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Abstract

In applications where labeling data is prohibitively expensive, active learning algo-
rithms like uncertainty sampling can lead to remarkable improvements compared to a pas-
sive sampling strategy. However, prior works show both theoretically and experimentally
that sometimes uncertainty sampling is actually worse than passive learning. Despite a vast
literature analyzing the low-dimensional regime, very little is known about how uncertainty
sampling behaves in high dimensions. In this work, we study high-dimensional logistic re-
gression and show that passive learning often outperforms uncertainty-based active learning
for low label budgets. Our proof suggests that this high-dimensional phenomenon happens
primarily when the separation between the classes is small. We corroborate this intuition
with experiments on 15 high-dimensional data sets spanning a diverse range of applications,
from finance and ecology to chemistry and histology.

Keywords: uncertainty sampling, active learning, logistic regression

1. Introduction

In numerous machine learning applications, it is often prohibitively expensive to acquire
labeled data, even if unlabeled data may be readily available. For instance, consider the
task of precise cancer diagnosis (e.g. carcinoma, sarcoma etc). Large amounts of unlabeled
data such as EKGs, EEGs and blood tests are available for yet undiagnosed patients under
monitoring. However, labeling all this data is expensive and risky: to determine the cancer
cell type, the patient needs to undergo surgery for a biopsy.

Active learning algorithms aim to reduce labeling costs, by collecting a small labeled
set that still allows for training a model with good predictive performance. Some of the
most popular active learning algorithms are based on uncertainty sampling (Lewis and Gale,
1994). This paradigm proposes to train a prediction model (e.g. logistic regression, deep
neural network) on the labeled set at each step. The algorithm then selects the samples
on which the model has high predictive uncertainty and queries their label. Despite a
plethora of promising results, recent theoretical and empirical works (Schein and Ungar,
2007; Lughofer and Pratama, 2017; Yang and Loog, 2018; Mussmann and Liang, 2018;
Hacohen et al., 2022) have uncovered a number of problems with uncertainty sampling for
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Figure 1: Surprisingly, uncertainty sampling (with or without oracle uncertainty) leads to worse
test error compared to passive learning on a broad range of high-dimensional datasets and for several
small query budgets. See Appendix H.2 for more datasets.

both linear and deep learning models. These shortcomings question whether the additional
computational cost of uncertainty sampling is indeed justified.

The literature identifies two main causes for the failure of uncertainty sampling. First,
several works claim that using the uncertainty of a bad predictive model can inconveniently
skew the labeled data (Huang et al., 2014; Sener and Savarese, 2018; Hacohen et al., 2022).
Second, in low dimensions, uncertainty sampling does not improve upon the sample effi-
ciency of passive learning, if the Bayes optimal model has high error (Mussmann and Liang,
2018).

These prior results suggest that for noiseless data with vanishing Bayes error, an oracle-
based uncertainty estimate should consistently be more beneficial than uniform sampling.
In contrast, we show that for small query budget, active learning based on either empirical
or oracle uncertainty sampling often performs worse than passive learning. As shown in
Figure 1, we observe this phenomenon for logistic regression for a wide variety of high-
dimensional datasets. This failure case of uncertainty sampling is not explained by previous
theoretical analyses. Our proof reveals insights about this phenomenon, which we verify in
logistic regression experiments on real-world data.

2. Theoretical analysis of uncertainty sampling for high-dimensional data

In this section, we analyze uncertainty sampling for linear classifiers on a mixture of trun-
cated Gaussians, such that the data is guaranteed to be noiseless. We show that, in high
dimensions, uncertainty sampling can lead to higher test error than passive learning.

Prediction task and training data. In this paper we consider binary classification,
where the goal is to predict a label y ∈ {−1, 1} from covariates x ∈ Rd. We are interested
in finding a linear classifier x → sgn(x>θ̂) with low test error Err(θ̂) = 1

ntest

∑ntest
i=0 1[yi 6=

sgn(x>i θ̂)] on a holdout set Dtest = {(xi, yi)}ntest
i=1 .

Given a labeled training set D, a standard procedure for finding the parameters θ̂ of a lin-
ear classifier is to minimize the average logistic loss, i.e. θ̂ = arg minθ

1
|D|
∑

(x,y)∈D `(x
>θ, y)

where `(z, y) = log(1 + e−zy). For linearly separable data, minimizing the logistic loss with
stochastic gradient descent recovers the max-`2-margin (interpolating) solution (Soudry
et al., 2018; Ji and Telgarsky, 2019) which has been analyzed extensively in recent years
(Hastie et al., 2019; Javanmard and Soltanolkotabi, 2020; Donhauser et al., 2021, 2022).

Collecting the training set via uncertainty-based active learning. We consider
standard pool-based active learning and assume access to a finite but large unlabeled dataset
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Du = {xi}nui=1 of size nu (see Algorithm 1 in Appendix B). We start with a small seed set
Dseed = {(xi, yi)}nseed

i=1 of nseed labeled points sampled i.i.d. from the training distribution.
At each step n, we i) sample a point from the unlabeled data and add it to the labeled set
with its true label; and then ii) train a classifier on the current labeled set. The querying
steps are repeated nq times until we exhaust the labeling budget, i.e. n` = nseed + nq.

For querying, we focus on uncertainty sampling (see Appendix H.8 for other uncertainty-
based strategies). Uncertainty sampling selects the sample on which the classifier has the
highest predictive uncertainty. For linear models, we measure uncertainty using the inverse
distance to the decision boundary determined by θ̂ (Platt, 1999; Mussmann and Liang,

2018; Raj and Bach, 2021), i.e. ‖θ̂‖2
|θ̂>x|

. We also analyze oracle uncertainty sampling which

uses the ground truth θ? to compute uncertainty.

Data distribution. We consider a class-balanced problem with a mixture of two trun-
cated Gaussians as the marginal distribution of the covariates x ∈ Rd. The true labels are
given by y = sgn(θ?>x) ∈ {−1, 1}, with θ? = e1 = [1, 0, ..., 0] ∈ Rd.1 The ground truth θ?

achieves the optimal error of Err0−1(θ?) = 0. We can write the covariates like x = [x1, x̃],
where we explicitly separate the coordinates of x into a signal x1 ∈ R and non-signal compo-
nent x̃ ∈ Rd−1. We then write the class-conditional distribution of the covariates x = [x1, x̃]
as:

P1(x1|y) = Ntrunc(x1; yµ, σ2, y) and P̃(x̃|y) = N (x̃; 0, Id),

where µ, σ > 0 and Ntrunc(·; yµ, σ2, y) denotes the Gaussian distribution with mean yµ and
variance σ2 truncated to the interval (−∞, 0) if y = −1 and (0,∞) if y = 1. We note
that GMMs have often been used to prove various surprising behaviors of machine learning
algorithms (Tsipras et al., 2019; Frei et al., 2022).

Main results. Our main theoretical result provides a lower bound on the test error that
uncertainty and oracle uncertainty sampling incurs compared to uniform sampling.

We begin by noting that the error of a classifier parameterized by a vector θ ∈ Rd is
invariant to scaling θ by a positive constant. Therefore, we consider the set of parameters
with the first dimension normalized to one, i.e. the set {θ : θ = [1, αθ2:d], with ‖θ2:d‖2 = 1
and α ≥ 0}. Assuming the data distribution in Section 2, the error of a linear classifier θ is
fully determined by the relative weight of its first component, that is 1

α .

Recall that θ̂(D) denotes the max-`2-margin classifier trained on D. Let θ̂(Dseed) =
[1, αseedθ̂2:d] represent the classifier trained only on the seed set. We denote by d̂q the dis-

tance between the decision boundary of θ̂(Dseed) and the nth
q closest point in the unlabeled

set Du. Similarly, we define d?q as the distance between the decision boundary determined

by the ground truth θ? and the nth
q closest point in Du. Note that αseed, d̂q and d?q are deter-

ministic quantities for fixed Dseed and Du. We now state our main result (see Appendix C
for formal statement and proof).

Theorem 1 (informal) Let n` < d < nu Let Du and Dseed be datasets following the
distribution in Section 2. The error of the max-`2-margin classifier θ̂(D`) trained on a labeled
set D` is monotonically increasing in α. Moreover, for small fixed constants Cseed > 0 and
t > 0, we have that the following hold with high probability:

1. If θ? 6= e1, we can rotate and translate the data in order to get θ? = e1
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(a) Proof intuition in 2D.
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Figure 2: (a) 2D intuition for the failure of uncertainty-based active learning in high dimensions.
The classifier puts more weight on the non-signal dimension when trained on points close to the
ground truth (yellow). (b) MUS can be much lower than MPL for large enough σ, leading to worse
prediction error for high-dimensional settings with d� n`. (c) The bounds in Thm 1 (dashed lines)
show that uniform sampling leads to lower test error compared to uncertainty sampling. The trend
is confirmed by our simulations. We show the average (solid lines) over 3 different draws of the seed
set (transparent lines). See Appendix F for more experimental details.

1. the classifier obtained with uncertainty sampling has αuncert ≥ γUS
MUS

,

with γUS = Θ(
√
d/n`) and MUS = (nseedCseed + nq(d̂q +

√
2αseed log nu + t))/n`

2. the classifier obtained with oracle uncertainty sampling has αor ≥ γor
Mor

,

with γor = Θ(
√
d/n`) and Mor = (nseedCseed + nqd

?
q)/n`

3. the classifier obtained by uniform sampling has αunif ≤ γPL
MPL

,

with γPL = Θ(
√
d/n`) and MPL = µ− tσ/√n`

Lastly, if σ > µ/2, O(nq) <= nu < eΘ(d/n`) and µ > Θ((log nu)1/3(d/nseed)1/6), then with
non-trivial probability αuncert > αunif.

We now interpret the result of the theorem for oracle uncertainty sampling (a simi-
lar reasoning can be carried out for uncertainty sampling with empirical estimates). The
theorem indicates that uncertainty sampling has a higher test error than passive learning
if αor > αunif. Observe that in high dimensional settings (large d/n` ratio), it suffices to
compare the denominators MUS ,Mor,MPL to analyze the gap between uncertainty and
uniform sampling. The denominator of α has a geometric meaning: it upper bounds the
average distance of the points in the labeled dataset to the decision boundary determined
by the ground truth θ?. Therefore, sampling strategies that query points close to the true
decision boundary, like oracle uncertainty sampling, lead to a max-`2-margin classifier with
larger error.

Figure 2a illustrates the intuition for this phenomenon. The max-`2-margin classifier
puts more weight on the signal component when trained on points close to the ground truth
(blue) compared to points far from the ground truth (yellow). Hence, the test error in the
latter case is higher. Clearly, oracle uncertainty sampling performs particularly poorly as
it samples by definition points close to the true decision boundary. In contrast, uniform
sampling queries points with a signal component close to µ, on average.

For oracle uncertainty sampling, the dominating term in Mor is nqd
?
q , which can be

significantly lower than MPL ≈ µ for a small enough d?q . For the distribution that we
consider, increasing the variance of the Gaussian components in the mixture leads to more
points being close to the decision boundary. Hence, this leads to a smaller d?q , which in turn
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Figure 3: Top: The probability that the test error is lower with uniform sampling than with
uncertainty sampling, over 100 draws of the seed set. Uniform sampling outperforms uncertainty
sampling, for a significant fraction of the querying budgets and for all datasets (i.e. dark red regions).
See Appendix H.4 for more precise numerical values. Bottom: For the range of budgets where
uncertainty sampling does poorly with high probability, its sporadic gains over passive learning are
generally similar or lower than the losses it can incur in terms of increased test error.

causes Mor to be small. Indeed, we see in Figure 2b, that Mor decreases for larger σ, while
MPL is always close to µ � Mor. It follows then that for a large d/nu ratio, αor > αunif.
Finally, by the monotonicity of the error as a function of α, we get that uncertainty sampling
leads to higher error than uniform sampling, as illustrated in Figure 2c.

3. Experiments

We present logistic regression experiments on real-world datasets that confirm the insights
of our theory (see Appendix I for neural network experiments on image datasets).

Evaluation metrics. 2 We compare uncertainty-based active learning and passive learn-
ing with respect to two performance indicators. On the one hand, we measure the prob-
ability (over the draws of the seed set) that passive learning leads to a smaller test error
than uncertainty sampling, for each budget size between nseed and d/4. As revealed by Fig-
ure 3 (and Appendix H.4), the probability of uncertainty sampling outperforming uniform
sampling is oftentimes small in the low-sample regime, before it eventually becomes larger
than 50%, given a large enough query budget. The exact point where this transition occurs,
which we denote by ntransition, differs from dataset to dataset.

Furthermore, we compare the most significant gains of uncertainty sampling with its
most significant losses to gauge the magnitude of its failure compared to passive learning.

2. See also Appendix H.2 and H.5 for more evaluation metrics.
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Figure 4: Increasing the separation of the classes in the unlabeled dataset improves the performance
of uncertainty sampling. Removing the 25% or 50% closest points to the true decision boundary im-
proves uncertainty sampling (left) which now outperforms passive learning for many query budgets
(i.e. lighter colors), and even on challenging datasets like riccardo (right).

In particular, we focus on query budgets smaller than the transition point ntransition. For
each budget size n` ∈ {nseed, ..., ntransition} we compute the gap between the test error
obtained with uncertainty sampling and the test error of passive learning. We repeat this
procedure for several draws of the seed set and report the 95th percentile of the largest
positive and smallest negative gap between uncertainty and uniform sampling.

3.1 Main results

For most datasets, uncertainty sampling leads to a significant fraction of the labeling budgets
leads to poorer results, indicated by the red regions that occur especially in the lower
part of Figure 3-Top, for labeling budgets much smaller than the dimensionality. This
phenomenon is particularly pronounced for very high-dimensional datasets (the right hand
side of Figure 3-Top). We also observe the same trend for an ε-greedy uncertainty-based
approach (see Appendix H.8). Moreover, we notice that the test error gains of uncertainty
sampling are oftentimes much lower compared to the losses it can incur (for 9 datasets, the
median gain is lower than the median loss).

Theorem 1 suggests that having a larger separation margin between the classes can im-
prove the performance of uncertainty sampling in high dimensions. We verify this insight
on real-world datasets. To increase the separation between the classes we remove the 25%
or 50% closest samples to the decision boundary determined by θ?. We estimate the ground
truth by training a linear classifier on the full labeled dataset. Figure 4 shows that indeed,
if data is well-separated, uncertainty sampling performs significantly better in high dimen-
sions, even on challenging datasets e.g. riccardo. In addition, Appendix H.7 shows that
increasing the size of the seed set also improves performance, as predicted by our theory.

4. Conclusions

When acquiring new labeled data is costly, it is particularly important to not waste the
limited budget on samples that will only deteriorate predictive performance. Our results
suggest that uniform sampling is oftentimes a more beneficial strategy than uncertainty-
based active learning in high dimensions. It remains an open challenge to design a strategy
that outperforms uniform sampling in high dimensions.
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Appendix A. Related work

Prior analyses of uncertainty sampling. As already pointed out in Section 1, several
prior works show that uncertainty sampling performs remarkably well for a broad variety
of datasets and applications (Tong and Koller, 2001; Settles et al., 2007; Schohn and Cohn,
2000; Raj and Bach, 2021). Complementing these experimental observations, a number of
recent theoretical works analyze uncertainty sampling. For instance, (Raj and Bach, 2021)
show that a linear classifier trained on data collected via uncertainty sampling converges to a
solution with good generalization. Despite these positive results, a number of works (Schein
and Ungar, 2007; Lughofer and Pratama, 2017; Yang and Loog, 2018) show experimentally
that uncertainty sampling is sometimes not better than uniform sampling (i.e. passive learn-
ing). Indeed, Mussmann and Liang (2018) prove that the benefits of uncertainty sampling
are proportional to the Bayes error for a given low-dimensional data distribution. Further-
more, Huang et al. (2014) discuss the issues that arise due to the fact that the data acquired
via uncertainty sampling is not representative of the training distribution.

While these works paint a detailed picture of uncertainty sampling in low dimensions,
very little is known about how effective this sampling strategy is for high dimensional
data. In fact, experiments in Ducoffe and Precioso (2018); Sener and Savarese (2018); Shui
et al. (2020); Mahmood et al. (2021) suggest that margin-based sampling strategies for
neural networks are rarely better than uniform sampling for image data. Despite these first
indications of a serious shortcoming of uncertainty sampling in high dimensions, to the best
of our knowledge, no prior work has tried to investigate this phenomenon further (either
theoretically or empirically).

Related querying strategies. Not only is uncertainty sampling one of the most popular
sampling strategies (Settles, 2009), but it is also related to a number of other active learning
algorithms. For instance margin-based active learning (Scheffer and Wrobel, 2001; Ducoffe
and Precioso, 2018; Mayer and Timofte, 2020) or entropy sampling (Settles, 2009) are both
flavors of the same sampling procedure as uncertainty sampling. In addition, several works
propose to query points using a score that combines uncertainty and a measure of how
representative of the training distribution the samples are. These strategies too suffer from
the problems we expose in Section 2, as long as they sample points close to the true decision
boundary.

Relationship to semi-supervised learning. Both active learning and semi-supervised
learning (SSL) are suitable in similar settings, namely when both a small labeled set and
a large unlabeled set are available. Therefore, it is natural to wonder whether SSL could
in fact entirely solve the problems shown by active learning in high dimensions. The issue
with SSL, however, is that it requires strong assumptions to work well, while active learning
can decrease the labeled sample complexity exponentially compared to passive (supervised)
learning for a very broad family of distributions (Dasgupta, 2005; Beygelzimer et al., 2010;
Hanneke, 2013). For instance, Schölkopf et al. (2012) argues that SSL cannot improve over
supervised learning in causal learning problems (i.e. covariates x are a causal parent of the
predictor y), while active learning can still provide benefits in such scenarios. In particular,
we highlight that the shortcomings of uncertainty sampling that we reveal in this paper also
apply for causal learning problems, where SSL cannot be used either.
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Appendix B. Pseudocode for uncertainty sampling

Algorithm 1: Uncertainty sampling

Input: Seed set Dseed, Unlabeled set Du, Budget n`, Uncertainty function u
Result: Prediction model θ̂

1 D` ← Dseed
2 θ̂ ← arg minθ

1
|Dseed|

∑
(x,y)∈Dseed

`(θ̂>x, y)

3 for n ∈ {nseed + 1, ..., n`} do

4 xn ← arg maxx∈Du
u(x; θ̂)

5 yn ← AcquireTrueLabel(xn)
6 D` ← D` ∪ {(xn, yn)};Du ← Du \ {xn}
7 θ̂ ← arg minθ

1
|D`|

∑
(x,y)∈D`

`(θ̂>x, y)

8 return θ̂

Appendix C. Theorem 1 formal

In this section, we state and give the proof of the formal version of Theorem 1. We first
discuss some basic properties of the truncated Gaussian distribution and two stage uncer-
tainty sampling after which we state the formal version of Theorem 1. Thereafter, we state
the lemmas that we use for the proof. Lastly, we give the proof itself. The proofs of the
lemmas are given in Appendix E.

C.1 Properties of the truncated Gaussian distribution

Accuracy of a classifier To gain intuition, we start with a discussion on the accuracy
of a given classifier induced by a vector θ ∈ Rd, with θ = [1, αθ̃], where ‖θ̃‖2 = 1. Note that
the last d − 1 coordinates of any sample drawn from the truncated Gaussian distribution
are standard normal distributed. By definition, the error of the classifier θ is given by

Err0−1(θ) = P

[
yθ1x1 + y

d∑
i=2

θixi < 0

]
= P

[
yx1 + y

d∑
i=2

θi
θ1
xi < 0

]
,

where w.l.o.g. we assumed that θ1 > 0. Because the sum of Gaussian random variables is
again a Gaussian random variable, we find that y

∑d
i=2

θi
θ1
xi is Gaussian distributed with

a mean of zero and a standard deviation of σ̃ =
√
α2 + 1. Denote by Φ the cumulative

density function of the standard normal distribution. Using the known probability density
function of a truncated Gaussian and as all coordinates are independent, we find that the
test error is given by

Err0−1(θ) = Ψ(σ̃(α), µ, σ) =
1

2πσ̃σ(1− Φ(−µ/σ))

∫ ∞
0

∫ ∞
t

e−
(t−µ)2

2σ2 e−
l2

2σ̃2 dldt (1)

We can easily compute the expression in Equation 1 numerically. For convenience we state
two properties of Ψ here:

• Ψ is a monotonically increasing function of α.

• Ψ is monotonically decreasing for increasing µ.

8



Therefore, for fixed distributional parameters, µ and σ, we have that α fully characterizes
the error of the classifier. Indeed, in Theorem 1 we give upper bounds on α for uncertainty
sampling and oracle uncertainty sampling, and a lower bound for passive learning.

Mean and standard deviation Next, we state the known formulas for the mean and
standard deviation of a positive one sided truncated Gaussian random variable. The positive
one-sided truncated Gaussian distribution is defined as follows: we cut off a Gaussian with
mean µ and standard deviation σ to the interval [0,∞]. Clearly the mean of the truncated
Gaussian is slightly larger than the original Gaussian and the standard deviation slightly
smaller. Let φ be the probability density function of the standard normal distribution.
Then we find that the mean of the truncated Gaussian distribution is given by

µtr = µ+
σφ(−µ/σ)

1− Φ(−µ/σ)
(2)

and the standard deviation is given by

σtr = σ
(

1− µ

σ
φ(−µ/σ)/(1− Φ(−µ/σ))− (φ(−µ/σ)/(1− Φ(−µ/σ)))2

)
(3)

We now discuss two stage uncertainty sampling and how the result distinguishes from regular
uncertainty sampling.

C.2 Two stage uncertainty sampling

For oracle uncertainty sampling, we consider regular uncertainty sampling. However, as
in (Chaudhuri et al., 2015; Mussmann and Liang, 2018), we formally analyse the following
scheme, which Mussmann and Liang (2018) call two stage uncertainty sampling. First, we
uniformly sample a seed dataset of size nseed. Thereafter, we sample the n` − nseed closest
points to the classifier obtained by the seed, i.e. one step uncertainty sampling. We only
restrict to the two stage uncertainty sampling scheme for one step of the proof. Hence, the
bounds given in Theorem 1 and 2 may still provide good estimates for regular uncertainty
sampling. Indeed, in Figure 2c we see that the theorem also provides reasonable bounds for
regular uncertainty sampling.

C.3 Formal statement of Theorem 1

For ease of interpretation, we state the theorem in function of the parameters dq and αseed
that only depend on the small seed set. Moreover, we assume all points in D` to be support
points of the classifier θ̂(D`). Recall that we define dq to be the distance of the nq closest
samples to the decision boundary of the classifier obtained using the seed set and let αseed be
the α-parameter of θ̂(Dseed). We discuss the properties of dq, αseed and why the assumption
of support points holds in Appendix D. We are now able to state the formal version of the
main theorem.

Theorem 2 Assume we sample a dataset D` of size n` from an i.i.d. unlabeled dataset
of size nu drawn from the truncated Gaussian distribution, starting from a seed dataset of
size nseed also drawn from the truncated Gaussian distribution. Moreover, let nu > d > n`.
Then, the error of a given classifier is in the form of Ψ(σ̃(α), µ, σ), where Ψ is monotonically

9



increasing in α. Lastly, we assume that all points in D` are support points. We find for
Cseed = µtr + t σtr√

nseed
the following.

1. If D` is sampled using two-stage uncertainty sampling, then with a probability
greater than (1− 2e−t

2/2)3, we have that α ≥ γUS
MUS

with

MUS =
(
nseedCseed + nq(d̂q +

√
2αseed log nu + t)

)
/n` γUS =

√
d

n`
−
√

2 log nu − 1− t

2. If D` is sampled using oracle uncertainty sampling, then with a probability greater
than (1− e−t2/2)2 we have that α ≥ γor

Mor
with

Mor = (nseedCseed + nqd
?
q)/n` γor =

√
d

n`
− 1− t

3. If D` is sampled using uniform sampling, then with a probability greater than (1−
e−t

2/2)2, we have that α ≤ γPL
MPL

with

MPL = µ− tσ/
√
n` γPL =

√
d

n`
+ 1 + t

Note that Theorem 2 is the direct formalization of Theorem 1, besides for the direct
comparison of αuncert and αunif. We extent the Theorem with an informal corollary here,
for which we give the proof in Appendix C.6

Corollary 3 For the same setting as in Theorem 2. For an η > 0. If η2 >
n`
nq
η, σ > µη2,

nq/(0.8η2) < nu < eO(η2d/n`) and

µ >
1

(nqη2 − ηn`)2/3
n2/3
q (2 log nu)1/3(d/nseed + 1)1/6,

then with non-trivial probability two-stage uncertainty sampling has a higher test error than
passive learning.

Generalization to regular uncertainty sampling While we do not prove the state-
ment for regular uncertainty sampling, our bounds intuitively approximately hold for this
setting as well. In the case of regular uncertainty sampling, we replace dq with the largest
distance of a sample taken to the respective decision boundary, which by definition of the
query rule is likely small. Moreover, we then also replace αseed with the α for at each
iteration. For all queries where the classifier is not trivial α is reasonably small.
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C.4 Lemma statements

We now state the three lemmas that we use to prove Theorem 2. The first lemma provides
upper and lower bounds on the max-`2-margin in the last d − 1 coordinates of a labeled
dataset D` acquired by querying samples using any sample strategy and uniform sampling.
In particular, the lemma is tailored to the high dimensional regime, i.e. d > n`. Note that
the lemmas do not assume a sampling method and are hence also applicable to regular
uncertainty sampling.

Lemma C.1 [Non-signal margin of active learning] Let Du = {(xi, yi)}nui=1 be a dataset with
nu > d samples, where each entry of any xi is independent normal distributed. Moreover,
let yi be Bernouilli distributed with probability 1/2. Then, for nq < d − 1, any dataset

D` = {(xi, yi)}
nq
i=1 obtained by sampling from Du has with a probability of at least 1− e−

t2

2

an max l2-margin greater than

γ ≥

√
d

nq
−
√

2 log nu − 1− t.

Moreover, if we subsample uniformly, than with a probability of greater than 1 − 2e−t
2/2,

the margin is upper and lower bounded by√
d

nq
− 1− t ≤ γ̃ ≤

√
d

nq
+ 1 + t.

In the second lemma we look at the max average-`2-margin in the last d−1 coordinates
of a dataset acquired using uniform sampling. The max average-`2-margin of a dataset
D` = {(xi, yi)}n`i=1 is defined as

γavg = max
θ∈Rd,‖θ‖2=1

1

n`

n∑̀
i=1

yiθ
>xi (4)

Lemma C.2 (Upper bound on the average margin for uniform sampling) Let D` =
{(xi, yi)}n`i=1 with d > n` be a dataset of i.i.d. random vectors with random binary labels.

Then, with a probability greater than 1 − 2e
−
( √

dt√
n`
−1/d

)2

, the average margin γavg is upper
bounded by

γavg ≤

√
d

n`
+ t

Lastly, the third lemma gives concrete expression of the max-`2-margin classifier of a
dataset D` in function of the mean distance of the samples to the ground truth e1 and the
max-`2-margin classifier in the d − 1 last coordinates. The lemma formalizes the intuition
that query strategies which sample points close to the ground truth may lead to high test
errors.
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Lemma C.3 (Bound on the optimal classifier for active learning) Let D` = {(xi, yi)}n`i=1

be a dataset with a max-`2-margin of γ and a max average-`2-margin of γavg in the sub-
sequent d − 1 coordinates. Moreover, assume that the labels are given by the sign of the
first coordinate and that the first coordinate is almost surely non-zero. Lastly, assume that
all covariates of the dataset are support vectors of the max-`2-margin classifiers. Then, the
max-`2-margin solution is for a γavg ≥ b ≥ γ given by

θ̂ =

[
1,

b
1
n`

∑n`
i=1 yix1,i

θ̃

]
,

with ‖θ̃‖2 = 1.

C.5 Proof of Theorem 2

In this section, we prove the main theorem. The main theorem consists of three statements:
a lower bound on the value of α for uncertainty sampling and oracle uncertainty sampling,
and an upper bound on α for passive learning.

Let all points in the labeled dataset D` = {(xi, yi)}n`i=1 be support points: removing any
point from D` changes the max-`2-margin classifier. Then Lemma C.3 gives the following
bounds on α:

γ

x̄
≤ α ≤ γavg

x̄
, (5)

where x̄ = 1
n`

∑n`
i=1 yix1,i and γ, γavg are the the max-`2-margin and average max-`2-margin

respectively. Using Equation 5 and invoking Lemmas C.1 and C.2, we solely need to lower
bound x̄ for uniform sampling and upper bound it for two-stage and oracle uncertainty
sampling.

Seed set Note that the labeled dataset is given by the union of the seed set and the new
queried points, i.e. D` = Dseed ∪Dq. For convenience of notation, we define x̄seed and x̄q
as the mean distance of the samples to the optimal decision boundary (the plane defined
by the normal e1) of the seed and queried set respectively. Using these definitions, we find
that

x̄ = (nseedx̄seed + nqx̄q)/n` (6)

We now compute bounds on x̄seed and then consider bounds on x̄q for each case separately.
Recall that the CDF of the positive one-sided truncated Gaussian is given by

Φtr(x) =
1

1− Φ(−µ/σ)

(
Φ

(
x− µ
σ

)
− Φ(−µ/σ)

)
(7)

Let φ be the standard normal density function. Recall that a variable distributed according
to the one-sided truncated Gaussian distribution is a sub-gaussian random variable with a
mean and a standard deviation as defined in Equations 2 and 3 respectively. Hence, with a
probability larger than 1− e−t2/2, we have that

µ− t σ
√
nseed

≤ x̄seed ≤ µtr + t
σtr√
nseed

(8)
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Note that we have not used the approximation introduced by two-stage uncertainty sam-
pling yet. In the following, we aim to bound x̄q for which look at each sampling strategy
individually.

Oracle uncertainty sampling We start with oracle uncertainty sampling. By definition,
oracle uncertainty sampling queries the nq closest points to the optimal classifier indepen-
dently of the d − 1 last (non-signal) coordinates. As oracle uncertainty sampling queries
points independently of the last d− 1 coordinates, we can invoke Lemma C.1 for indepen-
dent uniformly drawn samples; we find that the max-`2-margin in the d−1 last coordinates
is lower bounded by

√
d/n`− 1− t with a probability larger than 1− 2e−t

2/2. Observe that
x̄q is in this case trivially upper bounded by dq. Hence, by Lemma C.3 and C.1, Equation
8 and 6 and the trivial bound dq ≥ x̄q, we have proven the first statement of the theorem.

Uncertainty sampling Next, we consider two-stage uncertainty sampling. First, we
find that the max-`2-margin in the last d − 1 coordinates of the labeled dataset D` is by

Lemma C.1 upper bounded by
√

d
n`
−
√

2 log nu − 1 − t with a probability greater than

1 − 2e−t
2/2. We now bound the value of x̄q with high probability. Let θ̂ = [1, αseedθ̃] with

‖θ̃‖2 = 1 be the classifier obtained on the seed set (θ̂(Dseed)). By definition dq > yθ̂>x for
all (x, y) ∈ D` \ Dseed. To circumvent the dependence of the classifiers on the unlabeled
dataset, we use the approximation of two-stage uncertainty sampling in the next step. By
the independence of θ̃ on all the samples in the unlabeled dataset and the union bound,
we find that max(x,y)∈Du αseedθ̃

>x2:d <
√

2αseed log nu + t with a probability greater than

1− 2e−t
2/2. Taking the sum dq + αseed max(x,y)∈Du yθ̃x, we find that

x̄q < dq +
√

2αseed log nu + t (9)

with a probability greater than 1 − 2e−t
2/2. Therefore, by Lemma C.3 and C.1, Equation

8, 6 and 9, we have proven the second statement of the theorem.

Uniform sampling Lastly, we lower bound x̄ for uniform sampling. Note that the seed
set is also uniformly sampled. Hence, the left side of Equation 8 directly gives us the high
probability lower bound. Using

C.6 Proof of Corollary 3

We compare αuncert and αunif using Theorem 2. For the corollary, we aim for a statement
in the form of: ”with non-trivial probability uncertainty sampling is worse than passive
learning”. Hence, we can set t = 0 and compute when αUS > αPL in this case. Clearly, by
Theorem 2:

γUS
MUS

>
γPL
MPL

⇐⇒ MUS

MPL
<

√
d/n` −

√
2 log nu − 1√

d/n` + 1
= 1−

√
2 log nu + 2√
d/n` + 1

Note that the right-hand side is approximately 1. We see that for some η > 0,

√
2 log nu + 2 + t√

d/n` + 1
< η ⇐⇒ nu < e(η

√
d/n`+1)2/2−1 = eO(η2d/n`+η

√
d/n`)
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Hence, if MUS
MPL

< 1− η and nu < eO(η2d/n`+η
√
d/n`) then αPL < αUS . Now, we have that

MUS

MPL
=
(
nseedCseed + nq(d̂q +

√
2αseed log nu)

)
/(µn`) < 1− η

Further, d̂q is by definition the distance of the nq closest point to the decision boundary of

θ̂(Dseed). We have that θ̂(Dseed) = [1, αseedθ̃]. As ‖θ̃‖2 = 1, any random point (x, y) in the
unlabeled dataset satisfies θ̃>x2,d = X for X ∼ N (0, 1). Hence, since the first coordinate is
distributed according to a truncated Gaussian with mean yµ and a standard deviation of
σ truncated at 0, we have that d̂q is largest for θ̂(Dseed) = θ? = e1. Then, for an η2 > 0 if

nu > nq/(0.8η2) and σ > η2µ + t, then d̂q < (1 − η2)µ with a probability larger than 0.8.

Using the bound on d̂q, we find that

MUS

MPL
< 1− η ⇐⇒ n`µ+ nq(−η2µ+

√
2αseed log nu) < (1− η)n`µ

Inserting the uniform bound on αseed, we get

MUS

MPL
< 1− η ⇐⇒ nq(2 log nu)1/2(d/nseed + 1)1/4 < (−ηn` + nqη2)µ3/2

Hence, if η2 >
n`
nq
η, σ > µη2, nq/(0.8η2) < nu < eO(η2d/n`+η

√
d/n`) and

µ >
1

(−ηn` + nqη2)2/3
n2/3
q (2 log nu)1/3(d/nseed + 1)1/6

then with non-trivial probability uncertainty sampling performs worse than uniform sam-
pling.

Appendix D. Dependence on the seed set

In this Section, we discuss the dependence on the seed set. In Theorem 2, we characterize
the test error of uncertainty, oracle uncertainty and uniform sampling in function of the seed
set and the unlabeled set. While the theorem hence explains the choice of the practitioner,
i.e. to use uncertainty sampling or not, we want to understand how the distributional
parameters σ and µ affect the seed set and the choice.

There are exactly two parameters in Theorem 2 that are fully determined by the seed
set: d?q , d̂q and αseed. We first define d?q , d̂q and αseed after which we discuss each parameter

for both (two-stage) uncertainty and oracle uncertainty sampling. We can define d?q , d̂q
equivalently as follows. Suppose we use the classifier induced by θ for the uncertainty
estimation. Then d̂q is the largest distance of the queried sample to the decision boundary
defined by θ. For θ we have three cases:

1. For oracle uncertainty estimation, we have θ = e1.

2. For two-stage uncertainty estimation, we have θ = θ̂(Dseed).

3. For regular uncertainty estimation, we have that θ changes at any iteration and is at
iteration n given by θ̂(Dn` ).

Secondly, αseed is defined as the α-parameter of the classifier based on the seed set, i.e.
θ̂(Dseed).
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Dependence on the seed set in the case of oracle uncertainty sampling Note that
the expression for oracle uncertainty sampling in Theorem 2 is independent of αseed. We
have that d?q is exactly the maximum distance to e1 of the queried samples. The distance
to e1 is fully defined by the first coordinates, which are truncated Gaussian distributed.
Clearly, the larger σ the smaller d?q as more samples in Du are close to e1. Recall that we
define the CDF of the one-sided Gaussian Φtr as in Equation 7. Then, for a β > 0, with a
probability of at least

1−
nq−1∑
i=0

(
nu
i

)
Φtr(β)i(1− Φtr(β))nu−i

we have that d?q < β.

Dependence on the seed set in the case of two-stage uncertainty sampling In
the case of two-stage uncertainty sampling, the expression is dependent on both αseed and
d̂q. We first discuss αseed after which we discuss d̂q.

Observe that if αseed −→ ∞, then the classifier induced by θ̂(Dseed) is independent of
the first coordinate. In that case, two-stage uncertainty sampling samples points uniformly
at random in the first coordinate. However, if θ̂(Dseed) achieves reasonable accuracy, then
αseed must be rather small. Note that the upper bound on passive learning also holds for
αseed where one sets n` = nseed. We now consider d?q .

We note that for a unlabeled large dataset, where the points are spread out (σ not
too small), we can always find points near the decision boundary of θ̂(Dseed). Indeed for
preciseness, we find that for an (x, y) ∈ Du

P [|θ̂(Dseed)>x| < β] =
1

2πσ̃(αseed)σ(1− Φ(−µ/σ))

∫ ∞
0

∫ −t+β
−t−β

e−
(t−µ)2

2σ2 e
− l2

2σ̃(αseed)
2 dldt

Using the expression on P [|θ̂(Dseed)>x| < β] we note that with a probability of

1−
nq−1∑
i=0

(
nu
i

)
P [|θ̂(Dseed)>x| < β]i(1− P [|θ̂(Dseed)>x| < β])nu−i

we have that d̂q < β. We see clearly that for increasing nu the probability exponentially

increases. Moreover, for larger σ, we have that P [|θ̂(Dseed)>x| < β] is larger as well.

Appendix E. Proofs of Lemmas

In this section, we give the proofs of Lemmas C.1, C.3 and C.2.

E.1 Proof of Lemma C.1

The proof of Lemma C.1 consists of two parts. In the first part we lower bound the extremal
singular values of the data matrix of D` using a classical result on random Gaussian matrices
and the union bound. In the second part we use the bounds on the minimal/maximal non-
zero singular value of the data matrix to obtain bounds on the minimal/maximal max
l2-margin, which concludes the proof.

15



Part 1: bounding the singular values We prove part 1 in two steps: first, we recall
bounds on the extremal singular values of random normal matrices. Then, we use the
union bound to compute bounds on the extremal singular values of non-random subsets of
columns of random matrices. For convenience, let Xu ∈ Rd×nu be the data matrix of the
dataset Du. Observe that by definition all entries of Xu are independent standard normal
distributed.

We use the following result on the maximal and minimal singular values of a matrix with
independent standard normal distributed entries. By Corollary 5.35 of Vershynin (2010),
the singular values of any i.i.d. normal distributed random matrix X` ∈ Rd×n` with d > n`
are lower and upper bounded by

√
d−
√
n` − t ≤ smin(X`) ≤ smax(X`) ≤

√
d+
√
n` + t (10)

with a probability greater than 1−2e−t
2/2. Note that there are exactlym = nu!

(nu−n`)!n`! ≤ n
n`
u

ways how a sampling strategy can choose a set of n` columns from Xu. Denote by X`,i the
standard normal matrix of size Rd×n` induced by the i− th subset. Using the union bound
we get

P

[
max
i∈[m]

smax(X`,i) > (
√

2 log nu + 1)
√
n` +

√
d+ t

]
≤ mP

[
smax(X`) >

(√
2 log nu + 1

)√
n` +

√
d+ t

]
(11)

We can simplify the expression using Equation 10 as follows

mP
[
smax(X`) > (

√
2 log nu + 1)

√
n` +

√
d+ t

]
≤ elog 2me|(

√
2 lognu

√
n`+t)

2/2

= elog(m)+log(2)−n` log(nu)−
√

2 lognu
√
n`−t2/2

≤ e−t2/2
(12)

This concludes the upper-bound on the maximum singular value of the data matrix.
Observe that by symmetry of the random variable, the same derivation holds for the minimal
singular value as well, which concludes the first part of the proof.

Part 2: Bounding the max-`2-margin We now use the upper and lower bounds on
the extremal singular values of the data matrices to derive upper and lower bounds on the
max-`2-margin of the dataset. The max-`2-margin of the dataset is given by

γ = max
θ∈Sd

min
(x,y)∈D`

yθ>x. (13)

We can rewrite the max-`2-margin using the data matrix X`.

γ = max
θ∈Sd

b

subject to θ>X` ≥ b1n` ,
(14)
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where the inequality is element-wise and 1n` denotes the all ones vector. Since n` < d
the max-`2-margin larger than 0, i.e. there exists a b > 0. Hence, there exists a vector
v ∈ Rnu , such that every entry is larger or equal than 1 and θ̂>X` ≥ bv. By the Eckat-
Young-Mirsky theorem, the solution of θ̂ must lie in the space spanned by the singular
vectors corresponding to the nonzero singular values. Hence, as ‖θ̂‖2 = 1, we have that
smin(X`) ≤ ‖γv‖2 ≤ smax(X`). Since all entries of v are larger or equal to 1, we find that

γ ≤ smax(X`)√
n`

, (15)

which using the upper bound on the singular value of Part 1 of the theorem yields the upper
bound on the max-`2-margin. For the minimal margin, note that γ‖v‖2 = smin(X`) implies
a minimal margin of

γ ≥ smin(X`)√
n`

(16)

Plugging in the bounds on the minimal singular values of the data matrix from Part 1 of
the proof yields the Lemma.

E.2 Proof of Lemma C.3

We split the proof of Lemma C.3 in two parts. In the first part we characterize the form of
the max-`2-margin classifier and in the second part we bound b.

The error of any classifier induced by a vector θ is invariant to a scaling. Hence, we can
write the max-`2-margin classifier in the form

θ̂ = [θ̂1, bθ̃], (17)

with ‖θ̃‖2 = 1. For convenience of notation we define ai = yiθ̃
>xi,2:d to be the distance of

each sample xi to the decision boundary of the max-`2-margin in the last d−1 coordinates.
By definition of support points, the distance of all points in the dataset to the max-`2-margin
classifier is equal. Therefore, the max-`2-margin is given by

γt =
1

‖θ̂‖2n`

n∑̀
i=1

yiθ̂1x1,i + byiθ̃xi,2:d

=
1√

θ̂2
1 + b2

x̄θ̂1 + bā
(18)

where we defined x̄ as the average signal component in the first coordinate of the dataset
and ā the average distance to the decision boundary of the max-`2-margin classifier in the
d− 1 last coordinates. As γt is the max-`2-margin, we need to optimize b and θ̂1 for γt. We
get that θ̂1 = x̄ and b = ā. Hence, the max-`2-margin is in the form of

θ̂ = [x̄, āθ̃]. (19)

It is left to prove that γavg ≥ ā ≥ γd−1.
By definition the maximum average-`2-margin γavg is bigger than the average margin of

the max-`2-margin ā. Let εi > 0 be such that x1,i = x̄εi. By definition of the average, we
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find that 1
n`

∑n`
i=1 εi = 1. Analogously, define ηi ∈ R such that yiθ̃

>xi;2:d = āηi, which also

yields that 1
n`

∑
ηi

= 1. Then, using that support points have equal margin to the classifier,
we find for any x ∈ D` that

yθ̂>x = x̄2εi + ā2ηi = x̄2 + ā2. (20)

Further, let θd−1 be the max-`2-margin classifier and γd−1 the max-`2-margin in the d−1 last
coordinates of the dataset. Then, there exists an orthonormal matrix Q ∈ R(d−1)×(d−1) such
that Qθ̃ = θd−1. Moreover define the vector η = [η1, ..., ηn` ] and let Xd−1 ∈ R(d−1)×n` be
the data matrix of the dataset in the last d−1 coordinates where each column is multiplied
by the respective label of the sample. By the definition of Q, we have that

Qθ̃>Xd−1 = Qāη = γd−11n` . (21)

Comparing the norms yields

ā‖Qη‖2 =
√
n`γd−1 ⇐⇒

‖η‖2√
n`

=
γd−1

ā
(22)

Since
∑n`

i=1 ηi = n`, we have that ‖η‖2 ≥
√
n`. Hence, ā > γd−1 and the Lemma is proven.

E.3 Proof of Lemma C.2

The max average-`2-margin is defined as

γavg = max
θ∈Sd−1

1

n`

n∑̀
i=1

yiθ
>xi

= max
θ∈Sd−1

θ1

n`

n∑̀
i=1

yixi,1 + ...+
θd
n`

n∑̀
i=1

yixi,d

(23)

Since all xi are independent standard normal distributed random variables, we have that
1
n`

∑n`
i=1 xi,j is a normal distributed random variable with a variance of 1√

n`
and mean 0.

Using standard probability theory, we find that for every sum we the absolute value is
greater than 1√

n`
+ t√

d
with a probability smaller than 2Φ(−

√
n`
d t −

1
d). Now, recall that

‖θ‖2 = 1, then we find that with a probability smaller than 2dΦ(−
√

n`
d t −

1
d) the average

margin is larger than
√

d
n`

+ t, which concludes the proof.

Appendix F. Further synthetic experiments

In this section, we give the experimental details to the synthetic experiments in Figures 2
and 2b. Moreover, we further empirically discuss the dependency on the standard deviation
parameter σ and the µ for the truncated mixture model.

F.1 Experimental details

In all synthetic experiments, we use the SGDClassifier of the Scikit-learn library Pedregosa
et al. (2011) with the following settings: we set the learning rate to be a constant of 10−4
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Figure 5: (a) Uncertainty sampling collects labeled sets with a smaller average margin in the signal
component as σ increases. (b) As the average margin of a set acquired via uncertainty sampling is
smaller for increasing σ, the test error deteriorates, as predicted by Theorem 1. The test error of
uncertainty sampling can even be larger than that of uniform sampling, for large enough σ. We use
d = 1000, µ = 3 and nu = 105 for all the experiments in this figure. The shaded areas indicate one
standard deviation bands around the mean error, computed over 5 random draws of the seed set.

and train for at least 104 epochs without regularization. Moreover, we set the tolerance
parameter to 10−5 and the maximum number of epochs to 106. In all experiments, we
consider regular uncertainty sampling as defined in Algorithm 1.

We now give the experimental details for the experiments on the mixture of Gaussians.
For the experiments in Figure 2c on the truncated , we take d = 20000, nu = 104, nseed = 4,
σ = 5 and µ = 10 and query for 70 samples. For the theoretical lines, we take d̂q small
enough. To estimate Mor in Figure 2b, we set d = 10k, µ = 20, σ = 10 and estimate d?q by
taking the average over 10 sets. In Figures 5 and 6, we set d = 1000, σ = 3,µ = 3, nu = 105

and nseed = 10 unless specified otherwise on the figure.
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Figure 6: We set d = 1000, µ = 3 and nu = 105. The shaded areas indicate one standard
deviation bands around the mean error, computed over 5 random draws of the seed set. Observe
that for increasing seed size the gap between uncertainty and uniform sampling closes, but does
not vanish. Note that we study the high-dimensional regime and hence only consider seed sizes up
to d/4. Therefore, seed size larger than d may fully close the test error gap between uniform and
standard sampling.
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F.2 Dependence on the standard deviation σ and seed size nseed

For the truncated Gaussian mixture model, we illustrate the dependence on the variance
and the seed size with following experiments. To simulate realistic settings, we set d = 1000,
nu = 105, nseed = 10, σ = 3 and µ = 3.

First, we perform a set of experiments to analyze the dependence on the variance σ
and to also confirm to main intuition empirically. We compute the average distance to the
decision boundary of the ground truth θ? of a labeled set acquired through uncertainty
and uniform sampling. Indeed, in Figure 5a we see that the average margin of uncertainty
sampling decreases with increasing σ. Moreover, we note that uncertainty sampling indeed
queries points close to the optimal decision boundary. In Figure 5b we observe that, as
predicted by Theorem 1, the decrease of the average margin gap is directly correlated with
an increase of the error gap between uncertainty and uniform sampling. Hence, our main
intuition is also here empirically verifiable: uncertainty sampling queries points relatively
close to the ground truth, which causes in high dimensions the max-`2-margin classifier to
rely more on the non-signal components to classify the training data.

Secondly, we perform a set of experiments to an analyze the dependence on the seed size
nseed. In Figure 6, we see that the test error gap between uncertainty and uniform sampling
closes slowly for an increasing seed size. However, we note that the gap remains non-zero
for all seed sizes up to d/4.

Appendix G. Experiment details

G.1 Datasets

To assess how suitable uncertainty sampling is for high dimensional data, we conduct ex-
periments on a wide variety of real-world datasets.

We select datasets from OpenML Vanschoren et al. (2013) and from the UCI data
repository Dua and Graff (2017) according to a number of criteria. In particular, we focus
on datasets for binary classification that are high dimensional (d > 100) and which have
enough samples that can serve as the unlabeled set (nu > max(1000, 2d)). We do not
consider text or image datasets where the features are sequences of characters or raw pixels
as estimators other than linear models are better suited for these data modalities (e.g.
CNNs, transformers etc). Instead we want to analyze uncertainty sampling in a simple
setting and thus focus on datasets that are (approximately) linearly separable. Moreover,
we discard datasets that have missing values. Finally, we are left with 15 datasets that
cover a broad range of applications from finance and ecology to chemistry and histology.
We provide more details about the selected datasets in Appendix G.3.

To disentangle the effect of high-dimensionality from other factors such as class imbal-
ance, we subsample uniformly at random the examples of the majority class, in order to
balance the two classes. In addition, to ensure that the data is noiseless, we fit a linear clas-
sifier on the entire dataset, and remove the samples that are not interpolated by the linear
estimator. This noiseless setting is advantageous for active learning, since we are guaran-
teed to not waste the limited labeling budget on noisy samples. However, as we show later,
even under these favorable circumstances, the performance of uncertainty sampling suffers
in high dimensions. For completeness, we also compare uncertainty sampling and passive

20



Dataset name d Training set size Test set size Majority/minority ratio Linear classif. training error

a9a 123 39074 9768 3.17 0.1789
vehicleNorm 100 78823 19705 1.00 0.1415
nomao 118 27572 6893 2.50 0.0531
santander 200 160000 40000 8.95 0.2188
webdata wXa 123 29580 7394 3.16 0.1813
sylva prior 108 11516 2879 15.24 0.0011
real-sim 20958 57848 14461 2.25 0.0027
riccardo 4296 16000 4000 3.00 0.0007
guillermo 4296 16000 4000 1.49 0.2536
jasmine 144 2388 596 1.00 0.1867
madeline 259 2512 628 1.01 0.3405
philippine 308 4666 1166 1.00 0.2445
christine 1636 4335 1083 1.00 0.1408
musk 166 5279 1319 5.48 0.0438
epsilon 2000 48000 12000 1.00 0.0947

Table 1: Some characteristics of the uncurated datasets considered in our experimental
study.

learning on the original, uncurated datasets in Appendix H.1 and observe similar trends as
in this section.

G.2 Methodology

We split each dataset in a test set and a training set. The covariates of the training samples
constitute the unlabeled set. We assume that the labels are known for a small seed set of
size nseed = 6 (see Appendix H.7 for experiments with larger seed sets). For each experiment
and each dataset, we repeat the draw of the seed set several times (10 or 100, depending
on the experiment).

For illustration purposes, we set the labeling budget to be equal to a quarter of the
number of dimensions.3 We query one point at a time and select the sample whose label
we want to acquire either via uniform sampling (i.e. passive learning) or using uncertainty
sampling (i.e. active learning).

We use L-BFGS Liu and Nocedal (1989) to train linear classifiers by minimizing the lo-
gistic loss on the labeled dataset. In Appendix H.6 we show that the same high-dimensional
phenomenon occurs when using `1- or `2-regularized classifiers.

G.3 More dataset statistics

In this section we provide details about the real-world datasets that we consider in our
experimental study. Table 1 summarizes some important characteristics of the datasets.
The datasets span a wide range of applications (e.g. ecology, finance, chemistry, histology
etc). All datasets are high-dimensional (d ≥ 100) and have sufficiently many training
samples that will serve as the unlabeled set. The test error is computed on a holdout
set, whose size we report in Table 1. We also present the class-imbalance of the original,

3. Since the real-sim dataset has over 20,000 features, we set a labeling budget lower than d/4, namely of
only 3,000 queries, for computational reasons.
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Figure 7: Top: The probability that the test error is lower with uniform sampling than with
uncertainty sampling, over 10 draws of the seed set. Data is class-balanced, but potentially
not linearly separable. Bottom: For the range of budgets where uncertainty sampling does
poorly with high probability, its sporadic gains over passive learning are generally similar
or lower than the losses it can incur in terms of increased test error. Data is class-balanced,
but potentially not linearly separable.

uncurated datasets and the training error of a linear classifier trained on the entire dataset,
which indicates the degree of linear separability of the data.

Appendix H. Additional logistic regression experiments

H.1 Experiments on uncurated data

For completeness, in this section we provide experiments on the original, uncurated datasets.
We distinguish two scenarios: 1) balanced data, but not necessarily linearly separable; and
2) possibly imbalanced and not linearly separable data.

Balanced, but non-linearly separable data. As indicated in Appendix G.3, not all
datasets are originally linearly separable. For clarity, in the experiments in the main text we
curate the data such that a linear classifier can achieve vanishing training error. This is pro-
vides a clean test bed for comparing uncertainty and uniform sampling in high-dimensions.
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Figure 8: Top: The probability that the test error is lower with uniform sampling than with
uncertainty sampling, over 10 draws of the seed set. Data is potentially class-imbalanced and
not linearly separable. Bottom: For the range of budgets where uncertainty sampling does
poorly with high probability, its sporadic gains over passive learning are generally similar
or lower than the losses it can incur in terms of increased test error. Data is potentially
class-imbalanced and not linearly separable.

In Figure 7 we keep the datasets class-balanced, but allow them to be potentially not
linearly separable. We observe similar trends as the ones illustrated in Figure 3 for the
noiseless versions of the datasets.

Imbalanced and non-linearly separable data. Uncertainty sampling brings about
surprising benefits when applied on high-dimensional imbalanced data. In particular, Fig-
ure 8 shows that for a broad range of query budgets uncertainty sampling leads to better test
error than uniform sampling. For these experiments we did not alter the original datasets
in any way, and kept all the training samples.

These results reveal a perhaps unexpected phenomenon. Even when the unlabeled data
is imbalanced (see Appendix G.3 for the exact imbalance ratio of each dataset), uncertainty
sampling tends to select more points from the minority class, and hence, it collects a more
balanced labeled set which then allows for training a classifier with better accuracy. We
leave as future work a more thorough analysis of this phenomenon.
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H.2 Test error at different query budgets – more datasets

We compare the test error of uniform and uncertainty sampling, similar to Figure 1, but
for more real-world datasets. For uncertainty sampling, we use both oracle uncertainty and
the uncertainty of f(·; θ̂) as shown in Algorithm 1. Figure 9 show that oracle uncertainty
sampling consistently leads to larger test error compared to passive learning on all datasets.
In addition, using the uncertainty determined by the max-`2-margin classifier also leads to
worse prediction performance, in particular on the high-dimensional datasets and for small
query budgets. For illustration and computational purposes, we limit the query budget to
min(3000, d/4).
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Figure 9: The test error using uncertainty sampling (with or without an oracle uncertainty
estimate) is often higher than what is achieved with uniform sampling, for all the datasets
that we consider.

H.3 Uniform versus oracle uncertainty sampling

In this section we provide the counterpart of Figure 3, but now we use an oracle uncertainty
estimate for the active learning algorithm (Figure 10). The gap between uncertainty and
uniform sampling is even more significant when using the oracle uncertainty estimate, which
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is in line with the intuition provided in Section 2. Oracle uncertainty sampling will select
samples close to the ground truth (i.e. the yellow points in Figure 2a). Hence, the decision
boundary of the classifier trained on the labeled set collected with active learning will be
tilted compared to the ground truth, as long as the query budget is significantly smaller
than the dimensionality.
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Figure 10: The probability that the test error is lower with uniform sampling than with
oracle uncertainty sampling, over 10 draws of the seed set. Oracle uncertainty sampling
performs consistently worse than passive learning (the dark red regions).

H.4 More details regarding Figure 3

In Figure 3-Top we provide an overview of the gap that exists between uncertainty and
uniform sampling in high dimensions. Here, we provide a more detailed perspective of the
same evaluation metric. Each panel in Figure 11 corresponds to one column in Figure 3.
The horizontal dashed line indicates the 50% threshold at which the event that uncertainty
sampling performs better is equally likely to its complement. Notice that in all figures
the solid line starts at 0, since before any queries are made, both uniform sampling and
uncertainty sampling yield the same test error, namely the error of the max-`2-margin
classifier trained on the seed set. We note that the spikes in the lines in Figure 11 come
from the fact that for different seed sets, uncertainty sampling may start to underperform
at different iterations. Hence, aggregating over several seed sets can lead to non-smooth
lines like in the figure.

In addition, in Figure 12 we summarize each of the panels in Figure 11 in a box plot that
offers yet another perspective on this experiment. Notably, the boxes are fairly concentrated
for all datasets, confirming that the gap between the test error with uniform and uncertainty
sampling stays roughly the same for any query budget nq ∈ {nseed, ..., d/4}. Note that here
the probability is over the draws of the seed set, and the box plots show percentiles of the
distribution over query budgets for each dataset.

For these experiments we use the predictive uncertainty of f(·; θ̂) as shown in Algo-
rithm 1. In Figure 3-Bottom we show the largest gains and losses of uncertainty sampling
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Figure 11: The probability that active learning via uncertainty sampling performs worse
than passive learning at different query budgets. The empirical probability is computed
over 100 draws of the initial seed set.

for query budgets nq ∈ {nseed, ..., ntransition}, where ntransition is defined as the budget af-
ter which uncertainty sampling is always better than uniform sampling with probability at
least 50%. In other words, one can read ntransition off Figure 11 as the leftmost point on the
horizontal axis for which the solid line intersects the horizontal dashed line. For datasets
that never intersect the 50% dashed line, we take ntransition = d/4 conservatively. This is
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Figure 12: Box plot of the distribution of P(Err[PL] < Err[AL]) over query budgets nq ∈
{nseed, ..., d/4}.

more advantageous for uncertainty sampling, as larger query budgets tend to lead to larger
gains over uniform sampling.

H.5 Fraction of budgets for which active learning underperforms

An alternative to using the metric illustrated in Figure 3-Top and in Appendix H.4 is to
instead compute the fraction of the query budgets for which active learning performs worse
than passive learning. In Figure 13 we present this evaluation metric for all the datasets
that we consider. The box plot indicates the distribution over 100 draws of the initial seed
set. For all datasets and with high probability over the draws of the seed data uncertainty
sampling underperforms on a large fraction of the query budgets between nseed and d/4.
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Figure 13: Fraction of the query budgets between nseed and d/4 for which the error with
uncertainty sampling is worse than with uniform sampling. The box plot indicates the
distribution over 100 draws of the seed set (median, lower and upper quartiles).

Note that the fences of the box plots that almost cover the entire [0, 1] range are a
consequence of having a large number of runs (i.e. 100). The whiskers indicate the minimum
and maximum values and they will be more extreme, the larger the set over which we take
the minimum/maximum is.
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H.6 Experiments with regularized estimators

The failure case of uncertainty-based active learning that we discuss in this paper is not
limited to the situation when we use interpolating estimators. Indeed, as we show here,
even regularization in the form of an `2 or `1 penalty still leads to classifiers with high test
error when the data is collected using uncertainty sampling. Note that a smaller coefficient
C corresponds to stronger regularization.

Figures 14 and 15 indicate that for strong enough regularization, the gap between the
test error of uncertainty and uniform sampling vanishes. This outcome is expected since
stronger regularization leads to a poorer fit of the data, and hence, classifiers trained on
different data sets (e.g. one collected with uncertainty sampling and another collected with
uniform sampling) will tend to be similar. The downside of increasing regularization is, of
course, worse predictive performance. For instance, for an `1 penalty and a coefficient of
0.01, the test error is close to that of a random predictor (i.e. 50%) an all datasets for both
uniform and uncertainty sampling. For moderate regularization, there continue to exist
broad ranges of query budgets for which uncertainty sampling underperforms compared to
passive learning.
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Figure 14: The probability that the test error is lower with uniform sampling than with
uncertainty sampling, over 10 draws of the seed set. We use an `2-regularized classifier
for both prediction and uncertainty estimation.
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Figure 15: The probability that the test error is lower with uniform sampling than with
uncertainty sampling, over 10 draws of the seed set. We use an `1-regularized classifier
for both prediction and uncertainty estimation.
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H.7 Experiments with different seed set sizes

In Figure 16 we present experiments on real-world datasets where we vary the size of
the initial seed set. Our empirical findings confirm the trend predicted by our theory:
uncertainty sampling leads to better performance for large seed set sizes, but underperforms
for small seed sets.
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Figure 16: As predicted by our theory, increasing the seed size leads to improved perfor-
mance when using uncertainty sampling to acquire new labeled samples.

H.8 Combining uncertainty sampling and representativeness

In this section we provide evidence that the shortcoming of uncertainty sampling that we
identify in this paper also extends to other active learning strategies that try to balance
exploration and exploitation. In particular, we focus on an ε-greedy strategy which samples
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points using uncertainty with probability 1−ε, and samples points uniformly at random with
probability ε. Hence, this approach combines selecting informative samples via uncertainty
sampling with collecting a labeled set that is representative of the training distribution.
This strategy resembles the works of Huang et al. (2014); Yang et al. (2015); Gissin and
Shalev-Shwartz (2019); Shui et al. (2020).
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Figure 17: The probability that the test error is lower with uniform sampling than with
an ε-greedy sampling approach, over 10 draws of the seed set. The active learning strategy
preforms uncertainty sampling, with probability 1 − ε and samples uniformly at random
with probability ε.

We notice in Figure 17 that for different values of ε, active learning continues to perform
worse than passive learning. Varying ε between 0 and 1 effectively interpolates between
vanilla uncertainty sampling and uniform sampling. This explains why the test error gap
between the ε-greedy strategy and uniform sampling gets smaller as ε increases (e.g. for
ε = 1 the gap will always be 0, i.e. all cells would be white).
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H.9 Coreset-based active learning

In this section we investigate whether the coreset-based sampling strategy proposed in Sener
and Savarese (2018) can perform better than uniform sampling in low-sample regimes. We
follow the same active learning methodology as described in Section 3, but use the greedy
algorithm from Sener and Savarese (2018) to select queries. We use the Euclidean distance
for our experiments.

Figure 18 shows that for a large fraction of query budgets, passive learning tends to have
lower error than coreset-based active learning. We hypothesize that this behavior is due
to not constraining the queried points to lie far from the ground truth decision boundary.
Hence, the high-dimensional phenomenon that we describe in Section 2 still occurs.
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Figure 18: The coreset strategy of Sener and Savarese (2018) also fails to outperform passive
learning consistently in the low-sample regime.

Appendix I. Experiments on image datasets

In this section we describe our experiments on image datasets in which we explore the
limitations of uncertainty sampling for low query budgets.

I.1 Experiment details

We consider 3 standard image datasets: CIFAR10 (Krizhevsky, 2009), CIFAR100 (Krizhevsky,
2009), SVHN (Netzer et al., 2011). In addition to these, we also run experiments on a binary
classification task for medical images (PCAM (Veeling et al., 2018)) and on a 10-class task
on satellite images (EuroSAT (Helber et al., 2017)). For prediction and for the uncertainty
estimates we use ResNet18 networks (He et al., 2016) and start from weights pretrained on
ImageNet. To get the oracle uncertainty estimates, we train on the entire labeled training
set for each dataset until the training error reaches 0. We consider batch active learning, as
usual in the context of deep learning, and set the batch size to 20 (experiments with larger
batch sizes lead to similar results). For each dataset, we start from an initial seed set of 100
labeled examples and perform 50 queries. Hence, the largest query budget that we consider
is of 1100 labeled samples. After each query step, we fine-tune the ResNet18 model for 20
epochs, and achieve 0 training error. For fine-tuning we use SGD with a learning rate of
0.001 and momentum coefficient of 0.9.

31



CIFAR10 SVHN CIFAR100 PCAM EuroSAT
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

P(Err[PL] < Err[AL])

%
 o

f 
m

ax
 b

ud
ge

t
(m

ax
 b

ud
ge

t 
=

 1
10

0)

CIFAR10 SVHN CIFAR100 PCAM EuroSAT

−0.05

0

0.05

0.1

0.15

0.2
Largest AL gains (i.e. 95th percentile
over seed sets) of (Err[PL] - Err[AL]))
Largest AL losses (i.e. 95th percentile
over seed sets) of (Err[AL] - Err[PL]))

Te
st

 e
rr

or
 g

ap

Figure 19: Top: The probability that the test error is lower with uniform sampling than
with uncertainty sampling, over for 10 different random seeds. Uniform sampling outper-
forms uncertainty sampling, for a significant fraction of the querying budgets and for all
datasets (i.e. dark red regions). Bottom: For the range of budgets where uncertainty sam-
pling does poorly with high probability, its sporadic gains over passive learning are generally
similar or lower than the losses it can incur in terms of increased test error (negative values
indicate that PL is always better than AL).

I.2 Summary of results

As illustrated in Figure 19, uncertainty sampling leads to significantly larger test error
compared to passive learning. This phenomenon persists even when we use an oracle uncer-
tainty (Figure 20). Moreover, the gains that uncertainty sampling can produce, are often
dominated by the losses that it can incur.
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Figure 20: Same experiment as in Figure 19, but this time using oracle uncertainty.
Similar to the logistic regression experiments, uncertainty sampling leads to even worse
error when using oracle uncertainty, as also predicted by our theory.
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