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Abstract
A default assumption in reinforcement learning and optimal control is that experience arrives
at discrete time points on a fixed clock cycle. Many applications, however, involve continuous
systems where the time discretization is not fixed but instead can be managed by a learning
algorithm. By analyzing Monte-Carlo value estimation for LQR systems we uncover a
fundamental trade-off between approximation and statistical error in value estimation.
Importantly, these two errors behave differently with respect to time discretization, which
implies that there is an optimal choice for the temporal resolution that depends on the
data budget. These findings show how adapting the temporal resolution can significantly
improve value estimation quality in LQR systems given finite experience. Empirically, we
demonstrate the trade-off in numerical experiments.
Keywords: Temporal Discretization, Langevin System, LQR, Policy Evaluation, Continu-
ous Time, Experimental Design

1. Introduction

Many real-world applications of control and reinforcement learning involve systems with
continuous state spaces and that evolve continuously in time. For instance, a physical system
such as a robot naturally involves continuous control variables. On the other hand, sensor
measurements typically arrive at a preset sampling frequency. A common belief is that a
finer time discretization always leads to better estimation of the system properties such as
the control cost. However, we show that this is only true with an unlimited data budget.
With finite data, a higher temporal resolution means that more data is collected within
fewer episodes. This inevitably leads to the question on how to optimally choose the time
discretization for the task at hand.

In practice, there are always limitations on how much data can be collected, stored and
processed. The practitioner hence faces a fundamental trade-off: a high temporal resolution
leads to a better approximation of the continuous-time system from discrete measurements,
whereas collecting data along a larger number of trajectories leads to lower variance in the

∗. equal contribution

1



estimation with respect to stochasticity in the system. This is indeed true for any system with
stochastic dynamics, even if the learner has access to exact (noiseless) measurements of the
system’s state. In this paper, we show that data efficiency can be improved by leveraging a
precise understanding of the trade-off between approximation error and statistical estimation
error in long term value estimation — two factors that react differently to the level of
temporal discretization.

Contributions We consider a fully continuous and stochastic scenario that permits a tight
analysis of the approximation and estimation errors incurred in value estimation. In particular,
we consider the canonical case of Monte Carlo value estimation in a Langevin dynamical system
(linear dynamics perturbed by a Wiener process) with quadratic instantaneous costs. Although
the setup is specialized, it allows the fundamental approximation-estimation trade-off to be
clearly identified and exactly characterized. In this scenario, we are able to quantify the effects
of temporal discretization with sufficient precision to align with experimental verification.

1.1 Related Work

There is a sizable literature on reinforcement learning in continuous-time systems (e.g. Doya,
2000; Lee and Sutton, 2021; Lewis et al., 2012; Bahl et al., 2020; Kim et al., 2021; Yildiz
et al., 2021). But these previous works have largely focused on deterministic dynamics,
and do not investigate trade-offs in temporal discretization that allow for its optimization.
A smaller body of work has considered learning continuous-time control under stochastic
(Baird, 1994; Bradtke and Duff, 1994; Munos and Bourgine, 1997; Munos, 2006), or bounded
(Lutter et al., 2021) perturbations, but with a focus on making standard learning methods
more robust to small time scales (Tallec et al., 2019), again without explicitly managing the
temporal discretization level. There have also been works that characterize the effects of
temporal truncation in infinite horizon problems (Jiang et al., 2016; Droge and Egerstedt,
2011). Despite these prevailing topics in the literature, we find that managing temporal
discretization offers substantial improvements not captured by these previous studies.

The LQR setting is a standard framework in control theory and it gives rise to a
fundamental optimal control problem (Lindquist, 1990), which has proven itself to be a
challenging scenario for Reinforcement Learning algorithms (Tu and Recht, 2019; Krauth
et al., 2019). The stochastic LQR considers linear systems driven by additive Gaussian
noise with a quadratic form for the cost, which is sought to be minimised by means of a
feedback controller. Although it is a well-understood scenario and a closed form of the
optimal controller is known thanks to the separation principle (Georgiou and Lindquist,
2013), only recently the statistical properties of the long-term cost have been investigated
(Bijl et al., 2016). The work in our paper also closely related to the now sizable literature
on reinforcement learning in LQR systems (Bradtke, 1992; Krauth et al., 2019; Tu and
Recht, 2018; Dean et al., 2020; Tu and Recht, 2019; Dean et al., 2018; Fazel et al., 2018;
Gu et al., 2016). These existing works uniformly focused on the discrete time setting,
although the benefits of managing spatial rather than temporal discretization has been
considered (Sinclair et al., 2019; Cao and Krishnamurthy, 2020). Wang et al. (2020) studied
the continuous-time LQR setting but it focused on the exploration problem rather than the
temporal discretization.
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There is compelling empirical evidence that managing temporal resolution, typically via
action persistence (Lakshminarayanan et al., 2017; Sharma et al., 2017; Huang et al., 2019;
Huang and Zhu, 2020; Dabney et al., 2021; Park et al., 2021), can greatly improve learning
performance. Even grid worlds (Sutton and Barto, 2018) can be seen as leveraging a form of
action persistence, where a coarse spatial discretization is imposed on an otherwise continuous
two dimensional navigation problem to improve learning efficiency. These empirical findings
have recently been supported by an initial theoretical analysis (Metelli et al., 2020) that shows
temporal discretization plays a role in determining the effectiveness of fitted Q-iteration.
The analysis by Metelli et al. (2020) does not consider fully continuous systems, but rather
remains anchored in a base level discretization and only provides worst case upper bounds
that do not necessarily capture the detailed tradeoffs one faces in practice.

The task of choosing the temporal resolution can also be understood as an experimental
design problem (Chaloner and Verdinelli, 1995). By choosing the time-discretization, the
experimenter determines how to allocate measurements for a given data budget. More
specifically, when considering the mean-square error of the Monte-Carlo estimator, the design
objective becomes non-linear (Ford et al., 1989). What is peculiar to our objective is that,
for any fixed design, there is a constant approximation error (bias) that persists even when
the number of data points becomes infinite. At the same time, the bias can also be managed
by scarifying estimation error (variance). Optimal designs that consider the bias-variance
trade-off jointly have been studied previously (e.g. Bardow, 2008; Mutny et al., 2020; Mutnỳ
and Krause, 2022). For the use of experimental design in reinforcement learning, see, e.g.
(Lattimore et al., 2020).

2. One-Dimensional Langevin Systems

We formally study one-dimensional systems that evolves following the Langevin equation:

dx(t) = ax(t)dt+ σdw(t). (1)

Here x(t) ∈ R is the state variable, a ∈ R is the drift coefficient and w(t) is a Wiener process
with scale parameter σ > 0. This is the prototypical case for evaluating a fixed deterministic
policy in the linear quadratic regulator (LQR) framework. We may assume that a ≤ 0, i.e.
the system is stable (or marginally stable).

Let xi(t) be the sample path (i.e. a realisation of the stochastic dynamics) from a fixed
starting state x(0) = x0 for episodes i = 1, . . . ,M and t ∈ [0, T ]. We define the finite-time
realisation of the cost in episode i as

Ji =

∫ T

0
r2i (t)dt =

∫ T

0
qx2i (t)dt, (2)

where ri(t) = qxi(t)
2 is the quadratic cost function for a fixed q > 0. Importantly, Ji is a

random variable with respect to the stochasticity of the system evolution. The expected cost
V is the expectation V = E[J1].

Assume that for a total data budget B, we collect samples along M trajectories D =
{xi(t0), xi(t1), ..., xi(tN−1)}Mi=1 at discrete time steps tk = kh, where the step-size is h = T/N
and B = NM . Naturally, we can use a Monte-Carlo estimator (Riemann sum) to estimate
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the trajectory cost Ji from discrete-time observations:

Ĵi(h) =

N−1∑
k=0

hqx2i (kh). (3)

Given data from M episodes, we estimate the expected cost using the empirical average:

V̂M (h) =
1

M

M∑
i=1

Ĵi(h). (4)

As our main objective, we are interested in controlling the expected mean-squared error:

MSE(h,B, T, a, σ, q) = E[(V̂M (h)− V )2] (5)

The mean-squared error is a function of the total data budget B and the step size h, and
of the system variables T , a and σ. Since the square of the cost parameter q2 factors out
of the expression, we set q = 1 and remove the dependence on q in what follows, in favour
of simpler notation. Note that the number of episodes is not a free variable and can be
expressed as M = Bh

T .

2.1 Main Results

Perhaps surprisingly, the mean-squared error of the Riemann estimator for the Langevin
system (1) can be computed in closed form. We do so by obtaining closed-form expressions
for the second and forth moments of the random trajectories xi(t). This result is summarized
in the next theorem.

Theorem 1 (Mean-squared error) The mean-squared error for the expected cost V under
Monte-Carlo estimator, MSE(h,B, T, a, σ) = E[(V̂M (h)− V )2], is

MSE(h,B, T, a, σ) = E1(h, T, a) +
E2(h, T, a)

B
,

where

E1(h, T, a) =
σ4
(
−2ah+ e2ah − 1

)2 (
e2aT − 1

)2
16a4 (e2ah − 1)

2 ,

E2(h, T, a) =
σ4T

[
h
(
e2aT − 1

) (
4e2ah + e2aT + 1

)
−
(
e2ah − 1

) (
e2ah + 4e2aT + 1

)
T
]

2a2 (e2ah − 1)
2 .

The proof is provided in Appendix A. While daunting at first sight, the result completely
characterizes the error surface as a function of the step size h and the budget B. For instance,
given any fixed B, we can optimize h to minimize the mean-squared error exactly by searching
over possible step-sizes hm = T/m for m = 1, . . . , B (assuming knowledge of the system
parameters a, σ and T ).

In the case of marginal stability, a cleaner form of the MSE emerges from the analysis,
which is easier to interpret. Therefore we consider the case of a = 0 separately. Taking the
limit a → 0 of the previous expression gives the following result:
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Corollary 2 (MSE for marginally stable system) Assume a marginally stable system,
a = 0. Then the mean-squared error of the Monte-Carlo estimator is

MSE(h,B, T, σ) =
σ4T 2h2

4
+

σ4T 2

3B
·
(
T 3

h
− 2T 2 + 2hT − h2

)
.

The error can be understood as an approximation error (controlled only by h2), a variance
term that decreases with the number of episodes as 1

M = T
Bh , and lower order terms. For a

fixed data budget B, h has to be chosen to balance these two terms. Specifically, we get the
following:

h∗(B, T ) := argmin
h>0

MSE(h,B, T, σ) = T

(
2

3B

)1/3

+ o(B−1/3). (6)

From this, we can compute the optimal number of episodes M∗ ≈ Bh
T =

(
2
3

)1/3
B2/3. We

remark that under the assumption B ≫ 1, we also obtain that M∗ ≫ 1. This is in agreement
with the implicit requirement that h is big enough to consider at least one whole trajectory,
i.e. h > T/B.
Consequently, the mean-squared error for the optimal choice of h is

MSE(h∗, B, T, σ) = 3 (3/2)1/3 σ4T 4B−2/3 +O(B−1).

In other words, the optimal error rate as a function of the data budget is O(B−2/3).
We can further obtain a similar form for h∗ for the general system, when a ≤ 0.

Corollary 3 (Optimal step size) For B ≫ 1, the optimal step-size is

h∗(B, T, a, σ) =

(
−
T
(
4aT − e4aT + e2aT (8aT − 4) + 5

)
2a2(e2aT − 1)2

)1/3

B−1/3 + o(B−1/3).

Moreover, MSE(h∗, B) = O(B−2/3).

Proof Note that the leading terms in h for the error terms are

E1(h, T, a) =
σ4(e2aT − 1)2

8a2
h2 +O(h3),

E2(h, T, a)

B
= −

σ4T
(
4aT − e4aT + e2aT (8aT − 4) + 5

)
8a4B

· h−1 +
σ4T (1− e2aT + 4aTe2aT )

4a3B

+O
(
h

B

)
.

Solving for the optimal h∗ yields the result.
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3. Experiments

We run numerical experiments on the Langevin dynamical systems to demonstrate the
trade-off analyzed in the previous section: results are shown in Fig. 1. We varied the
dynamics parameter a in the list [−16,−8,−4,−2,−1,−0.5,−0.25, 0], corresponding to
eight different systems. Note that a = 0 is a special case, which recovers a scaled Wiener
Process (the marginally stable system). The other hyperparameters used in the figure are:
T = 8, σ = 1, q = 1. To approximate the outer expectation in the objective Eq.(5), we
ran the systems for 50 trials and the expected cost V was computed in closed form (in
Appendix A). We observed the same trade-off in all systems, shown on the left figure. The
higher |a|, the lower the variability of the cost for one full trajectory. Therefore the trade-off
favours a smaller h since the estimation error is easier to handle. On the right, we showed
how the error changes as we change the data budget B = {212, 213, 214, 215, 216}, and the
improvement that can be obtained by enlarging it. As illustrated in the plot, as we increase
the data budget, the error reduces but the trade-off remains.
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Figure 1: Mean-Squared Error Trade-Off in Langevin dynamical systems

4. Conclusion

We provided a precise characterization of the approximation and estimation errors incurred
by Monte-Carlo value estimation in a Langevin dynamical system with quadratic cost. The
analysis reveals a fundamental bias-variance trade-off, modulated by the level of temporal
discretization h. Simulation experiments confirm that the analysis accurately captures the
tradeoff in a precise, quantitative manner. These findings show that managing the temporal
discretization level h can greatly improve the quality of value estimation under a fixed data
budget B. There are several directions for future work, including considering other value
estimation techniques (temporal differencing, system identification), policy optimization, and
more general systems, such as non-linear dynamics or non-Gaussian perturbations.
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Appendix A. Proof of Theorem 1

Proof We first note that

E[V̂M (h)] =
h

M

M∑
i=1

N−1∑
k=0

E[x2i (kh)] = h

N−1∑
k=0

E[x2(kh)]

where we denote x(t) = x1(t) for simplicity. Next we expand the mean-squared error

E[(V̂M (h)− V )2] = E[V̂ 2
M (h)]− 2V E[V̂M (h)] + V 2

=
h2

M2
E

( M∑
i=1

N−1∑
k=0

x2i (kh)

)2
− 2V E[V̂M (h)] + V 2

=
h2

M2

M∑
i,j=1

N−1∑
k,l=0

E[x2i (kh)x2j (lh)]− 2V E[V̂M (h)] + V 2

=
h2

M

N−1∑
k,l=0

E[x2(kh)x2(lh)] +
M2 −M

M2
E[V̂M (h)]2 − 2V E[V̂M (h)] + V 2

For the last equality, note that E[V̂M (h)]2 = h2
∑N−1

k,l=0 E[x2(kh)]E[x2(lh)]. It remains to
compute the expressions. For the second moment of the state variable, we have

E[x2(t)] =
σ2

2a

(
e2at − 1

)
(7)

Assuming that s ≤ t, we get the following for the forth moments:

E[x2(s)x2(t)] =
σ4

4a2
(e2as − 1)e2at

{
(e−2as − e−2at) + 3(1− e−2as)

}
(8)

Note that by symmetry, a similar expression follows for s ≥ t.
Using these expressions, for the expected cost we get

V =

∫ T

0
E[x2(t)]dt =

σ2

2a

∫ T

0

(
e2at − 1

)
dt =

σ2

2a

(
e2aT − 1

2a
− T

)
A similar expression was previously obtained in (Bijl et al., 2016, Theorem 3). Next, the
expected estimated cost is

E[V̂M (h)] = h

N−1∑
k=0

E[x2(kh)] =
σ2h

2a

N−1∑
k=0

(
e2akh − 1

)
=

σ2h

2a

[
1− e2aT

1− e2ah
−N

]
Lastly, it remains to compute the sum

h2

M

N−1∑
k,l=0

E[x2(kh)x2(lh)] =
2h2

M

N−1∑
k<l

E[x2(kh)x2(lh)] +
h2

M

N−1∑
k=0

E[x4(kh)]

This calculation can be done on paper, but the result is more easily obtained using symbolic
computation. We provide the Wolfram Language commands in Appendix A.1 (including
calculations of the corollaries). It remains to collect all terms to get the final result.
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A.1 Wolfram Language Commands

Ex2[k_, h_, a_, o_] := o^2 / (2 a) (E^(2 a k h) - 1)

Exs2xt2[s_, t_, a_, o_] := o^4 / (4 a^2) (E^(2 a s) - 1) E^(2 a t) (E^(-2 a
s) - E^(-2 a t) + 3 (1 - E^(-2 a s)))↪→

EJ[a_, T_, o_] := o^2 / (2 a) (1 / (2a) (E^(2 a T) - 1) - T)

EVM[N_ ,h_, a_, o_] := h Sum[Ex2[k, h, a, o], {k,0, N-1}]

EVM2[M_, N_, h_, a_, o_] := (M^2 - M) / M^2 EVM[N, h, a, o]^2 + h^2 / M
Sum[Exs2xt2[k h, k h, a, o], {k, 0, N-1}] + 2 h^2 / M Sum[Exs2xt2[j h,
k h, a, o], {k, 1, N-1}, {j, 0, k-1}]

↪→

↪→

Final[h_, B_, T_, a_, o_] := Simplify[EVM2[h B / T, T/h, h, a, o] + EJ[a, T,
o]^2 - 2 EJ[a, T, o] EVM[T/h, h, a, o]]↪→

FinalSimple[h_, B_, T_, a_, o_] := FullSimplify[Final[h, B, T, a, o],{ a < 0,
h > 0, T > 0, B > 0, o > 0}]↪→

Limit[Final[h, B, T, a, o], a->0]

FinalSeries[h_, B_, T_, a_, o_] := Simplify[Series[Final[h, B, T, a, o], {h,
0, 2}], { a <0, h > 0, T>0, B>0, o>0}]↪→
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