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Abstract

We introduce a new setting, optimize-and-estimate structured bandits. Here, a policy must
select a batch of arms, each characterized by its own context, that would allow it to both
maximize reward and maintain an accurate (ideally unbiased) population estimate of the
reward. This setting is inherent to many public and private sector applications and often
requires handling delayed feedback, small data, and distribution shifts. We demonstrate its
importance on real data from the United States Internal Revenue Service (IRS). The IRS
performs yearly audits of the tax base. Two of its most important objectives are to identify
suspected misreporting and to estimate the “tax gap” — the global difference between the
amount paid and true amount owed. Based on a unique collaboration with the IRS, we
cast these two processes as a unified optimize-and-estimate structured bandit. We provide
a novel mechanism for unbiased population estimation that achieves rewards comparable
to baseline approaches. This approach has the potential to improve audit efficacy, while
maintaining policy-relevant estimates of the tax gap. This has important social consequences
given that the current tax gap is estimated at nearly half a trillion dollars. We suggest that
this problem setting is fertile ground for further research and we highlight its interesting
challenges. The results of this and related research are currently being incorporated into
the continual improvement of the IRS audit selection methods.1
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1. Introduction

Sequential decision-making algorithms, like bandit algorithms and active learning, have been
used across a number of domains: from ad targeting to clinical trial optimization (Bouneffouf
and Rish, 2019). In the public sector, these methods are not yet widely adopted, but could
improve the efficiency and quality of government services if deployed with care (Henderson
et al., 2021). Many administrative enforcement agencies in the United States (U.S.) face
the challenge of allocating scarce resources for auditing regulatory non-compliance. But
these agencies must also balance additional constraints and objectives simultaneously. In
particular, they must maintain an accurate estimate of population non-compliance to inform
policy-making. In this paper, we focus on the potential of unifying audit processes of the
Internal Revenue Service (IRS) with these multiple objectives under a bandit-like framework.
We call our setting optimize-and-estimate structured bandits. This framework is useful in
practical settings, challenging, and has the potential to bring together methods from survey
sampling, bandits, and active learning. It poses an interesting and novel challenge for the
machine learning community and can benefit many public and private sector applications.
It is critical to many U.S. federal agencies that are bound by law to balance enforcement
priorities with population estimates of improper payments (Henderson et al., 2021; Office of
Management and Budget, 2018, 2021).

2. Setting

The IRS selects taxpayers to audit every year to detect under-reported tax liability. Improving
audit selection could yield 10:1 returns in revenue and help fund socially beneficial pro-
grams (Sarin and Summers, 2019). But the agency must also provide an accurate assessment
of the tax gap (the projected amount of tax under-reporting if all taxpayers were audited).
Based on a unique multiyear collaboration with the IRS, we were provided with full micro
data access to masked audit data to research how machine learning could improve audit
selection. We benchmark several sampling approaches and examine the trade-offs between
them. We identify several interesting results and challenges using historical taxpayer audit
data in collaboration with the IRS. The results of this and related research are currently being
incorporated into the continual improvement of the IRS audit selection methods. Related
work and more background on the IRS and the data we used are in Appendices A and B.

Notation. We formulate our models in a modified version of the structured bandit
framework (Mersereau et al., 2009). At timestep t, there is a set At of Nt arms to choose
from and a budget of Kt arms that can be chosen. After Kt arms are chosen, their rewards
are revealed. The goal is to maximize the average reward of the chosen batch of arms at a
given timestep. However, the agent has an additional requirement that it be able to yield
an accurate (ideally unbiased) estimate of the average reward across all arms – even those
that have not been chosen (the population reward). As in the structured bandit setting, we
assume that the reward can be modeled by a function rat = fθ∗(X

a
t ) where Xa

t are some set
of features associated with arm a at timestep t, and θ∗ are the parameters of the true reward
function.

In our IRS setting each arm (at) represents a taxpayer which the model could select for
a given year (t). The associated features (Xa

t ) are the 500 covariates in our data for the
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tax return. The reward (rat ) is the adjustment recorded after the audit. The population
average reward that the agent seeks to accurately model is the average adjustment (summing
together would instead provide the tax gap).

3. Methods

We focus on three methods: (1) ϵ-greedy; (2) optimism-based approaches; (3) ABS sampling.
Since (1) and (2) are standard bandit algorithms, we relegate a discussion of those approaches
to Appendix C. For all methods we use a random forest regressor as the underlying model
due to non-linearity of the data and a small data regime. See full version for more discussion
on this point. We also compare an LDA baseline, which predicts whether the true reward is
greater than $200 (our no-change cutoff). Arms are selected based on increasing likelihood
that they are part of the $200+ reward class. This is included both as context to our broad
modeling decisions, and as an imperfect stylized proxy for one component of the current
risk-based selection approach used by the IRS.

Algorithm 1 ABS (Logistic)

Input: α, H, ζ, K, (X0, r0)
Train model fθ̂ on initial data (X0, r0).
for t = 1, . . . , T do

Receive observations Xt

Predict rewards r̂a = fθ̂(xa).
Sample top ζ predictions.
∀a ρ̂a ← (1 + exp(−α(r̂a − κ))−1

Construct strata S1, . . . , SH by solving (1).
Form distribution {πh} over strata via
πh = λh∑

h′ λh′
.

repeat
h ∼ (π1, . . . , πH)
Sample arm uniformly at random from Sh.

until K − ζ samples drawn
Compute µ̂HT once true rewards are collected.
Retrain model f̂ on (∪tiXi,∪tiri).

end for

ABS Sampling. Adaptive Bin
Sampling guarantees statistically un-
biased population estimates, while en-
abling an explicit trade-off between re-
ward and the variance of the estimate.
Pseudocode is given in Algorithm 1.
Fix timestep t and let K be our bud-
get. Let r̂a = fθ̂(X

a
t ) be the predicted

risk for return Xa
t . First we sample

the top ζ returns. To make the remain-
ing K − ζ selections, we parameterize
the predictions with a logistic function,
ρ̂a = 1

1+exp(−α(r̂a−κ)) or an exponential
function ρ̂a = exp(αr̂a). κ is the value
of the K-th largest value amongst re-
ward predictions {r̂at }. As α decreases,
{ρ̂at } approaches a uniform distribution
which results in lower variance for µ̂(t)
but lower reward. As α increases, the
variance of µ̂(t) increases but so too does the reward. Figure 2 provides a visualization.

The distribution of transformed predictions {ρ̂a} is then stratified into H non-intersecting
strata S1, . . . , SH . We choose strata in order to minimize intra-cluster variance, such that
there are at least K − ζ points per bin:

min
S1,...,SH

∑
h

∑
ρ̂∈Sh

∥ρ̂− λh∥2,

s.t. |Sh| ≥ K − ζ,

(1)

where λh = |Sh|−1
∑

ρ̂∈Sh
ρ̂ is the average value of the points in bin b. We place a distribution

(πh) over the bins by averaging the risk in each bin: πh = λh∑
h′ λh′

. To make our selection,
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Best Reward Settings
Policy R µPE σPE µNR

Unbiased Methods

ABS-1 $41.5M∗ 0.4 ✓ 31.0 37.6%
ϵ-only $41.3M∗ 4.3✓ 37.4 38.3%
ABS-2 $40.5M∗ 0.6✓ 24.5 38.3%

Random $12.7M 1.5✓ 14.7 53.1%

Biased Methods

Greedy $43.6M∗ 16.4 ✗ 8.8 36.5%
UCB-1 $42.4M∗ 15.3 ✗ 9.4 38.6%

ϵ-Greedy $41.3M∗ 6.1 ✗ 7.5 38.3%
UCB-2 $40.7M∗ 15.6 ✗ 10.21 40.7%

Table 1: Best settings with overlapping CIs (∗) on R. R is cumulative reward. µPE is
average percent difference of the population estimate across seeds. σPE is standard deviation
of the percent difference across seeds. µNR is the no change rate. See Appendix G.1 for
hyperparameters. Biased methods with no guarantees are highly undesirable (✗). ϵ-only is
the same as ϵ-Greedy, but population estimation uses only the ϵ sample as a random sample.
Random is where the full, 600 arm, sample is random.

we sample K − ζ times from (πh, . . . , πH) to obtain a bin, and then we sample uniformly
within that bin to choose the return. We do not recalculate (π1, . . . , πH) after each selection,
so while we are sampling without replacement at the level of returns (we cannot audit the
same taxpayer twice), we are sampling with replacement at the level of bins. Like with other
HT-based methods Potter (1990); Alexander et al. (1997), to reduce variance we also add an
option for a minimum probability of sampling a bin, which we call the trim %. See Appendix
F for more details and proofs.

4. Evaluation Protocol

Here we provide the metrics used to judge the performance of the algorithms. The details of
the experimental protocol are discussed in Appendix D. We use three metrics to evaluate our
models: cumulative reward, percent difference of the population estimate, and the no-change
rate. Cumulative reward (R) is simply the total reward of all arms selected by the agent
across the entire time series. It represents the total amount of under-reported tax revenue
returned to the government after auditing. This is averaged across seeds and denoted as
R. Percent difference (µPE, σPE) is the difference between the estimated population
average and the true population average: 100% ∗ (µ̂− µ∗)/µ∗. µPE is absolute mean percent
difference across seeds (bias). σPE is the standard deviation of the percent difference across
random seeds. No-change rate (µNR) is the percent of arms that yield no reward (we
round down such that any reward <$200 is considered no change). NR is of some importance.
An audit that results in no adjustment can be perceived as unfair, because the taxpayer
did not commit any wrongdoing (Lawsky, 2008). It can have adverse effects on future
compliance (Beer et al., 2015; Lederman, 2018). µNR is the average NR across seeds.
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5. Results

We highlight several key findings. A more robust discussion can be found in Appendix H,
and further results and sensitivity analyses can be found in the full version of the paper.

5.1 Unbiased population estimates are possible with little impact to reward

As seen in Table 1, ABS sampling can achieve similar returns to the best performing methods
in terms of audit selection, while yielding an unbiased population estimate. Conversely,
greedy, ϵ-greedy, and UCB approaches – which use a model-based population estimation
method – do not achieve unbiased population estimates. ABS reduces variance by 16% over
the best ϵ-only method, yielding even better reward.

5.2 Greedy is not all you need

Figure 1: A kernel density plot of the distribution of sampled arms by reward from 2007,
2010, and 2014 (left to right). “True” refers to the density of all returns for the given year.
X-axis is true reward. Y-axis is sampling distribution density.

Greedy surprisingly achieves more optimal reward compared to all other methods (see
Table 1). This aligns with prior work suggesting that a purely greedy approach in contextual
bandits might be enough to induce sufficient exploration under highly varied contexts (Bietti
et al., 2018; Bastani et al., 2021). Figure 1 demonstrates greedy sampling’s implicit exploration
for one random seed. As the years progress, greedy is (correctly) more biased toward sampling
arms with high rewards. Nonetheless, it yields a large number of arms that are the same
as a random sample would yield. This inherent exploration backs the hypothesis that the
test sample is highly stochastic, leading to implicit exploration. The key difference from our
result and that of Bietti et al. (2018) and Bastani et al. (2021) is our additional population
estimation objective. The greedy policy has a significant bias when it comes to model-based
population estimation. Even if greedy can be optimal for a high-variance contextual bandit,
it is not optimal for the optimize-and-estimate setting. ϵ-greedy achieves a compromise
between variance that may be more acceptable in settings when some bias is permitted, but
bias is not desirable in most public sector settings.

5.3 A more focused approach audits returns with larger under-reporting, which
correlates with higher cumulative total positive income

A key motivator for our work is that inefficiently-allocated randomness (random samples
that carry little new information over time) in audit selection will not only be suboptimal
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for the government, but could impose unnecessary burdens on taxpayers (Lawsky, 2008;
Davis-Nozemack, 2012). Although we do not take a normative position on the precise
contours of a fair distribution of audits, we examine how alternative models shape the income
distribution of audited taxpayers. As shown in Figure 6a, we find that as methods become
more optimal we see an increase in the total positive income (TPI) of the individuals selected
for audit (RF Greedy selects between $1.8M and $9.4M more cumulative TPI than LDA
Greedy, effect size 95% CI matched by seed). In Figure 6b we show the distribution of ABS
hyperparameter settings we sampled. As the settings are more likely to increase reward and
decrease no change rates, the cumulative TPI increases. This indicates that taxpayers with
lower TPI are less likely to be audited as models are more likely to sample in the higher
range of the risk distribution.

5.4 Errors are heteroskedastic, causing difficulties in using model-based
optimism methods

We also find that, surprisingly, our optimism-based approach audits higher-income taxpayers
more ($1.2M to $5.8M million cumulative TPI more than RF Greedy) despite yielding similar
returns as the greedy approach. We believe this is because adjustments and model errors
are heteroskedastic. Though TPI is correlated with the adjustment amount (Pearson r =
0.49, p < 10−5), all errors across model fits were heteroskedastic according to a Breusch–Pagan
test (p < 10−5). A potential source of large uncertainty estimates in the high income range
could be because: (1) there are fewer datapoints in that part of the feature space; (2) audits
may not give an accurate picture of misreporting at the higher part of the income space,
resulting in larger variance and uncertainty (Guyton et al., 2021); or (3) additional features
are needed to improve precision in part of the state space. This makes it difficult to use
some optimism-based approaches since there is a confound between aleatoric and epistemic
uncertainty.

6. Discussion

We have introduced the optimize-and-estimate structured bandit setting. The setting is
motivated by common features of public sector applications (e.g., multiple objectives, batched
selection), where there is wide applicability of sequential decision making, but, to date, limited
understanding of the unique methodological challenges. Our proposed ABS approach enables
parties to explicitly trade off population estimation and reward maximization. We have
shown how this framework addresses longstanding concerns in the real-world setting of IRS
detection of tax evasion. It could shift audits toward tax returns with larger understatements
and recover more revenue than the status quo, while maintaining an unbiased population
estimate. Though there are other real-world objectives to consider, such as the effect of audit
policies on tax evasion, our results suggest that unifying audit selection with estimation may
help ensure that processes are as fair, optimal, and robust as possible. We hope that the
methods we describe here are a starting point for both additional research into sequential
decision-making in public policy and new research into optimize-and-estimate structured
bandits.
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Appendix A. Related Work

There is growing interest in the application of ML to detecting fraudulent financial statements
(Dickey et al., 2019; Bertomeu et al., 2021). Previous methods have included unsupervised
outlier detection (de Roux et al., 2018), decision trees (Kotsiantis et al., 2006), and analyzing
statements with NLP (Sifa et al., 2019). Closer to our methodology is a bandit approach
is used by Soemers et al. (2018) to detect fraudulent credit card transactions. Meanwhile,
Zheng et al. (2020) propose reinforcement learning to learn optimal tax policies, but do not
focus on enforcement. Finally, some work has investigated the use of machine learning for
improved audit selection in various settings (Howard et al., 2020; Ash et al., 2021; Mittal
et al., 2018). None of these approaches takes into account population estimation and some do
not use sequential decision-making. Some prior work has investigated general multi-objective
optimization in the context of bandits Drugan and Nowé (2014); Tekin and Turğay (2018);
Turgay et al. (2018). And a large body of work seeks to improve hypothesis testing efficiency
via an active learning or structured bandit process (Kato et al., 2020; Mukherjee et al., 2020).
The closest work to our own is that of Liu et al. (2014), Erraqabi et al. (2017), Rafferty et al.
(2018), and Chugg and Ho (2021). In those works, the authors trade off maximizing some
reward objective with estimation of a metric. Like other adaptive experimentation literature,
these works are in the multi-armed bandit (MAB) setting (Lai and Robbins, 1985). Our
work on the other hand deals with the unique challenges of the IRS setting, requiring the use
of optimize-and-estimate structured bandits – where arms must be selected in batches, each
with their own context, and rewards are delayed. Several works are close to the structured
bandit approach we examine here (without population estimation). In those, the problem is
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framed as a contextual bandit where rewards are delivered in piles at some point later in
time (Huang and Lin, 2016; Lansdell et al., 2019; Chatterji et al., 2021). To our knowledge
the optimize-and-estimate structured bandit setting has not been proposed as we describe it
here.

Appendix B. Background

Institutional Background. The IRS maintains two distinct categories of audit processes.
National Research Program (NRP) audits enable at population estimation of non-compliance
while Operational (Op) audits are aimed at collecting taxes from non-compliant returns. The
NRP is a core measurement program for the IRS to regularly evaluate tax non-compliance
(Government Accountability Office, 2002, 2003). The NRP randomly selects, via a stratified
random sample, around 15k tax returns each year for research audits (Andreoni et al., 1998;
Johns and Slemrod, 2010; Internal Revenue Service, 2016, 2019), although this has been
decreasing in recent years and there is pressure to reduce it further (Marr and Murray,
2016; Congressional Budget Office, 2020). These audits are used to identify new areas of
noncompliance, estimate the overall tax gap (Internal Revenue Service, 2016, 2019), and
estimate improper payments of certain tax credits. Given the most recent gross tax gap
estimate of $441 billion (Internal Revenue Service, 2019), even minor increases in efficiency
can yield large returns.

In addition to its use for tax gap estimation, NRP serves as a training set for certain
Op audit programs like the Discriminant Function (DIF) System,2 which is based on a
modified Linear Discriminant Analysis (LDA) model (Lowe, 1976). DIF also incorporates
other measures and policy objectives that we do not consider here. We instead focus on the
stylized setting of only population estimation and reward maximization. Tax returns that
have a high likelihood of a significant adjustment, as calculated by the DIF model, are have
a higher probability of being selected for Op audits. It is important to highlight that Op
data is not used for estimating the DIF risk model and is not used for estimating the tax
gap (specifically, the individual income misreporting component of the tax gap). Though
NRP audits are jointly used for population estimates of non-compliance and risk model
training, the original sampling design was not optimized for both revenue maximization
and estimator accuracy for tax non-compliance. Random NRP audits have been criticized
for burdening compliant taxpayers and for failing to target known areas of known non-
compliance (Lawsky, 2008). We show that some randomness in auditing yields important
benefits, but demonstrate how a unified process can efficiently maximize revenue while
maintaining accurate estimates of the tax gap. To some extent, the current process already
exists as an informal sequential decision-making system. NRP strata are informed by the
Op distribution, and are adjusted year-to-year. We posit that by formalizing the current
IRS system in the form of a sequential decision-making problem, we can incorporate more
methods to improve the efficiency, accuracy, and fairness of the system.

Data. The data used throughout this work is from the NRP’s random sample (Andreoni
et al., 1998; Johns and Slemrod, 2010; Internal Revenue Service, 2016, 2019), which we
will treat as the full population of audits, since they are collected via a stratified random

2. https://www.irs.gov/irm/part4/irm_04-001-002
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sample and represent the full population of taxpayers. The NRP sample is formed by
dividing the taxpayer base into activity classes based on income and claimed tax credits,
and various strata within each class. Each stratum is weighted to be representative of the
national population of tax filers. Then a stratified random sample is taken across the classes.
NRP audits seek to estimate the correctness of the whole return via a close to line-by-line
examination (Belnap et al., 2020). This differs from Op audits, which are narrower in scope
and focus on specific issues. Given the added expensive nature of NRP audits, NRP sample
sizes are relatively small at around 15,000 audits per year (Guyton et al., 2018). The IRS
uses these audits to estimate the tax gap and average non-compliance, with some statistical
adjustments to compensate for some limitations to the NRP sampling approach, as well as
for naturally occurring variation in the depth of audit (Guyton et al., 2020; Internal Revenue
Service, 2012, 2016, 2019). These statistical adjustments will also compensate for taxpayer
misreporting that is difficult to find via auditing, upweighting certain types of misreporting
via a multiplier (Erard and Feinstein, 2011). For the goals of this work we ignore those
adjustments.

Legal requirements for the accuracy of these estimates exist (Taxpayer Advocate Service,
2018). The 2018 Office of Management and Budget (OMB) guidelines, for instance, recom-
mended that the estimates for these values be “statistically valid” (unbiased estimates of the
mean) and have “±3% or better margin of error at the 95% confidence level for the improper
payment percentage estimate” (Office of Management and Budget, 2018). Later OMB
guidelines have provided more discretion to programs for developing feasible point estimates
and confidence intervals (CIs) (Office of Management and Budget, 2021). Unbiasedness
remains a policy priority.

Our NRP stratified random audit sample covers from 2006 to 2014. We use 500 covariates
as inputs to the model. The covariates we use include every value reported by a taxpayer
on a tax return. The full paper contains summary statistics of the NRP research audits
conducted on a yearly basis. Since NRP audits are stratified, the unweighted means represent
the average adjustment made by the IRS to that year’s return for all audited taxpayers in the
sample. The weighted mean takes into account stratification weights for each sample. One
can think of the weighted mean as the average taxpayer misreporting across all taxpayers in
the United States, while the unweighted mean is the average taxpayer misreporting in the
NRP sample.3

Appendix C. ϵ-greedy and Optimism Algorithms

ϵ-greedy. Here we choose to sample randomly with probability ϵ. Otherwise, we select the
observation with the highest predicted reward according to a fitted model fθ̂(X

a
t ), where θ̂

indicates fitted model parameters. To batch sample, we repeat this process K times. The
underlying model is then trained on the received observation-reward pairs, and we repeat.
For population estimation, we use a model-based approach (see, e.g., Esteban et al. 2019).
After the model receives the true rewards from the sampled arms, the population estimate is

3. The IRS makes a number of additional statistical adjustments for reporting the tax gap that are outside
the scope of this work.
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predicted as: µ̂(t) = 1∑
a wa

∑
a∈At

wafθ̂(X
a
t ), where wa is the NRP sample weight4 from the

population distribution.
Optimism. We refer readers to Lattimore and Szepesvári (2020) for a general in-

troduction to Upper Confidence Bound and optimism-based methods. We import an
optimism-based approach into this setting as follows. Consider a random forest with B
trees T1, T2, . . . , TB. We form an optimistic estimate of the reward for each arm according
to: ρ̂at = 1

B

∑
b Tb(X

a
t ) + ZVarb(Tb(X

a
t )), where Z is an exploration parameter based on

the variance of the tree-based predictions, similar to Hutter et al. (2011). We select the K
returns with the largest optimistic reward estimates. We shorthand this approach as UCB
and use the same model-based population estimation method as ϵ-greedy.

Appendix D. Experimental Protocol

Our evaluation protocol for all experiments follows the same pattern. For a given year we
offer 80% of the NRP sample as arms for the agent to select from. We repeat this process
across 20 distinct random seeds such that there are 20 unique subsampled datasets that are
shared across all methods, creating a sub-sampled bootstrap for Confidence Intervals (more
detail in full version Comparing methods seed-to-seed will be the same as comparing two
methods on the same dataset. Each year, the agent has a budget of 600 arms to select from
the population of 10k+ arms (description of budget selection in Appendix E). We delay the
delivery of rewards for one year. This is because the majority of audits are completed and
returned only after such a delay (DeBacker et al., 2018). Thus, the algorithm in year 2008
will only make decisions with the information from 2006. Because of this delay the first
two years are randomly sampled for the entire budget (i.e., there is a warm start). After
receiving rewards for a given year, the agent must then provide a population estimate of the
overall population average for the reward (i.e., the average tax adjustment after audit). This
process repeats until 2014, the final year available in our NRP dataset.

Appendix E. Budget Selection

At each timestep the IRS can select a limited budget of samples – for example the NRP
sample in 2014 was 14,357 audits. This is a tiny fraction of audits as compared to the general
population of taxpayers – and thus impossible to replicate when using the NRP sample to
evaluate selection mechanisms. The goal of the NRP sample is to select a large enough
sample to approximate the taxpayer base. The parallel in our experiments would be to
ensure we select a sample which is smaller than the coreset needed to model the entire data.

Another way of thinking about the size of the budget allowed per year to approximate
the NRP mechanism is by determining what is the minimum random sample to achieve
a 3% margin of error with 95% confidence of the NRP sample population, per the 2018
OMB requirements for IPERIA reporting. Using an 80% (from subsampling) sample of the
per-year average of 14102 NRP yearly samples, we are left with an average of 11282 arms per

4. The returns in each NRP strata can be weighted by the NRP sample weights to make the sample
representative of the overall population, acting as inverse propensity weights. We choose to resample by
NRP weights to get close to true population estimate. See full version for more discussion.
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year. We should need about a 975 arm budget for a random sampling mechanism (ignoring
stratification) to achieve OMB specifications.

We then use the approach of Sener and Savarese (2018) to find a minimal coreset which
a model could use to achieve a reasonable fit. We first fit a random forest to the entire
dataset for a given year and calculate the residuals (or the mean squared error across
the dataset). We then iteratively select batches of 25 samples according to the method
presented by Sener and Savarese (2018). We use only the raw features to compute distance
(contrasting the embedding space used by the authors). We refit a random forest with the
same hyperparameters as the optimal fit on the smaller coreset sampler. Then we calculate
the ratio of the mean squared error on the entire year’s data to the optimal mean squared
error. We find that the mean squared error is reduced to roughly 2x the overfit model at
around 600 coreset samples, reducing very slowly after that point. We find that around 600
samples is the absolute minimum number required to reduce the mean squared error to a
stable level at 2 times the optimal mean squared error. To simulate the small sample sizes of
the NRP selection, we select this smaller budget of 600 as our main evaluation budget size,
corresponding to roughly 4% of the 2014 NRP sample.

Note that in practice, IRS faces heterogeneous costs for audits. For the purposes of this
work, we assume a fixed budget of arm/tax returns rather than a fixed budget of auditor
hours.

Appendix F. ABS Sampling

In this section we provide further details on ABS, verify that the populate estimate is
unbiased, and make some general remarks on the effects of various parameters on the variance
of the estimate. Algorithm 1 gives an overview of ABS with logistic smoothing.

Fix a timestep t and let K be our budget. Let r̂a = fθ̂(X
a
t ) be the predicted risk for

return Xa
t . First we sample the top ζ returns. To make the remaining K − ζ selections, we

parameterize the predictions with a logistic function,

ρ̂a =
1

1 + exp(−α(r̂a − κ))
,

or an exponential function

ρ̂a = exp(αr̂a).

κ is the value of the K-th largest value amongst reward predictions {r̂at }. For the logistic
we normalize such that r̂a ∈ [−5, 5], and r̂a ∈ [0, 1] for the exponential. The distribution
of transformed predictions {ρ̂a} is then stratified into H non-intersecting strata S1, . . . , SH .
We choose the strata in order to minimize intra-cluster variance, subject to the constraint of
having at least K − ζ points per bin:

min
S1,...,SH

∑
h

∑
ρ̂∈Sh

∥ρ̂− λh∥2, s.t. |Sh| ≥ K − ζ, (2)

where λh = |Sh|−1
∑

ρ̂∈Sh
ρ̂ is the average value of the points in bin b. Note that

∑
h

∑
ρ̂∈Sh

∥ρ̂− λh∥2 =∑
h

∑
ρ̂∈Sh

|Sh|VarSh, so the quadratic program (1) is indeed minimizing intra-cluster vari-
ance.

16



We place a distribution (πh) over the bins by averaging the risk in each bin, i.e,

πh =
λh∑
h′ λh′

. (3)

To make our selection, we sample K− ζ times from (πh, . . . , πH) to obtain a bin, and then we
sample uniformly within that bin to choose the return. We do not recalculate (π1, . . . , πH)
after each selection, so while we are sampling without replacement at the level of returns
(we cannot audit the same taxpayer twice), we are sampling with replacement at the level of
bins. This is (i) because of computational feasibility, and (ii) in order to obtain an unbiased
estimate of the mean via Horvitz-Thompson Sampling Horvitz and Thompson (1952).

In particular, note that the probability that arm a in stratum Sh is sampled is pa =
(K − ζ)πh/Nh (see the next subsection for a derivation), where Nh = |Sh| is the size of Sh.
If K is the set of returns chosen for auditing and SH+1 contains those ζ points first sampled,
then

µ̂HT(t) =
1∑
awa

( ∑
a∈K\SH+1

wara
pa

+
∑

a∈SH+1

wara

)
,

is an unbiased estimator of the true mean

µ(t) =
1∑
awa

∑
a

wara.

To see this, let 1a∈K be the random variable indicating whether arm a is sampled. Since
E[1a∈K] = pa, linearity of expectation gives that

E[µ̂HT] =
1∑
awa

E
[ ∑
a∈A\SH+1

wara
pa

1a∈K +
∑

a∈SH+1

wara

]

=
1∑
awa

( ∑
a∈A\SH+1

wara
pa

E[1a∈K] +
∑

a∈SH+1

wara

)
=

1∑
awa

∑
a∈A

wara.

F.1 Variance of Population Estimate

Write the Horvitz-Thompson estimator as

µ̂HT =
1

N

∑
a

ra
pa

1a∈K,

where K is the set of selected arms and pa = Pr(a ∈ K) is arm a’s inclusion probability in K.
Then

Var(µ̂HT) =
1

N2

∑
a,b

rarb
papb

Cov(1a∈K1b∈K)

=
1

N2

(∑
a

r2a
pa

(1− pa) +
∑
a

∑
b̸=a

rarb
papb

(pa,b − papb)

)
,
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Figure 2: Illustration of ABS on 50 synthetic observations. (a) Hypothetical risk distribution
and three parameterizations corresponding to different values of α: 0.1, 1, and 5. Greedy
selection, represented by the dotted (gray) line in each panel would choose the K = 10
returns with the highest risk. The parameterized risk distributions are clustered into three
strata (S1, S2, S3), represented by the colored panels. As α varies, the cluster assignments
change. (b) Probabilities of sampling a single individual from the three strata. As α increases,
more weight is put onto the higher risk returns (Stratum 3).

where pa,b = Pr(a, b ∈ K) = pb,a is the joint inclusion probability of arms a and b. Note that
for the ζ arms in stratum Sh+1, pa = 1 and pa,b = pb. Therefore, all terms involving such
arms are zero and they do not contribute to the variance.

We can make this expression more specific to our case by rewriting the inclusion probabil-
ities as functions of the strata. Fix an arm a and suppose it’s in stratum Sh. Let m = K − ζ
be the number of returns we’re randomly sampling (i.e., discarding those ζ points greedily
chosen from the top of the risk distribution). The law of total probability over the m trials
gives

pa =

m∑
ℓ=0

Pr(a ∈ K||Sh ∩ K| = ℓ) Pr(|Sh ∩ K| = ℓ).

The first term in the product is the probability that a is chosen as one of ℓ elements in a
bucket of size Nh = |Sh|. The second term is the probability that Sh was selected precisely ℓ
times and is distributed as a binomial. Therefore,

pa =

m∑
ℓ=0

ℓ

Nh

(
K

ℓ

)
πℓ
h(1− πh)

m−ℓ =
mπh
Nh

.

Now consider pa,b for distinct arms a, b. Let b ∈ Sg. Conditioning on b ∈ K gives
Pr(a ∈ K|b ∈ K) = (m−1)πh

Nh
if g ̸= h since there are now m − 1 trials to select a. If

g = h, then Pr(a ∈ K|b ∈ K) = (K−1)πh

Nh−1 since there are m− 1 trials to select a from a bin of
size Nh − 1. Thus

pa,b = Pr(a ∈ K|b ∈ K) Pr(b ∈ K)

=

{m(m−1)πhπg

NhNg
, if g ̸= h,

m(m−1)π2
h

Nh(Nh−1) , if g = h.

Rewriting the variance as a summation over the strata, we see that the variance is the
difference of two terms V1 and V2 where V1 as a sum across all strata and V2 includes
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cross-terms dependent on the relationship between strata.

Var(µ̂HT) =
1

mN2
(V1 − V2),

where

V1 =

H∑
h=1

(Nhπ
−1
h −m)

∑
a∈Sh

r2a,

and

V2 =
H∑

h=1

∑
a∈Sh

ra

(
Nh −m

Nh − 1

∑
b∈Sh\a

rb +
∑
g ̸=h

∑
b∈Sg

rb

)
.

We make a few remarks on the variance here, but leave a full analysis to future work. If
the budget is small relative to the strata sizes (as is the case here), then Nh−m

Nh−1 ≈ 1, and V2

reduces to
∑

a

∑
b ̸=a rarb which is independent of the strata. As α grows and we place more

weight on those returns deemed higher risk by the model, pa → 0 for lower risk arms. This
results in many arms clustered in a few strata with high Nh and low πh, which increases
V1. Also, as ζ grows and we perform more greedy sampling, m decreases and the variance
increases roughly proportionally.

Appendix G. Hyperparameter Tuning

The ideal approach would tune the hyperparameters for function approximators using cross-
validation every time the model is fit in the active learning process. However, we found this
approach to be extremely computationally expensive, a small grid of experiments requiring
over a week to run. In the interest of reducing energy consumption – see, for example,
discussion by Henderson et al. (2020) – we instead opt for a less computationally expensive
proxy. We take train our function approximators on 2006 and then evaluate their RARE score
and population estimate for the 2008 year, using 5-fold cross-validation across both years. We
then run a grid search for all function approximators used. Finally we find the top point on
the smoothed Pareto frontier between RARE and population estimation to find the optimal
hyperparameters. To do this we rank the reward and population estimation criteria based
on Since there is concept drift from year to year, we expect that these hyperparameters are
sub-optimal and results may be even further improved with careful per-year hyperparameter
tuning. However, this approach is sufficient for the purposes of our experiments.

For handling hyperparameters of the sampling algorithms, we rely on sensitivity analyses
rather than hyperparameter searches. This is in line with recent work that promotes reporting
results over ranges of hyperparameters and random seeds, particularly for sequential decision-
making systems (Henderson et al., 2018; Bouthillier et al., 2021; Agarwal et al., 2021).
Hyperparameter grids were run as follows in Table 2.

For Table 1, the only place where we display single hyperparameter settings, we use
the following selection protocol from the grid of hyperparameters above. Given the lack
of longitudinal data, we rely on intra-year data sub-sampling for validation sets. We
select 5 random seeds, corresponding to different validation subsampled datasets. First, we
identify the top reward band by finding methods with overlapping confidence intervals on
reward. See Joseph et al. (2018) for discussion on meritocratic fairness given overlapping
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Method Hyperparameter Grid

ϵ-Greedy ϵ = 0.0, 0.1, 0.2, 0.4
weighted, unweighted fit

UCB Z = 0.1, 1.0, 10.0, 100.0
weighted, unweighted fit

ABS mixing=exponential, logistic
α = 0.1, 0.5, 1.0, 1.5, 2.0, 5, 10, 15

ζ = 0.0, 0.2, 0.4, 0.6, 0.8
trim=0%, 2.5%, 5%

weighted, unweighted fit

Table 2: Hyperparameter grids

confidence intervals. Then, we order results by root mean squared error and select the top
hyperaparameters for each method according to these validation seeds. We then use results
from all train seeds to get results displayed in the paper.

G.1 Table 1 Hyperparameters

In Table 1 1, ABS-1 is a hyperparameter configuration that focuses slightly more on reward
at the cost of population estimation variance. ϵ-Greedy uses an ϵ of 0.1, UCB-1 has Z = 1,
UCB-2 has a larger exploration factor of Z = 10. ABS-1 uses an exponential mixing function
with 80% greedy sample, α = 5, and a 2.5% trim factor. ABS-2 uses a logistic mixing
function, α = 0.5, a 5% trim, and 80% greedy sample. Both ABS methods use an unweighted
fit while all other approaches saw improved results with a weighted fit.

Appendix H. Results

H.1 Unbiased population estimates are possible with little impact to reward

As seen in Table 1, ABS sampling can achieve similar returns to the best performing methods
in terms of audit selection, while yielding an unbiased population estimate. Conversely,
greedy, ϵ-greedy, and UCB approaches – which use a model-based population estimation
method – do not achieve unbiased population estimates. Others have noted that adaptively
collected data often have negative bias (Nie et al., 2018; Neel and Roth, 2018), leading to
biased models. In many public sector settings provably unbiased methods like ABS are
required. For ϵ-greedy, using the ϵ-sample only would also achieve an unbiased estimate, yet
due to its small sample size the variance is prohibitively high. ABS reduces variance by
16% over the best ϵ-only method, yielding even better reward. Trading off $1M over 9 years
improves variance over ϵ-Greedy (ϵ-only) by 35%. It is possible to reduce this variance even
further at the cost of some more reward (see Figure 3). Note, due to an extremely small
sample size, though the ϵ sample is unbiased in theory, we see some minor bias in practice.
Model-based estimates are significantly lower variance, but biased. This may be because
models re-use information across years, whereas ABS does not. Future research could re-use
information in ABS to reduce variance, perhaps with a model’s assistance. Nonetheless, we
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emphasize that model-based estimates without unbiasedness guarantees are unacceptable for
many public sector uses from a policy perspective.

H.2 ABS allows fine-grained control over variance-reward trade-off

Figure 3: (Left) Population estimation empirical standard deviation versus reward for a
grid of ABS hyperparameters. (Right) Population estimation variance as a function of the
trimming factor.

We sample a grid of hyperparameters for ABS (see Appendix G). Figure 3 shows that
more hyperparameter settings close to optimal rewards have higher variance in population
estimates. We can control this variance with the trimming mechanism. This ensures that
each bin of the risk distribution will be sampled some minimum amount. Figure 3 also shows
that when we add trimming, we can retain large rewards and unbiased population estimates.
Top configurations (Table 1) can keep variance down to only 1.7x that of a random sample,
while yielding 3.2x reward. Overall, ABS allows for fine-grained control of the population
estimation variance and reward trade-off.

H.3 Greedy is not all you need

Figure 4: A kernel density plot of the distribution of sampled arms by reward from 2007,
2010, and 2014 (left to right). “True” refers to the density of all returns for the given year.
X-axis is true reward. Y-axis is sampling distribution density.

Greedy surprisingly achieves more optimal reward compared to all other methods (see
Table 1). This aligns with prior work suggesting that a purely greedy approach in contextual
bandits might be enough to induce sufficient exploration under highly varied contexts (Bietti
et al., 2018; Bastani et al., 2021). Here, there are several intrinsic sources of exploration
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that may cause this result: intrinsic model error, covariate drift (see full version for more
discussion of covariate drift), differences in tax filing compositions, and the fact that our
population of arms already come from a stratified random sample (changing in composition
year-to-year).

Figure 1 demonstrates greedy sampling’s implicit exploration for one random seed. As
the years progress, greedy is (correctly) more biased toward sampling arms with high rewards.
Nonetheless, it yields a large number of arms that are the same as a random sample would
yield. This inherent exploration backs the hypothesis that the test sample is highly stochastic,
leading to implicit exploration. It is worth emphasizing that in a larger population and with
a larger budget, greedy’s exploration may not be sufficient and more explicit exploration
may be needed.

The key difference from our result and that of Bietti et al. (2018) and Bastani et al. (2021)
is our additional population estimation objective. The greedy policy has a significant bias
when it comes to model-based population estimation. This bias is similar – but not identical
– to the bias reported in other adaptive data settings (Thrun and Schwartz, 1993; Nie et al.,
2018; Shin et al., 2021; Farquhar et al., 2021). Even a 10% random sample – significantly
underpowered for typical sampling-based estimation – can reduce this bias by more than
2.5× (see Table 1). Even if greedy can be optimal for a high-variance contextual bandit, it is
not optimal for the optimize-and-estimate setting. ϵ-greedy achieves a compromise between
variance that may be more acceptable in settings when some bias is permitted, but bias is
not desirable in most public sector settings.

H.4 Using RFR significantly outperforms LDA and incorporating non-random
data helps

Figure 5 shows that the cumulative return of ϵ-greedy sampling strategies using RFR-based
approaches are significantly higher than LDA-based approaches. We emphasize again that
the LDA model we use here is a stylized approximation of the current risk-based selection
process and does not incorporate other policy objectives and confidential mechanisms of
DIF. We note that while it serves as a rough baseline model, it demonstrates again that
regression-based and globally non-linear models are needed for optimal performance in
complex administrative settings such as this.

Fitting to only the random data, even with the RFR approach, reduces the ability of the
model to make comparable selections and increases the variance across selection strategies.
This can be seen in Figure 5, where fitting to random only leads to between $6.2M and
$1.3M less reward cumulatively (95% CIs on effect size) and standard deviation across seeds
is increased by $700k. Since the current risk-selection approach mainly uses the NRP data,
this suggests that future work on incorporating Op audits into the model training mechanism
could improve overall risk-selection. This of course bears the risk of exacerbating biases and
should be done with careful correction for data imbalances.

H.5 A more focused approach audits returns with larger under-reporting, which
correlates with higher cumulative total positive income

A key motivator for our work is that inefficiently-allocated randomness (random samples
that carry little new information over time) in audit selection will not only be suboptimal
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Figure 5: A comparison of cumulative reward earned between LDA-based approaches and
RFR-based approaches. FRO indicates that the RFR was fit to the random sample only.
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(c)

Figure 6: (a) The cumulative average total positive income (TPI) of all batches of taxpayers
audited by each algorithm. (b) Across all ABS hyperparameters sampled, which allows fine-
grained control over the population estimate variance and reward trade-off, the relationship
between reward, no change rate, and cumulative average TPI. (c) The distribution of audit
classes for several approaches. Top ABS selections are similar to RF Greedy. More details
and more information on labels for (c) found in full version.
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for the government, but could impose unnecessary burdens on taxpayers (Lawsky, 2008;
Davis-Nozemack, 2012). In particular, an issue that has received increasing attention by
policymakers and commentators in recent years concerns the fair allocation of audits by
income (Kiel, 2019; Internal Revenue Service, 2021; Treasury, 2021). Although we do not
take a normative position on the precise contours of a fair distribution of audits, we examine
how alternative models shape the income distribution of audited taxpayers.

As shown in Figure 6a, we find that as methods become more optimal we see an increase
in the total positive income (TPI) of the individuals selected for audit (RF Greedy selects
between $1.8M and $9.4M more cumulative TPI than LDA Greedy, effect size 95% CI
matched by seed). In Figure 6b we show the distribution of ABS hyperparameter settings
we sampled. As the settings are more likely to increase reward and decrease no change
rates, the cumulative TPI increases. This indicates that taxpayers with lower TPI are less
likely to be audited as models are more likely to sample in the higher range of the risk
distribution. We confirm this in Figure 6c which shows the distribution of activity classes
sampled by different approaches. These classes are used as strata in the NRP sample. The
UCB and RF Greedy approaches are more likely to audit taxpayers with more than $1M
in TPI (with UCB sampling this class significantly more, likely due to heteroskedasticity).
More optimal approaches also significantly sample those with <$200K in TPI, but more than
$200K reported on their Schedule C or F tax return forms (used to report business and farm
income, respectively).

H.6 Errors are heteroskedastic, causing difficulties in using model-based
optimism methods

We also find that, surprisingly, our optimism-based approach audits taxpayers with higher TPI
more ($1.2M to $5.8M million cumulative TPI more than RF Greedy) despite yielding similar
returns as the greedy approach. We believe this is because adjustments and model errors
are heteroskedastic. Though TPI is correlated with the adjustment amount (Pearson r =
0.49, p < 10−5), all errors across model fits were heteroskedastic according to a Breusch–Pagan
test (p < 10−5). A potential source of large uncertainty estimates in the high income range
could be because: (1) there are fewer datapoints in that part of the feature space; (2) audits
may not give an accurate picture of misreporting at the higher part of the income space,
resulting in larger variance and uncertainty (Guyton et al., 2021); or (3) additional features
are needed to improve precision in part of the state space. This makes it difficult to use
some optimism-based approaches since there is a confound between aleatoric and epistemic
uncertainty. As a result, optimism-based approaches audit higher income individuals more
often, but do not necessarily achieve higher returns. This poses another interesting challenge
for future research.
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