributions of base samples according to the session on CIFAR100 when
training only hi. Gray and blue backgrounds indicate the base and novel classes, respec-
tively. Each line is the average of logits of samples belonging to class 0, 1, and 2.

4. Analysis: Parameter Decomposition during Novel Sessions

To investigate which parameters are relevant to each performance, we decompose the entire
model into four update parts described in Section 3, during novel sessions: f , h0, h1:i−1,
and hi. Figure 2 describes the base, novel, and weighted performances according to the
decomposed update parts on CIFAR100. Following Tao et al. (2020), for the cases where
an encoder f is not updated, the running statistics of batch normalization layers are also
fixed based on Dbase. This result provides interesting observations as follows1:

• No training during novel sessions (M1 in Figure 2) undoubtedly is the best on the base
performance, whereas the worst on the novel performance. The weighted performance,
which is the main evaluation measurement for FSCIL, can be misleading by the base
performance.

• Training including an extractor f (M5 in Figure 2) significantly deteriorates the base
performance, which is in line with Jie et al. (2022). Moreover, this training scheme
has a similar novel performance to the models with better base performance (M3 and
M4 in Figure 2). Therefore, simply updating f is not an appealing strategy.

• Training only the current classifier hi (M2 in Figure 2) is the best strategy for im-
proving the novel performance; however, this training scheme degrades the base per-
formance even with the fixed extractor f .

1. The same results are observed on CUB200 and miniImageNet, reported in Appendix B.
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Figure 4: Weighted performance comparison. CEC (Zhang et al., 2021) and FacT (Zhou
et al., 2022) are reproduced and other algorithms are from Shi et al. (2021). The base and
novel performances comparisons are reported in Appendix D.

We further investigate why the third observation occurs. Under M2, after the base
session, every logit on base classes of samples x belonging to the base classes are fixed to
h0f(x) because f and h0 are frozen. However, the predicted probability pj corresponding
to the base class j strictly decreases as novel classes increase as follows:

pj =
exp(zj)∑K
k=1 exp(zk)

→ exp(zj)∑K+nS
k=1 exp(zk)

(1)

In this situation, we describe the logit distributions of base samples, depicted in Figure 3.
Training only hi leads the logit values of incremental novel classes to exceed the top logit
value of base classes, regardless of which class comes in. The logit values for the novel
classes are large overall by making the norm of hik (i > 0 and k ∈ {1, · · · , n}) larger than
the norms of row vectors of h0. The logit distribution of base samples on other datasets are
provided in Appendix C.

5. NoNPC: No Training with Normalized Prototype Classifiers

We propose a simple yet powerful method called NoNPC, which means No training with
Normalized Prototype Classifiers, inspired by observations in Section 4: combining (1) M1
to maintain the base performance and (2) M2 to improve the novel performance. Note that
M1 does not work on the novel classes at all, while M2 deteriorates the base performance.
To solve this conundrum, we use non-parametric prototype classifiers without training. The
prototype cij for the novel class j in the session i (i > 0) are defined as:

cij =
1

k

∑
x belongs to class j

f(x) (2)

However, cij is unstable because k is significantly small (e.g., 1 or 5). To mitigate this

issue, we transform prototype cij through L2-normalization, following Wang et al. (2019),
in which it is shown that feature transformation improves performance. Finally, we use the

normalized prototype as a classifier, i.e., hij =
cij

∥cij∥2
. Furthermore, to match the character-
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Figure 5: Base, novel, and weighted performances according to the degree of label smoothing
on CUB200. The most light and dark blue colors indicate smoothness of 0.0 and 0.9,
respectively. The value of 0.0 means label smoothing is not used and the value increases by
0.1 from 0.0 to 0.9. The red line indicates the performance of FACT (Zhou et al., 2022).

istics between h0 and hi (i > 0), we replace the base classifier h0 optimized via stochastic
gradient descent with a normalized prototype classifier in the same way after the base ses-
sion. The ablation studies related to prototype normalization are described in Appendix E.

Figure 4 describes the weighted performance comparison on CIFAR100, CUB200, and
miniImageNet. It is observed that our simple method has the best performance on mini-
ImageNet and comparable performance to recent algorithms on CIFAR100. However, on
CUB dataset, our algorithm does not achieve the desired performance.

5.1 Label Smoothing on Fine-grained Dataset

CUB is one of the fine-grained datasets, which implies that the distance in the representation
spaces between different classes can be closer. However, for both base and novel perfor-
mances, it seems crucial that representations within the same class are clustered tightly
and representations between different classes maintain the distance, before the novel classes
increase. Therefore, we believe that label smoothing is appropriate for fine-grained datasets
during the base session. This is because label smoothing helps tight clustering, making
equidistance between different classes (Müller et al., 2019).

Figure 5 describes performances according to the degree of label smoothing on CUB200.
Surprisingly, both base and novel performances consistently increase until the smoothness
reaches 0.9. In addition, this outperforms FACT (Zhou et al., 2022). The results on other
datasets are reported in Appendix F.

6. Conclusion

In this paper, we decomposed the entire network into four partial parameters to investigate
the relationship between the update parts and the two performances. Based on observa-
tions, we proposed a simple yet powerful method called NoNPC, which does not learn a
model for the novel sessions and only makes inferences with normalized prototype classifiers.
This straightforward method achieved comparable performance with the state-of-the-art al-
gorithms. Furthermore, we showed that the label smoothing technique on the fine-grained
dataset boosts the performance. We hope that our NoNPC will be used as a baseline in
future studies on FSCIL.
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Appendix A. Implementation Details

A.1 Dataset Details

Following the benchmark setting for FSCIL (Tao et al., 2020), we evaluate the base, novel,
and weighted performances on CIFAR100 (Krizhevsky et al., 2009), CUB200-2011 (Wah
et al., 2011), and miniImageNet (Russakovsky et al., 2015). The number of novel classes is
the product of the number of incremental novel classes and novel sessions.

Dataset # of Base classes # of incremental novel classes # of novel sessions

CIFAR100 60 5 8
CUB200 100 10 10

miniImageNet 60 5 8

Table 2: Class incremental setup.

A.2 Training Details

Our algorithm requires the base training only.

Configuration

Models ResNet20 (for CIFAR100) and ResNet18 (for CUB200 and miniImageNet)
Epochs 200
Optimizer SGD with momentum 0.9 (nesterov=True)
Batch size 256
Learning rate 0.1 with milestone scheduler at 120 and 160 epochs (gamma: 0.1)
Weight decay 5e-4 (for CIFAR100 and miniImageNet) and 5e-5 (for CUB200)

Table 3: Training setup.

Appendix B. Performance According to Decomposition

Figure 6 and 7 describe the base, novel, and weighted performances according to the de-
composition on CUB200 and miniImageNet, respectively. Models are described in Table 1.
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Figure 6: Performances according to the update parts on CUB200.
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Figure 7: Performances according to the update parts on miniImageNet.

Appendix C. Logit Distributions

Figure 8 and 9 describe the logit distributions of base samples when training only the current
classifier hi on CUB200 and miniImageNet, respectively.
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Figure 8: Logit distributions of base samples according to the session on CUB200 when
training only hi. Gray and blue backgrounds indicate base and novel classes, respectively.
Each line is the average of logits of samples belonging to class 0, 1, and 2.
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Figure 9: Logit distributions of base samples according to the session on miniImageNet when
training only hi. Gray and blue backgrounds indicate base and novel classes, respectively.
Each line is the average of logits of samples belonging to class 0, 1, and 2.
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Appendix D. Base, Novel, and Weighted Performances Comparison

Table 10, 11, and 12 describe the base, novel, and weighted performances on CIFAR100,
CUB200, and miniImageNet, respectively.
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Figure 10: Performances comparison on CIFAR100. The blue, brown, and red lines indicate
NoNPC (ours), CEC (Zhang et al., 2021), FACT (Zhou et al., 2022).
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Figure 11: Performances comparison on CUB200. The blue, brown, and red lines indicate
NoNPC (ours), CEC (Zhang et al., 2021), FACT (Zhou et al., 2022).
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Figure 12: Performances comparison on miniImageNet. The blue, brown, and red lines
indicate NoNPC (ours), CEC (Zhang et al., 2021), FACT (Zhou et al., 2022).
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Appendix E. Prototype Normalization

In this section, for ablation stuides, we compare below models:

Table 4: Models for ablation studies related to prototype normalization.

Model Base classifier Novel classifier Model Base classifier Novel classifier

M1 - - M3 - NP
M2 - P M4 (NoNPC) NP NP

where ‘-’ of a base classifier and a novel classifier means the optimized classifier via stochastic
gradient descent and a random initialized classifier, respectively. ‘P’ and ‘NP’ indicate a
prototype classifier and a normalized prototype classifier. Note that M1 in Table 4 is the
same with M1 in Table 1, while other models have nothing to do with models in Table 1.
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Figure 13: Ablation study according to prototype normalization on CIFAR100.
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Figure 14: Ablation study according to prototype normalization on CUB200.
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Figure 15: Ablation study according to prototype normalization on miniImageNet.
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Appendix F. Label Smoothing during the Base Session

Figure 16 and 17 describe the base, novel, and weighted performances according to the
degree of label smoothing on CIFAR100 and miniImageNet, respectively. The tendency for
the novel classes is opposite to the tendency on CUB200. For coarse-grained datasets, small
smoothness can increase the novel performance rather than large smoothness.
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Figure 16: Base, novel, and weighted performances according to the degree of label smooth-
ing on CIFAR100. The most light and dark blue colors indicate smoothness of 0.0 and 0.9,
respectively. The value of 0.0 means label smoothing is not used. The red line indicates the
performance of FACT (Zhou et al., 2022).
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Figure 17: Base, novel, and weighted performances according to the degree of label smooth-
ing on miniImageNet. The most light and dark blue colors indicate smoothness of 0.0 and
0.9, respectively. The value of 0.0 means label smoothing is not used. The red line indicates
the performance of FACT (Zhou et al., 2022).
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