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Abstract

In this paper, we proposed a new clustering-based active learning framework, namely Active
Learning using a Clustering-based Sampling (ALCS), to address the shortage of labeled
data. ALCS employs a density-based clustering approach to explore the cluster structure
from the data without requiring exhaustive parameter tuning. A bi-cluster boundary-based
sample query procedure is introduced to improve the learning performance for classifying
highly overlapped classes. Additionally, we developed an effective diversity exploration
strategy to address the redundancy among queried samples. Our experimental results
justified the efficacy of the ALCS approach.

Keywords: Active learning, Clustering, Diversity

1. Introduction

Active learning (AL) (Lewis and Gale, 1994) approaches have been proposed to address
the scarcity of associated labels and reduce the annotation costs for predictive modeling.
As an important branch of AL, clustering-based AL methods are proposed to explore the
representativeness of samples and they have shown reasonable success (Huang et al., 2010;
Wang et al., 2017a, 2018, 2020). In clustering-based AL approaches, samples are assumed
to share the same class label within the same cluster so that AL is conducted by querying
the representative samples from those clusters (Dasgupta and Hsu, 2008).

Challenges. Despite the success of the existing clustering-based AL methods, three ma-
jor challenges are identified as follows: the performance of existing clustering-based AL
methods strongly depends on the selection of clustering parameters; the existing boundary-
based selection strategy primarily queries labels for the farthest samples in each cluster
without considering neighboring clusters (Wang et al., 2018, 2020); limited efforts are made
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on clustering-based AL methods to consider the diversity among queried samples (Wang
et al., 2017b; Kee et al., 2018; Wang et al., 2020; Xiao et al., 2020).

In light of these challenges, a clustering-based AL method, namely AL utilizing a
Clustering-based Sampling (ALCS),1 is proposed. ALCS adopts a density-based cluster-
ing technique, namely fitness proportionate sharing clustering (FPS-clustering) (Yan et al.,
2017), to relax the dependency on clustering parameter optimization. We develop a new bi-
cluster boundary-based selection procedure to improve the learning performance of ALCS
in datasets with highly overlapped classes. Furthermore, an effective diversity exploration
strategy is introduced to reduce the redundancy among active queried samples.

2. Proposed methodology

In this section, the ALCS technique is discussed in terms of its two main components: (i)
clustering; and (ii) distance-based instance selection with diversity exploration. Figure 1
provides an overview of the ALCS technique and details are discussed below.

Figure 1: A workflow of the proposed clustering-based AL framework.

2.1 Clustering

To effectively alleviate the exhaustive parameter tuning issue, the FPS-clustering algorithm
is employed to discover the cluster information as the first step of the ALCS technique. The
FPS-clustering algorithm takes the unlabeled dataset XU as the input and then outputs a
set of clusters and the corresponding cluster information Ω, which is expressed as follows:

Ω = {(Ci,d(Ci))|i = 1, ..., c}, (1)

d(Ci) = {d(xj
i , Ci)|j = 1, ..., |Ci|}. (2)

1. This work has been published in the Springer Applied Intelligence: https://doi.org/10.1007/s10489-021-
03139-y.
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Algorithm 1 The hybrid sample selection strategy
Input: Ω, nq , ρi
Parameter: Qcenter, Qboundary , and nqi
Output: The set of queried samples QU

1: QU = ∅
2: for i = 1 to nC do

3: Calculate the number of queries for cluster i: nqi = ⌊ |Ci|
nU

× nq⌉
4: Perform the center-based query with diversity exploration to obtain Qcenter using equation 3.
5: Perform the bi-cluster boundary-based query with diversity exploration to obtain Qboundary using equation 6
6: QU = QU ∪ {Qcenter ∪Qboundary}
7: end for
8: return QU

Here, Ci refers to the center of the ith cluster, c denotes the total number of discovered
clusters, and d(xj

i , Ci) is the distance from sample xj
i to its respective cluster center Ci.

The cardinality |Ci| denotes the number of samples that belong to Ci.

2.2 Distance-based sample selection

Hybrid sample selection strategy. After the clustering procedure, ALCS employs a
novel hybrid sample selection strategy for active label query. Let the number of queried
samples from the ith cluster be nqi . The bi-cluster boundary-based selection step takes
⌊nqi×ρi⌉ samples from cluster i as Qboundary where ρi denotes the sampling weight from the
boundary of two adjacent clusters. Accordingly, the center-based selection policy chooses
the remaining ⌊nqi × (1 − ρi)⌉ samples from the center region as Qcenter. The value of ρi
ranges from zero to one. Algorithm 1 summarizes the hybrid sample selection procedure.

Center-based sample selection. For center-based selection, the query priority of each
sample is computed in terms of Cluster Representativeness (CR). Let CR(∗) and P (∗) be
the cluster representativeness and query priority functions for clustered samples, respec-
tively. For center-based selection, the query priority of xji is calculated below.

P (xji ) = CR(xji ), (3)

and

CR(xji ) =
1

1 + ed(x
j
i ,Ci)

. (4)

Where d(xji , Ci) refers to the distance from xji to Ci. From equation 4, the representativeness
of each sample is inversely proportional to its distance to Ci and samples that are close to
the cluster center have higher representativeness.

Bi-cluster boundary-based sample selection. We propose an effective bi-clusters
boundary-based selection strategy to identify the most uncertain samples using the dis-
tance to their assigned cluster center and neighboring cluster center. This strategy utilizes
the law of cosines to query the most informative samples from the cross-boundary region
with two adjacent cluster centers. Assume the candidate bi-boundary sample in the ith

cluster is xjCBi
and the candidate set is CB = {xjCBi

|j = 1, ..., |Ci|
2 }. The two adjacent

cluster centers are denoted as NC1 and NC2. The query priority of xjCBi
is calculated
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using the Cluster Uncertainty (CU ), which is expressed as follows:

P (xjCBi
) = CU(xjCBi

), (5)

and

CU(xjCBi
) =

1

1 + e
d1+d2

dref1
+dref2

. (6)

Where dref1 and dref2 denote the distance from Ci to its two neighboring cluster centers.

Here, d1 refers to the distance from xjCBi
to NC1 and d2 refers to the distance from xjCBi

to NC2, respectively. Detailed derivations can be found in (Yan et al., 2022). According to
equation 6, a sample is considered to have higher uncertainty when it has a larger CU .

Diversity exploration. We developed a diversity exploration strategy based on fitness
proportionate niching (FPN) (Workineh and Homaifar, 2012) to guide the search for infor-
mative and representative samples. Let XCi be a set of samples that belongs to Ci, the
query priority function is expressed as follows.

P (XCi) =

{
CR(XCi), query from centers;

CU(XCi), query from boundaries.
(7)

Based on the priority function, the proposed diversity exploration procedure aims to de-
compose XCi into a number of small niches and query a set of diverse samples from different
niches. During the sample selection procedure, the sample with the highest query priority
is inserted into the queried sample set initially. Then, a niche can be formed by a set of
samples in the neighborhood of this sample and a priority sharing strategy is employed to
decrease the query priorities of other samples in the niche. The average distance for all
k-nearest-neighbor graphs within a cluster is used as the neighborhood radius. As a rule of
thumb, we set the value of k to be the square root of cluster size. Assume nj

i and X
nj
i
denote

the jth niche in Ci and a set of samples belong to nj
i , respectively. Equation 8 describes the

priority sharing function.

P (X
nj
i
) =

P (X
nj
i
)∑

P (X
nj
i
)
, xi ∈ nj

i . (8)

From equation 8, samples from the same niche will have relatively low priorities during the
next sample query stage. Consequently, it guarantees to query more diverse samples from
each cluster.

3. Experiments and results

Datasets and compared methods. Twelve benchmark datasets from (Dheeru and
Karra Taniskidou, 2017) are used in the experiments. We compared ALCS with five state-
of-the-art clustering-based AL methods, including QUIRE (Huang et al., 2010), ALEC
(Wang et al., 2017a), active learning through multi-standard optimization (MSAL) (Wang
et al., 2019), active learning through label error statistical (ALSE) (Wang et al., 2020),
and three-way active learning through clustering selection (TACS) (Min et al., 2020). The
implementation of the ALCS method, using python, is available at a Github repository .2

2. https://github.com/XuyangAbert/ALCS
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(a) Acc (b) Fmac

Figure 2: Comparison of ALCS against other clustering-based AL methods with the Ne-
menyi test with α = 0.05.

Result discussions. Table 1 compares the performance of ALCS with five clustering-
based AL approaches using 10% labeled data. It is observed that ALCS provides better
performance in most datasets, and it has the highest average ranks for both Acc and Fmac.
In Australian, Aggregation, Spambase, Waveforms, Electricity, Penbased, GasSensor, and
MNIST datasets, ALCS outperforms the other five clustering-based AL methods on both
Acc and Fmac metrics. These results imply the efficacy of ALCS in handling datasets with
highly overlapped classes. The Nemenyi post-hoc test is performed with a significance level
of 0.05 and results are shown in Figure 2. Figure 2 displays that ALCS is statistically better
than ALEC, QUIRE, and MSAL methods in terms of Acc and Fmac. On the other hand,
ALCS presented statistically comparable performance with TACS and ALSE.

Table 1: Performance comparison of ALCS and five clustering-based AL methods.
Dataset Metrics ALEC QUIRE MSAL ALSE TACS ALCS

R15 Acc 84.58(6) 99.26(1) 99.14(2) 86.27(5) 98.45(4) 99.07(3)
Fmac 84.09(6) 99.21(1) 98.27(3) 83.94(5) 97.66(4) 99.06(2)

Australian Acc 80.80(5) 81.29(4) 68.78(6) 81.38(3) 82.08(2) 83.31(1)
Fmac 79.71(6) 80.87(3) 68.69(6) 80.82(4) 80.92(2) 83.06(1)

Aggregation Acc 91.06(5) 71.01(6) 91.25(4) 91.91(3) 92.74(2) 99.43(1)
Fmac 76.86(5) 44.21(6) 76.92(4) 77.63(3) 78.15(2) 99.09(1)

Vehicle Acc 46.11(6) 53.23(3) 48.92(4) 46.39(5) 53.45(2) 54.74(1)
Fmac 54.66(3) 49.52(6) 55.12(1) 52.37(5) 54.83(2) 54.30(4)

Spambase Acc 76.48(4) 75.73(5) 75.32(6) 76.57(3) 79.58(2) 81.54(1)
Fmac 75.85(3) 74.79(6) 75.87(5) 75.46(4) 80.28(2) 80.92(1)

Waveforms Acc 75.42(5) 75.87(4) 75.32(6) 76.89(3) 78.17(1) 76.66(2)
Fmac 75.84(3) 74.91(6) 75.47(4) 75.12(5) 76.52(2) 76.62(1)

Electricity Acc 82.81(5) 82.48(6) 83.01(3) 83.22(2) 82.88(4) 85.34(1)
Fmac 80.47(3) 79.89(6) 80.44(5) 80.83(2) 80.56(4) 83.76(1)

DLA0.01 Acc 86.27(5) 72.14(6) 92.48(4) 93.18(3) 99.22(1) 93.61(2)
Fmac 86.28(5) 72.51(6) 86.98(4) 87.15(3) 97.98(1) 88.26(2)

Penbased Acc 87.94(5) 82.74(6) 89.48(3) 88.13(4) 91.24(2) 94.80(1)
Fmac 86.98(5) 72.68(6) 88.04(4) 89.01(3) 91.03(2) 94.76(1)

GasSensor Acc 64.94(5) 64.40(6) 65.79(4) 66.44(3) 66.88(2) 72.81(1)
Fmac 61.95(5) 60.60(6) 62.84(4) 63.74(3) 64.25(2) 71.55(1)

DCCC Acc 76.88(1) 75.15(5) 74.85(6) 75.26(4) 75.45(3) 76.43(2)
Fmac 54.16(4) 44.21(6) 49.56(5) 57.35(2) 54.95(3) 60.84(1)

MNIST Acc 87.58(4) 84.52(6) 87.12(5) 88.45(2) 87.75(3) 91.83(1)
Fmac 87.15(2) 83.48(6) 86.54(4) 86.81(3) 84.07(5) 91.79(1)

Avg. ranks
Acc 4.67 4.83 4.42 3.33 2.33 1.42
Fmac 4.17 5.33 4.08 3.50 2.58 1.41

4. Concluding remarks

In this paper, we presented a novel active learning framework using clustering-based sam-
pling to handle the shortage of prior label information. It utilizes the FPS-clustering proce-
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dure to explore the structure of unlabeled data without exhaustive parameter tuning. A new
distance-based sample selection procedure with an effective diversity exploration strategy
was developed to enhance the quality of queried labels. Experimental results established
that ALCS provided better or comparable performance than the five clustering-based AL
approaches without tuning the clustering parameters.

Merits, Limitations & Future work. As a new clustering-based AL framework, ALCS
effectively handles the dependency on clustering parameters and offers a promising solution
to improve the diversity among queried labels. Moreover, the bi-cluster boundary selection
strategy is designed to enhance the learning performance in datasets with highly overlapped
classes. Limitations of the ALCS can be summarized from two aspects: (i) the imbalance
among different class distributions is not considered in ALCS; and (ii) ALCS is currently
limited to offline AL problems; Therefore, our future work will focus on addressing these
two limitations of the ALCS framework.
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