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Abstract

Neural network based methods have recently gained popularity for the problem of optimiza-
tion of expensive blackbox functions. Many of such methods are based on extensions of the
classical ideas of Thompson Sampling (TS), Upper Confidence Bound (UCB), Expected
Improvement (EI), to neural networks. However, these techniques lack either in achieving
the right balance between exploration and exploitation, or are computationally expensive,
resulting in poor practical performance. In this work, we empirically demonstrate that
explicitly performing EI, TS, or UCB on neural networks is not essential. A simple greedy
algorithm that fits a neural network to the current set of observations, and uses the learned
network as the acquisition function to determine the next query point, often performs quite
well. Our key insight is that such a greedy algorithm implicitly samples from a Gaussian
process in wide neural networks. We use this insight to derive regret bound of our algorithm
in the infinite-width limit and show that it depends on the eigen-spectrum of the Neural
Tangent Kernel. Through extensive experiments, we show that the greedy algorithm com-
pares favorably to GPs and outperforms several neural network based blackbox optimization
techniques.

1. Introduction

Global optimization of expensive blackbox functions is an important problem with applications
in a number of engineering and scientific disciplines (Snoek et al., 2012; Romero et al., 2013;
Ueno et al., 2016; Papalexopoulos et al., 2021). For example, hyper-parameter tuning (Snoek
et al., 2012; Falkner et al., 2018) and neural architecture search (Kandasamy et al., 2018).
Owing to its importance, numerous techniques have been proposed to find the global optimum
of blackbox functions (Mockus, 1982; Huang et al., 2006; Kleinberg et al., 2008; Srinivas
et al., 2009). Of these, Bayesian Optimization (BO), and in particular GP optimization, has
been quite successful in practice, and is the de facto technique in the industry (Golovin et al.,
2017), owing to the simplicity and expressivity of GPs. They are easy to use, and impose
minimal structural assumptions on the unknown blackbox function.
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Figure 1: Plots show the confidence bands estimated by various neural network based
BBO techniques on a 1D (noiseless) blackbox function. NeuralLinTS, NeuralUCB are the
techniques developed by Snoek et al. (2015); Zhou et al. (2020) respectively. SimpleSMB is
our greedy technique. It can be seen that our confidence bands are narrower for points close
to observations.

Despite its success, GP optimization faces issues with scale and flexibility. In particular, the
computational complexity of GPs scales cubically with the number of function evaluations
(Liu et al., 2020). This makes GPs less appealing in high-dimensional search spaces when
a large number of function evaluations are often needed to identify a good solution. In
addition, GPs are not easily extendable to structured domains involving objects such as
images, audio, text, and graphs (Van der Wilk et al., 2017; Kandasamy et al., 2018). The
design of appropriate kernels for such structured objects is problem specific and is still
an ongoing research problem with state-of-the-art structured kernels not as performant as
modern neural feature representations (Kim et al., 2021).

An emerging line of work has tried to address these issues by developing neural network
(NN) based blackbox optimization techniques (Springenberg et al., 2016; Riquelme et al.,
2018; Zhou et al., 2020; Kim et al., 2021). These approaches use NNs as their surrogate
models, and rely on standard acquisition functions such as EI (Jones et al., 1998), TS (a.k.a
posterior sampling) (Thompson, 1933; Russo and Van Roy, 2014), UCB (Agrawal, 1995)
to determine the next query point. The computational complexity of these approaches
typically grows linearly with the number of function evaluations, making them attractive
for high-dimensional problems. In addition, these techniques can be easily extended to
structured domains involving objects such as images, audio, and graphs, for which we have
neural architectures that can encode priors from the domain (for instance, convolutional
neural networks).

One of the key challenges in designing NN based approaches lies in extending the classical
ideas of EI, TS, UCB to neural networks. For instance, UCB and EI require construction of
valid confidence intervals for the unknown function. While this is easy for simple models such
as linear models (Chu et al., 2011), constructing such intervals is highly non-trivial for complex
models such as neural networks. TS, on the other hand, require computing the posterior
distribution of Bayesian Neural Networks (BNNs), which, again, is non-trivial (Springenberg
et al., 2016). Existing approaches overcome these issues by relying on a variety of heuristics.
Snoek et al. (2015); Xu et al. (2020) perform LinearUCB/LinearTS on top of the representation
of the last layer of the neural network. Zhang et al. (2020); Zhou et al. (2020) work in the
infinite-width limit of NNs, where the networks can be viewed as linear models, and perform
LinearUCB/LinearTS on the “linearized networks”. However, both these heuristics have
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several drawbacks: (a) they often lead to conservative confidence bands, which in turn reduces
the speed of convergence of the algorithm (see Figure 1), (b) some of these techniques are
computation and memory intensive as they involve manipulation of large matrices with sizes
quadratic in the number of NN parameters, in each iteration (Zhang et al., 2020; Zhou et al.,
2020), (c) some are geared towards finite search spaces and their extension to continuous
domains is non-trivial (Zhang et al., 2020). Another heuristic that is often used involves
mimicking the posterior distribution of BNNs using ensembles of NNs (Riquelme et al., 2018;
Kim et al., 2021). However, this heuristic requires a large number of models in the ensemble
to get a good approximation of the posterior distribution.

In this work, we show that one need not explicitly estimate the confidence sets or posterior
distributions for NN based blackbox optimization. We show that a simple greedy algorithm
which fits a NN to the current set of observations, and uses the learned network as the
acquisition function achieves better performance than existing NN based approaches. A
crucial aspect of our algorithm is that we train our neural network surrogate model from
scratch in each iteration, and rely on stochastic gradient descent with randomly initialized
weights. Our key insight is that such an approach mimics GP sampling and Thompson
sampling in wide neural networks (He et al., 2020; Lee et al., 2019).

Blackbox Optimization. In blackbox optimization (BBO), our aim is to minimize a
(potentially non-convex) function f∗ over an action space X , given only zeroth-order oracle
access to the function. That is, the only information about f∗ comes via querying the oracle
at a point x ∈ X ⊆ Rd and observing y = f∗(x)+ξ. Here, ξ is the independent noise, sampled
from the Gaussian distribution N (0, σ2

∗). The special case of σ2
∗ = 0 is called noiseless BBO.

Further background and related work on Gaussian processes, Bayesian optimization, and
wide neural networks can be found in Appendices A and B.

2. Greedy Algorithm

We now present our greedy algorithm for Blackbox Optimization (BBO) (shown in Algo-
rithm 1). Our algorithm has three key hyper-parameters: initialization weight variance γ,
noise variance σ2, and scale parameter ν. γ dictates the kind of surrogate models we fit to
the data. Smaller values of γ lead to smoother surrogate models and larger values lead to
less smoother models. The scale parameter ν controls the exploration-exploitation trade-off
(set to 1 in our experiments). Larger values lead to more exploration.
There are two key steps in our algorithm, namely surrogate model building step (line 7 of Al-
gorithm 1) and the acquisition step (line 8). Our acquisition step simply involves minimizing
the learned surrogate model. The first surrogate model builder we consider is SimpleSMB
which is described in Algorithm 2. For the noiseless case, where σ2 = 0, this algorithm simply
fits a neural network to the observed data by minimizing the squared ℓ2 loss. The network
is learned using (stochastic) gradient descent with the parameters randomly initialized us-
ing NTK initialization scheme described in Appendix A. In the noisy case, the algorithm
regularizes the learned network to prevent over-fitting. Without regularization, the learned
network interpolates the data, which leads to undesirable behavior. To avoid this, we use
two forms of regularization in our algorithm. The first one involves perturbing the response
variables {yi}ni=1 with Gaussian noise. The second one is the “distance-from-initialization”
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term (line 3) which biases the learned network to stay close to the initialization. Both these
forms of regularization play a key role in our algorithm. In Appendix C, we show that
training the network in this way is equivalent to sampling from GPs in the infinite-width limit.

Algorithm 1 Neural Greedy

Input: NN initialization weight variance γ, noise variance σ2, scale parameter ν, budget T ,
surrogate model building sub-routine: SurrModelBuilder

1: Initialization: D0 = {}
2: for t = 1, · · · , Te do ▷ Random Exploration Phase
3: Sample xt randomly from the domain
4: Query blackbox function at xt and obtain yt
5: Dt ← Dt−1 ∪ {(xt, yt)}
6: for t = Te + 1, · · · , T do ▷ Greedy Phase
7: f̃t ← SurrModelBuilder(Dt−1, γ, σ

2, ν)
8: xt ← argminx∈X f̃t(x)
9: Query blackbox function at xt to obtain yt

10: Dt ← Dt−1 ∪ {(xt, yt)}
11: return ybest = min({yt}Tt=1)

Algorithm 2 Simple Surrogate Model Builder (SimpleSMB)

Input: Data {(xi, yi)}t−1
i=1, initialization weight variance γ, noise variance σ2, scale parameter

ν
1: Add i.i.d noise to targets: y′i = yi + νϵi, where ϵi ∼ N (0, σ2)
2: Initialize θ0 ∼ NTK-Init(γ) ▷ Random weight initialization
3: Solve minθ

∑t−1
i=1(y

′
i−νf(xi, θ))

2+σ2ν2∥θ−θ0∥22 using GD/SGD with θ0 as initialization,
and obtain θt

4: return ν × f(·, θt)

Discussion. While we show that Algorithm 1 results in a sample from a GP, and works
well in practice (as shown in Section 3), it doesn’t perform posterior sampling with respect
to any kernel. We propose a slight modification to SimpleSMB called PosteriorSMB
based on recent developments in wide neural network theory (He et al., 2020) which results
in a posterior sample with respect to the neural tangent kernel in the infinite-width limit.
At a high level, this method perturbs the surrogate model of SimpleSMB with a random
function that helps us sample from the posterior distribution. Further details about this
method can be found in Appendix D.
Both the forms of regularization used in Algorithm 2 have been studied in the literature
in various contexts. For instance, Nagarajan and Kolter (2019) showed that controlling
∥θ − θ0∥2 helps in better generalization of the learned network. Kveton et al. (2020) studied
reward perturbations in the context of GLM bandits. However, reward perturbation alone
doesn’t suffice for NNs. Not using ∥θ − θ0∥2 can lead to networks with poor generalization
and wider confidence bands which slows down the convergence of bandit algorithm (see
Section C for more details).
Kannan et al. (2018) studied a greedy algorithm for linear contextual bandits. Unlike our
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algorithm which perturbs the response variables, their algorithm perturbs the context vectors
(this corresponds to perturbing the actions x ∈ X in BBO setting). Riquelme et al. (2018)
studied a neural greedy algorithm for contextual bandits. Their algorithm constructs the
surrogate model by minimizing the following objective

∑n
i=1(yi − f(xi, θ))

2, and determines
the next query point by minimizing the learned surrogate model. While this might look
similar to our algorithm, their algorithm differs from ours in two crucial aspects: (a) their
algorithm doesn’t differentiate noisy and noiseless settings and uses the same surrogate
model builder for both, (b) they only update their surrogate model once every 20 steps,
and more importantly, they don’t train the model from scratch in each iteration. They
instead warm-start the training with the previous surrogate model. We note that training
the surrogate model from scratch in each iteration, with random initialization, is crucial as it
helps us explore the search space better (see Section C). In a recent work, Papalexopoulos
et al. (2021) used a neural greedy algorithm to solve constrained, discrete BBO problems.
However, they only considered noiseless setting and did not provide any theoretical insights
for the algorithm.
In Algorithm 1 we have an exploration phase that lasts for Te rounds. We note that this
is not the same as the exploration phase of classical explore-then-commit (ETC) algo-
rithms (Slivkins, 2019). Te in our algorithm is independent of T (typically ≤ 10). Whereas,
the number of exploration rounds needed in ETC algorithms to achieve non-trivial regret
guarantees (i.e., o(T ) regret) scales polynomially with T .

Theory. Theoretical analysis of SimpleSMB and PosteriorSMB can be found in Ap-
pendix Appendices C and D.1.

3. Experiments

In this section, we present experimental results showing the effectiveness of the proposed BBO
algorithms. Due to space constraints, our focus here is on the noiseless setting. Experimental
results for the noisy case can be found in the Appendix F.
Experiment Setup. We run our experiments on a set of synthetic functions that are
commonly used in blackbox optimization benchmarking and competitions (Loshchilov and
Glasmachers, 2015; Hansen et al., 2021). The functions we chose vary in dimensionality,
modality, smoothness, and structure (more details about them can be found in Appendix F.3).
The budget T for each function was set based on the number of dimensions: functions of
higher dimensions were allocated more rounds.
Compared algorithms. We compare our proposed Algorithms (SimpleSMB, PosteriorSMB)
with several baselines: GP-EI (Jones et al., 1998), NeuralLinTS (Xu et al., 2020), NeuralUCB
(Zhou et al., 2020), NeuralEnsembles (Kim et al., 2021). We perform a grid search for each
compared algorithm and present the results with the best found hyper-parameters. A further
description about the baselines, implementation and hyper-parameter search can be found in
Appendix F.
Results. The plots for the minimum value observed over iterations is shown in Fig 2 for the
noiseless case. The results for the noisy case can be found in Appendix E. It can be seen
that the SimpleSMB has the best performance over all the neural network based techniques,
and has similar (if not better) performance as GP-EI. Moreover, while PosteriorSMB is
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Figure 2: The plots show the minimum value observed over iterations for various baselines
on the blackbox functions. The dimensionality of the blackbox functions is provided in
parenthesis.

better than all the neural baselines, it has slightly worse performance than SimpleSMB.
The experimental results indicate the effectiveness of neural networks in BBO, especially in
higher dimensions.

4. Conclusion

In this work, we presented two simple neural-greedy algorithms for global optimization of
expensive BB functions. Unlike existing works, our algorithms do not explicitly construct
confidence intervals or perform posterior sampling. They instead greedily fit a surrogate
model to the observed data and use the learned model as the acquisition function to determine
the next query point. Our main approach SimpleSMB adds random perturbations to the
target variable, whereas PosteriorSMB adds random perturbations to both the target
variable and the output. We connect our algorithms to GPs and Thompson sampling in
the infinite-width limit of NNs to derive regret bounds. Lastly, experimental results show
that our algorithms have better performance than other neural baselines and achieve similar
performance as GP-EI, which is the gold standard for blackbox optimization. Future work
and limitations of our approach are discussed in Appendix G
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Appendix A. Preliminaries

Blackbox Optimization. In blackbox optimization (BBO), our aim is to minimize a
(potentially non-convex) function f∗ over an action space X , given only zeroth-order oracle
access to the function. That is, the only information about f∗ comes via querying the
oracle at a point x ∈ X ⊆ Rd and observing y = f∗(x) + ξ. Here, ξ is the independent
noise, sampled from the Gaussian distribution N (0, σ2

∗). The special case of σ2
∗ = 0 is called

noiseless BBO. The performance of a BBO algorithm is measured using one of the following
criteria

Simple Regret: min
t∈[T ]

f∗(xt)−min
x∈X

f∗(x), Cumulative Regret:
T∑
t=1

f∗(xt)−min
x∈X

f∗(x),

where x1, x2, . . . , xT are the sequence of points queried by the algorithm.

Gaussian Processes. A GP over X , denoted by GP(µ,K), is a collection of random
variables {f(x)}x∈X such that the joint distribution of every finite subset {f(xi)}ni=1 of them
is multivariate Gaussian with mean E [f(xi)] = µ(xi) and covariance Cov(f(xi), f(xj)) =
K(xi, xj) (Rasmussen, 2003). Here, µ,K are the mean and covariance functions of the GP.
In this work, we assume µ = 0 for GPs not conditioned on the data.

In BBO, GPs are often used to place a prior distribution over the unknown blackbox function
f∗. Suppose, we observe n datapoints D = {(xi, yi)}ni=1, where yi = f∗(xi) + ξi is the output
of the zeroth-order oracle when queried at xi. Conditioned on D, the posterior distribution
over f∗ is again a GP with the following mean and covariance functions

µn(x) = KxXn

(
KXnXn + σ2I

)−1 Yn, Kn(x, x
′) = Kxx′ −KxXn

(
KXnXn + σ2I

)−1KXnx′ ,

where Xn = [xi]
n
i=1,Yn = [yi]

n
i=1. Here, KxXn ∈ R1×n with ith entry given by K(x, xi), and

KXnXn ∈ Rn×n with (i, j)th entry given by K(xi, xj).

Acquisition functions play a key role in BBO, as optimizing them helps us decide the next
query point. The following acquisition functions are commonly used with GPs, and are
known to achieve a good balance between exploration and exploitation: (a) αUCB(x;D) =
µn(x)+νn

√
Kn(x, x), (b) αTS(x;D) = f(x), where f is randomly sampled from the posterior

GP(µn, ν
2
nKn), and (c) αEI(x;D) = Ef∼GP(µ,K) [max(0, ybest − f(x))|D] . Here, νn is a scale

parameter that controls the exploration, and ybest = min({yi})ni=1.

Neural Networks. In this work, we study neural network based BBO algorithms. We
consider feed-forward networks f(x, θ) with L hidden layers and dl neurons in the lth hidden
layer. Such a neural network can be defined using the following recurrence relation

α(l+1)(x, θ) = ϕ

(
σW√
dl
W (l)α(l)(x, θ) + σbb

(l)

)
, f(x, θ) =

σW√
dL

W (L)α(L)(x, θ) + σbb
(L),

with α(0)(x, θ) = x. Here, W (l) ∈ Rdl+1×dl , b(l) ∈ Rdl+1 are the weights of layer l, with d0 = d,
dL+1 = 1. ϕ is the elementwise nonlinearity (we set it to tanh in our experiments), and the
hyper-parameters γ = (σW , σb) are the weight and bias variances. This particular parameter-
ization of neural network is called Neural Tangent Kernel (NTK) parameterization (Jacot
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et al., 2018). In this parameterization, the weights θ = {W (≤L), b(≤L)} are initialized by
generating i.i.d samples from N (0, 1). We consider this particular initialization scheme in
this work.

Infinite-width limit of NNs. Suppose the weights of a NN are initialized to θ0 using
the random initialization scheme described above. For sufficiently wide networks (a.k.a.
NTK regime), the outputs {f(x, θ0)}x∈X ′ , for any finite set X ′, converge to a multivariate
Gaussian distribution (Lee et al., 2017). To be precise, such randomly initialized networks
correspond to a GP with mean 0 and the following covariance function KNN(x, x′) =
limmin(d1,d2...dL)→∞ E [f(x, θ0)f(x

′, θ0)].

Now, let’s suppose we train the network to minimize the following squared loss over the
training dataset {(xi, yi)}ni=1:

∑n
i=1(f(xi, θ) − yi)

2. Suppose we randomly initialize the
network at θ0 and use gradient descent (GD) to minimize the objective. For sufficiently
wide networks and small enough step-size, the GD iterates {θt}t>0 stay close to θ0 (Lee
et al., 2019). Consequently, the NN can be well approximated using the following linear
model: f(x, θt) ≈ f(x, θ0) + ⟨∇θf(x, θ0), θt − θ0⟩. Letting ϕ(x) = ∇θf(x, θ0), the kernel
Θ̂(x, x′) = ⟨ϕ(x), ϕ(x′)⟩ is called the empirical NTK kernel. Note that Θ̂ is a random quantity.
In the NTK regime, Θ̂(x, x′) converges in probability to a deterministic quantity Θ(x, x′),
which is called the NTK kernel (Arora et al., 2019b). As a consequence, GD on wide networks
can be viewed as performing kernel regression in the Reproducing Kernel Hilbert Space
(RKHS) associated with Θ. For large t, Lee et al. (2019) showed that the neural network
f(·, θt) (which is a random function that depends on θ0), can be viewed as being sampled
from a GP with the following mean and covariance functions

µn(x) = ΘxXnΘ
−1
XnXn

Yt, KNNGD
n (x, x′) = KNN(x, x′) + ΘxXnΘ

−1
XnXn

KNN
XnXn

Θ−1
XnXn

ΘXnx′

−
(
ΘxXnΘ

−1
XnXn

KNN
Xnx′ + h.c.

)
,

where “+h.c.” is the Hermitian conjugate of its preceding term, and Xn = [xi]
n
i=1,Yn = [yi]

n
i=1

are the features and response variables in the training dataset. Note that KNN,Θ, and KNNGD
n

all depend on the variance hyper-parameter γ.

Appendix B. Related Work

BBO. Global optimization of expensive blackbox functions is an extremely well studied
problem. Numerous techniques have been proposed for this problem over the years. We
review some of the relevant literature below.
Structural Assumptions. One category of works impose structural assumptions on the
unknown blackbox function f∗. For instance, Filippi et al. (2010); Agrawal and Goyal (2013)
assume f∗ is a linear function. Kveton et al. (2020) assume f∗ can be modeled using a
generalized linear model (GLM). Several works assume convexity of f∗ (Agarwal et al., 2011;
Shamir, 2013; Belloni et al., 2015; Bach and Perchet, 2016).
No Structural Assumptions. The second category of works impose minimal assumptions
on f . Kleinberg et al. (2008); Bubeck et al. (2009) impose Lipschitz continuity on f∗. In
GPs, it is typically assumed that f∗ lies in an RKHS (Srinivas et al., 2009; Chowdhury
and Gopalan, 2017). As previously mentioned GPs do not scale well to high-dimensional
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problems. Consequently, several works have attempted to speed-up GP inference (Liu et al.,
2020; Calandriello et al., 2020)
NN based approaches. A recent line of work assumes f∗ is a neural network. While this
might look like a structural assumption, it actually is not because NNs have the power to
arbitrarily approximate any continuous function. Early works relied on Bayesian neural
networks (BNN) to impose a prior over the unknown blackbox function (Springenberg
et al., 2016). These techniques relied on exact posterior sampling to compute acquisition
functions such as EI. A variety of algorithms have been developed for posterior sampling on
BNNs. These include Hamiltonian Monte Carlo (Neal, 2012), stochastic gradient Langevin
MCMC (Korattikara Balan et al., 2015), variational inference methods (Graves, 2011). A
drawback with these techniques is that they are very complex to implement in practice with a
large number of hyper-parameters. In addition, many of these techniques provide conservative
estimates of the uncertainty for points that are far from the observed data (Springenberg
et al., 2016). Recent works considered wide neural networks and relied on NTK theory
to develop UCB and TS algorithms for neural networks (Zhang et al., 2020; Zhou et al.,
2020). Another class of approaches have relied on heuristics such as performing LinearUCB,
LinearTS using features from a neural network (Snoek et al., 2015; Xu et al., 2020) or relying
on ensembles to mimic posterior sampling (Kim et al., 2021; Lakshminarayanan et al., 2017).

Infinite-width limit of Neural Networks. Wide NNs and their infinite-width limits have
gained attention of late. Lee et al. (2017); Matthews et al. (2018) showed that wide NNs at
initialization are equivalent to GPs. Jacot et al. (2018); Arora et al. (2019b) showed that
training wide NNs (with random initialization that leads to zero or small initial outputs)
using gradient descent is equivalent to performing kernel ridge regression with NTK kernel.
Lee et al. (2019) showed that gradient descent on randomly initialized wide NNs is equivalent
to sampling from GPs. NTK theory was extended from feed forward networks to other
architectures such as convolutional networks (Arora et al., 2019b), graph neural networks (Du
et al., 2019). Arora et al. (2019a) derived generalization bounds for 2 layer wide networks,
that rely on NTK kernel. Eldan et al. (2021) derived non-asymptotic rates for the speed at
which finite-width NN training approaches the NTK regime.

Appendix C. Theoretical analysis of SimpleSMB in the infinite-width
limit

In this section, we study our algorithm in the infinite-width limit of NNs. We show that in
each iteration of Algorithm 1, the learned network θt is sampled from a GP.

Proposition 1 Suppose the width of the NNs used in the Algorithm 1 approaches infinity;
that is, min(d1, d2 . . . dL)→∞. Suppose GD with small enough step size is used to optimize
the surrogate model objective ( i.e., line 3 of Algorithm 2). Consider the (t+ 1)th iteration of
the algorithm, for any t ≥ Te. Conditioned on Dt and the past randomness, the surrogate
model f̃t+1 can be viewed as being randomly sampled from a GP with the following mean and
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covariance functions

µt(x) = ΘxXt

(
ΘXtXt + σ2I

)−1 Yt,

KNNGD
t (x, x′) = ν2KNN(x, x′)− ν2

(
ΘxXt

(
ΘXtXt + σ2I

)−1KNN
Xtx′ + h.c.

)
+ ν2ΘxXt

(
ΘXtXt + σ2I

)−1 (KNN
XtXt

+ σ2I
) (

ΘXtXt + σ2I
)−1

ΘXtx′ ,

where KNN,Θ are defined in Section A. Here Xt = {xi}ti=1, and Yt = {yi}ti=1.
Discussion. The variance function KNNGD

t (x, x) is usually large at points far away from the
observed points Xt. This helps our algorithm explore unobserved areas of the action space.

Instead of retraining the surrogate model from scratch at each iteration, suppose we warm-
start Algorithm 2 with the surrogate model from the previous step (as done in Riquelme
et al. (2018)). Then the variance of θt+1 conditioned on the history is 0, and the algorithm
wouldn’t perform any exploration. This would in turn lead to poor performance. This is also
evident in the experiments of Riquelme et al. (2018). Next, let’s suppose we do not use the
regularization term ∥θ− θ0∥2 in Algorithm 2. Then a simple calculation shows that the mean
function µt(x) is equal to ΘxXtΘ

−1
XtXt
Yt. When evaluated at the observed points Xt, this

gives us µt(Xt) = Yt. This shows that without the regularization term, the mean function
interpolates the noisy data and leads to over-fitted models. Next, let’s suppose we do not
perturb the targets {yi}ni=1 in Algorithm 2. The covariance function KNNGD

t (x, x′) in this
case is similar to the one in Proposition 1, except for one difference:

(
KNN

XtXt
+ σ2I

)
in the last

term is replaced by KNN
XtXt

. That is, not perturbing the targets results in narrow confidence
bands which can lead to poor exploration. This shows that both forms of regularization are
important for the algorithm to achieve good performance.

While our algorithm samples from a GP in each iteration, it doesn’t perform Thomp-
son/posterior sampling. TS would require us to sample from a GP with the following mean
and covariance functions

µt(x) = ΘxXt

(
ΘXtXt + σ2I

)−1 Yt, Kt(x, x
′) = ν2Θxx′ − ν2ΘxXt

(
ΘXtXt + σ2I

)−1
ΘXtx′ .

In section D, we present a modification to our algorithm which lets us sample from the above
GP. Nevertheless, despite the lack of correspondence between our algorithm and GP-TS, our
algorithm achieves better performance than existing neural network based BBO techniques
(see Section 3).

C.1 Proof of Proposition 1

Since we are in the infinite width limit, the iterates of GD with small enough step size stay
close to the initialization θ0 (Lee et al., 2019). So, the following first order approximation
is accurate: f(x, θ) = f(x, θ0) + ⟨ϕ(x), θ − θ0⟩, where ϕ(x) = ∇θf(x, θ0). Under this
approximation, it suffices to study the following objective

min
θ

t∑
i=1

(
y′i − νf(xi, θ0)− ν ⟨ϕ(xi), θ − θ0⟩

)2
+ σ2ν2∥θ − θ0∥22.
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This objective can equivalently be written as

min
θ

t∑
i=1

(yi
ν

+ ϵi − f(xi, θ0)− ⟨ϕ(xi), θ − θ0⟩
)2

+ σ2∥θ − θ0∥22.

Let ϕ(Xt) = [ϕ(x1)
T ;ϕ(x2)

T . . . ]T be the matrix obtained by stacking the vectors {ϕ(xi)}ti=1

vertically. Let f(Xt, θ) = [f(x, θ)]x∈Xt , Yt = [yi]
t
i=1, and ϵ = [ϵi]

t
i=1. The minimizer θt+1 of

the above objective satisfies the following first order optimality conditions

ϕ(Xt)
T

(
ϕ(Xt)(θt+1 − θ0) + f(Xt, θ0)− ϵ− Yt

ν

)
+ σ2(θt+1 − θ0) = 0.

Rearranging the terms, we get

θt+1 = θ0 +
(
ϕ(Xt)

Tϕ(Xt) + σ2I
)−1

ϕ(Xt)
T

(
Yt
ν

+ ϵ− f(Xt, θ0)

)
.

Combining this with the linear approximation above, gives us the following expression for
our surrogate model f̃t+1(x) = νf(x, θt+1)

νf(x, θ0) +
〈
ϕ(x),

(
ϕ(Xt)

Tϕ(Xt) + σ2I
)−1

ϕ(Xt)
T (Yt + νϵ− νf(Xt, θ0))

〉
.

Expectation. Consider any finite set X ′ ⊆ X . We now compute the mean function
µt(X ′) = E

[
f̃t+1(X ′)|Dt,Ht

]
, where Ht denotes the randomness from the past iterations.

µt(X ′) = νE
[
f(X ′, θ0)|Dt,Ht

]
+ νϕ(X ′)

(
ϕ(Xt)

Tϕ(Xt) + σ2I
)−1

ϕ(Xt)
TE [ϵ− f(Xt, θ0)|Dt,Ht]

+ ϕ(X ′)
(
ϕ(Xt)

Tϕ(Xt) + σ2I
)−1

ϕ(Xt)
TYt.

Since f(·, θ0) ∼ GP(0,KNN) and ϵ is independent zero-mean Gaussian noise, the first two
terms in the RHS above are 0. This shows that

µt(X ′) = ϕ(X ′)
(
ϕ(Xt)

Tϕ(Xt) + σ2I
)−1

ϕ(Xt)
TYt

(a)
= ϕ(X ′)ϕ(Xt)

T
(
σ2I + ϕ(Xt)ϕ(Xt)

T
)−1 Yt

(b)
= ΘX ′Xt(σ

2I +ΘXtXt)
−1Yt,

where (a) follows from Woodbury matrix identity1, and (b) follows from the fact that
⟨ϕ(x), ϕ(x′)⟩ converges in probability to the NTK kernel Θ(x, x′). This proves the first part
of the Proposition.

1. (A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)V A−1. Here, A ∈ Rn×n, C ∈ Rk×k, U, V T ∈ Rn×k

11



Covariance. To simplify the notation, we define Mt =
(
ϕ(Xt)

Tϕ(Xt) + σ2I
)−1

. Consider
any finite set X ′ ⊆ X . The covariance function is given by

KNNGD
t (X ′,X ′) = E

[(
f̃t+1(X ′)− µt(X ′)

)(
f̃t+1(X ′)− µt(X ′)

)T
|Dt,Ht

]
(a)
= ν2E

[ (
f(X ′, θ0)− ϕ(X ′)Mtϕ(Xt)

T f(Xt, θ0)
)

(
f(X ′, θ0)− ϕ(X ′)Mtϕ(Xt)

T f(Xt, θ0)
)T |Dt,Ht

]
+ σ2ν2ϕ(X ′)Mtϕ(Xt)

Tϕ(Xt)Mtϕ(X ′)T ,

where (a) follows from the fact that θ0, ϵ are independent of each other and E[ϵϵT ] = σ2I.
Consequently, the cross terms involving θ0, ϵ are equal to 0. First consider the second term
in the RHS above. Using Woodbury matrix identity on Mt, together with the fact that
⟨ϕ(x), ϕ(x′)⟩ converges in probability to Θ(x, x′), it can be written as

ϕ(X ′)Mtϕ(Xt)
Tϕ(Xt)Mtϕ(X ′)T = ΘX ′Xt(σ

2I +ΘXtXt)
−2ΘXtX ′ .

Next, consider the first term

E
[(
f(X ′, θ0)− ϕ(X ′)Mtϕ(Xt)

T f(Xt, θ0)
) (

f(X ′, θ0)− ϕ(X ′)Mtϕ(Xt)
T f(Xt, θ0)

)T |Dt,Ht

]
= E

[
f(X ′, θ0)f(X ′, θ0)

T |Dt,Ht

]
+ ϕ(X ′)Mtϕ(Xt)

TE
[
f(Xt, θ0)f(Xt, θ0)

T |Dt,Ht

]
ϕ(Xt)Mtϕ(X ′)T

− ϕ(X ′)Mtϕ(Xt)
TE

[
f(Xt, θ0)f(X ′, θ0)

T |Dt,Ht

]
− E

[
f(X ′, θ0)f(Xt, θ0)

T |Dt,Ht

]
ϕ(Xt)Mtϕ(X ′)T

(a)
= KNN

X ′X ′ + ϕ(X ′)Mtϕ(Xt)
TKNN

XtXt
ϕ(Xt)Mtϕ(X ′)T

− ϕ(X ′)Mtϕ(Xt)
TKNN

XtX ′ −KNN
X ′Xt

ϕ(Xt)Mtϕ(X ′)T

(b)
= KNN

X ′X ′ +ΘX ′Xt(σ
2I +ΘXtXt)

−1KNN
XtXt

(σ2I +ΘXtXt)
−1ΘXtX ′

−ΘX ′Xt(σ
2I +ΘXtXt)

−1KNN
XtX ′ −KNN

X ′Xt
(σ2I +ΘXtXt)

−1ΘXtX ′ ,

where (a) follows from the definition of KNN (recall, KNN(x, x′) = E[f(x, θ0)f(x′, θ0)]), and
(b) follows from Woodbury matrix identity. Substituting the above two expressions in the
expression for KNNGD

t (X ′,X ′) gives us the required result.

Appendix D. Posterior Corrected Greedy Algorithm

In this section, we present a slight modification to Algorithm 2 that let’s us perform posterior
sampling in the infinite-width limit. This modification was originally proposed by He et al.
(2020) for constructing deep Bayesian ensembles. In this work, we use it for BBO. This
modification involves adding a random perturbation δ(x) =

〈
∇θf(x, θ0), θ̃0

〉
to the neural

network f(x, θ). Here, θ0, θ̃0 are random weights generated using NTK initialization, with
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the last layer weights of θ̃0 set to 0. Observe that δ(x) doesn’t have any trainable parameters.
All the trainable parameters in f(x, θ) + δ(x) come from the first term. The rest of the
algorithm for building the surrogate model remains the same as Algorithm 2, and involves
finding a θ that minimizes the regularized least squares objective (see Algorithm 3 for details).

Algorithm 3 Posterior Corrected Surrogate Model Builder (PosteriorSMB)

Input: Data {(xi, yi)}t−1
i=1, initialization weight variance γ, noise variance σ2, scale parameter

ν
1: Add i.i.d noise to targets y′i = yi + νϵi, where ϵi ∼ N (0, σ2)
2: Initialize θ0, θ̃0 ∼ NTK-Init(γ)
3: Set the last layer parameters in θ̃0 to 0.

4: Let δ(x) =
〈
∇θf(x, θ0), θ̃0

〉
5: Solve minθ

∑t−1
i=1(y

′
i − νf(xi, θ) − νδ(xi))

2 + σ2ν2∥θ − θ0∥22 using GD/SGD with θ0 as
initialization, and obtain θt

6: return ν × (f(·, θt) + δ(·))

D.1 Theoretical analysis of PosteriorSMB in the infinite-width limit

Similar to section C, we first present the following result which connects our algorithm to
GPs and Thompson sampling. The proof of this proposition follows from a similar result
proved in He et al. (2020).

Proposition 2 Suppose Algorithm 1 is run with Algorithm 3 as the surrogate model builder.
Suppose the width of the NNs used in the algorithm approaches infinity; that is, min(d1, d2 . . . dL)→
∞. Suppose GD with small enough step size is used to optimize the surrogate model objective
( i.e., line 5 of Algorithm 3). Consider the (t+ 1)th iteration of the algorithm, for any t ≥ Te.
Conditioned on Dt and the past randomness, the surrogate model f̃t+1 can be viewed as being
randomly sampled from a GP with the following mean and covariance functions

µt(x) = ΘxXt

(
ΘXtXt + σ2I

)−1 Yt,

KNNGD-PC
t (x, x′) = ν2Θxx′ − ν2ΘxXt

(
ΘXtXt + σ2I

)−1
ΘXtx′ .

This shows that our algorithm is equivalent to performing GP-TS with NTK kernel, in the
infinite-width limit. We rely on this equivalence to derive regret bounds of our algorithm
(Theorem 3). For the purpose of the theorem, we let the scale parameter ν vary with iteration,
and let νt denote the scale parameter at iteration t. We assume that Te = 0 ; that is, there
is no exploration phase in the algorithm. If Te ̸= 0, our regret would have a O(Te) additive
term. Next, we assume the NTK kernel Θ is bounded and satisfies supx∈X ∥Θ(x, x)∥ ≤ 1.
This assumption is not very restrictive. If instead, supx∈X ∥Θ(x, x)∥ ≤ c, for some c > 1, our
regret bounds would increase by a factor of c. Finally, we let It = maxA⊂X ,|A|=t I(yA; fA) be
the information gain between fA = [f(x)]x∈A, and yA = fA + ξA, where f ∼ GP(0,Θ), ξA ∼
N (0, σ2ν2t I).
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Theorem 3 Consider the setting of Proposition 2. Let X ⊆ [0, r]d be a compact and
convex set, and let γ be the initialization variance hyper-parameter used in Algorithm 1.
Finally, let H be the RKHS associated with the NTK kernel Θ. Suppose the true blackbox
function f∗ is Lipschitz and satisfies ∥f∗∥H ≤ B. Suppose Algorithm 1 is run with the
following hyper-parameters: σ2 = 1 + 2

T , νt = B + σ∗
√
2 (It−1 + 1 + log(2/δ)). Then

with probability at least 1 − δ, the cumulative regret of our algorithm is upper bounded by
O
(√

(IT + log(2/δ)) d log(BdT )
(√

TIT +B
√

T log(2/δ)
))

.

The proof of this Theorem can be found in the Appendix and relies on similar proof techniques
as in Chowdhury and Gopalan (2017). Notice the regret bound depends on information
gain IT . This quantity can be bounded in terms of the eigen-spectrum of the NTK kernel
Θ (Vakili et al., 2021). Let {λ1 ≥ λ2 ≥ . . . } be the eigen-spectrum of Θ w.r.t uniform
measure over X . Then IT depends on the tail function B(n) =

∑
t>n λt. Recent works have

studied the tail function of NTK kernel for 2-layer networks (Cao et al., 2019; Geifman et al.,
2020). These results can be used to derive concrete regret bounds for Algorithm 1.

One can derive non-asymptotic versions of Theorem 3 using results of Arora et al. (2019b);
Eldan et al. (2021) which characterize the rate at which wide NN training converges to the
infinite-width limit. Recent works have extended NTK theory to other architectures such as
convolution and graph neural networks. These results can be used to derive regret bounds of
our algorithm in the infinite-width limit of CNNs, GNNs.

Remark 4 For NTK kernel of a 1-hidden layer network, one can rely on the results of
Geifman et al. (2020) to show that IT = O(T 1−d−1

). Plugging this into the bound of Theorem 3,
we obtain a regret bound of O(T 3/2−d−1

) which is vacuous. We note that the regret bounds
of Zhang et al. (2020); Zhou et al. (2020) for NeuralUCB, NeuralTS also face this issue.
Deriving a TS style algorithm that achieves non-vacuous regret bound in this setting is still
an open problem.

D.2 Proof of Proposition 2

The proof of the Proposition relies on similar arguments as in the proof of Proposition 1.
Since we are in the infinite width limit, the iterates of GD with small enough step size
stay close to the initialization θ0. So, the following first order approximation is accurate:
f(x, θ) = f(x, θ0) + ⟨ϕ(x), θ − θ0⟩, where ϕ(x) = ∇θf(x, θ0). Under this approximation, it
suffices to study the following objective

min
θ

t∑
i=1

(
y′i − νf(xi, θ0)− νδ(xi)− ν ⟨ϕ(xi), θ − θ0⟩

)2
+ σ2ν2∥θ − θ0∥22.

To simplify the notation, we define fpc(x, θ0) = f(x, θ0) + δ(x). Using similar analysis
as in Proposition 1, we get the following expression for our surrogate model f̃t+1(x) =
νf(x, θt+1) + νδ(x)

νfpc(x, θ0) +
〈
ϕ(x),

(
ϕ(Xt)

Tϕ(Xt) + σ2I
)−1

ϕ(Xt)
T (Yt + νϵ− νfpc(Xt, θ0))

〉
.

The key result we now use is that the function fpc(·, θ0) can be viewed as being sampled
from GP(0,Θ) (He et al., 2020). In contrast, f(·, θ0) can be viewed as being sampled from
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GP(0,KNN). The posterior correction term δ(x) essentially changes the covariance function
from KNN to Θ.

Expectation. Consider any finite set X ′ ⊆ X . We now compute the mean function
µt(X ′) = E

[
f̃t+1(X ′)|Dt,Ht

]
, where Ht denotes the randomness from the past iterations.

µt(X ′) = νE
[
fpc(X ′, θ0)|Dt,Ht

]
+ νϕ(X ′)

(
ϕ(Xt)

Tϕ(Xt) + σ2I
)−1

ϕ(Xt)
TE [ϵ− fpc(Xt, θ0)|Dt,Ht]

+ ϕ(X ′)
(
ϕ(Xt)

Tϕ(Xt) + σ2I
)−1

ϕ(Xt)
TYt.

Since fpc(·, θ0) ∼ GP(0,Θ) and ϵ is independent zero-mean Gaussian noise, the first two
terms in the RHS above are 0. This shows that

µt(X ′) = ϕ(X ′)
(
ϕ(Xt)

Tϕ(Xt) + σ2I
)−1

ϕ(Xt)
TYt

(a)
= ϕ(X ′)ϕ(Xt)

T
(
σ2I + ϕ(Xt)ϕ(Xt)

T
)−1 Yt

(b)
= ΘX ′Xt(σ

2I +ΘXtXt)
−1Yt,

where (a) follows from Woodbury matrix identity, and (b) follows from the fact that
⟨ϕ(x), ϕ(x′)⟩ converges in probability to the NTK kernel Θ(x, x′). This proves the first
part of the Proposition.

Covariance. Using similar arguments as in Proposition 1, we get the following expression
for the covariance function

KNNGD-PC
t (X ′,X ′) = ν2E

[ (
fpc(X ′, θ0)− ϕ(X ′)Mtϕ(Xt)

T fpc(Xt, θ0)
)

(
fpc(X ′, θ0)− ϕ(X ′)Mtϕ(Xt)

T fpc(Xt, θ0)
)T |Dt,Ht

]
+ σ2ν2ϕ(X ′)Mtϕ(Xt)

Tϕ(Xt)Mtϕ(X ′)T ,

where Mt =
(
ϕ(Xt)

Tϕ(Xt) + σ2I
)−1

. Consider the first term in the RHS above

E
[ (

fpc(X ′, θ0)− ϕ(X ′)Mtϕ(Xt)
T fpc(Xt, θ0)

)(
fpc(X ′, θ0)− ϕ(X ′)Mtϕ(Xt)

T fpc(Xt, θ0)
)T |Dt,Ht

]
= E

[
fpc(X ′, θ0)f

pc(X ′, θ0)
T |Dt,Ht

]
+ ϕ(X ′)Mtϕ(Xt)

TE
[
fpc(Xt, θ0)f

pc(Xt, θ0)
T |Dt,Ht

]
ϕ(Xt)Mtϕ(X ′)T

− ϕ(X ′)Mtϕ(Xt)
TE

[
fpc(Xt, θ0)f

pc(X ′, θ0)|Dt,Ht

]
− E

[
fpc(X ′, θ0)f

pc(Xt, θ0)|Dt,Ht

]
ϕ(Xt)Mtϕ(X ′)T

(a)
= ΘX ′X ′ + ϕ(X ′)Mtϕ(Xt)

TΘXtXtϕ(Xt)Mtϕ(X ′)T

− ϕ(X ′)Mtϕ(Xt)
TΘXtX ′ −ΘX ′Xtϕ(Xt)Mtϕ(X ′)T

(b)
= ΘX ′X ′ +ΘX ′Xt(σ

2I +ΘXtXt)
−1ΘXtXt(σ

2I +ΘXtXt)
−1ΘXtX ′

−ΘX ′Xt(σ
2I +ΘXtXt)

−1ΘXtX ′ −ΘX ′Xt(σ
2I +ΘXtXt)

−1ΘXtX ′ ,
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where (a) follows from the fact that fpc(·, θ0) is sampled from GP(0,Θ), and (b) follows
from Woodbury matrix identity. Next, consider the second term. Using similar arguments as
in Proposition 1, it can be rewritten as

ϕ(X ′)Mtϕ(Xt)
Tϕ(Xt)Mtϕ(X ′)T = ΘX ′Xt(σ

2I +ΘXtXt)
−2ΘXtX ′ .

Substituting the above two expressions in the expression for KNNGD-PC
t (X ′,X ′) gives us the

required result.

D.3 Proof of Theorem 3

The proof follows from the regret bound of GP-TS derived by Chowdhury and Gopalan (2017)
(similar proof techniques have been used to derive regret bounds of TS in various contexts
including linear, generalized linear models (Kveton et al., 2020)). We provide a high level
argument here for the sake of completeness. For technical reasons, we consider a discretization
of X , instead of directly working with X (i.e., we replace the domain X with its discretized
version in the algorithm). In particular, in the tth iteration of the algorithm, we consider the
discretization X (t) ⊂ X which satisfies the following property: ∀x ∈ X , |f∗(x)−f∗([x]t)| ≤ 1

t2
,

where [x]t is the closest point to x in X (t). Such a discretization can be achieved because of
the fact that f∗ is Lipschitz continuous.

The instantaneous regret at any iteration t is given by

f∗(x∗)− f∗(xt) = f∗(x∗)− f∗([x∗]t) + f∗([x∗]t)− f∗(xt) ≤
1

t2
+∆t(xt),

where [x∗]t is the point closest to x∗ in the discretization X (t), and ∆t(xt) = f∗([x∗]t)−f∗(xt).
To bound the regret, it suffices to bound

∑T
t=1∆t(xt). To this end, we partition the

action space X (t) into two sets namely, saturated and unsaturated sets. The saturated set
consists of actions which satisfy the following condition: ∆t(x) ≥ ctσt−1(x), where σt(x) =√
KNNGD-PC

t (x, x) (intuitively this consists of actions that are clearly sub-optimal). The
unsaturated sets consist of points which satisfy the following condition: ∆t(x) < ctσt−1(x).
The key technical part of the proof involves showing that the probability of playing a saturated
action is small. Once we have this result, the regret of the algorithm can be bounded as
O(

∑T
t=1 ctσt−1(xt)). As proved by Chowdhury and Gopalan (2017), this quantity is upper

bounded by O(
√
ITT ), which is our desired regret bound.

Appendix E. Experiments with noisy oracles

We also perform experiments with noisy versions of the blackbox functions. For all the points
sampled by the algorithm, we consider the true value of the point (in contrast to the noisy
value observed by the algorithm), and plot the minimum observed true value over iterations
in Figure 3. We notice similar trends as the noiseless plots shown in Figure 2, with the
notable exception of the Ackley function. We observe that neither of the methods are able to
reliably find the optimum of the Ackley function within the specified budget. We hypothesize
that this is due to the fact that the Ackley function has a sharp global minima, making it
even harder to find in the presence of noise.
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Figure 3: The plots show the minimum true value observed over iterations for all the
compared methods on noisy version of the blackbox functions. The true value denotes the
noise-free value of the black box function. The dimensionality of the blackbox functions is
provided in parenthesis. The confidence intervals are based on 10 independent runs. While
most of the plots follow similar trends as the noiseless plots in Figure 2, we observe that
none of the methods are able to reliably minimize the Ackley function.
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Appendix F. Additional Experimental Details

F.1 Further details about the baselines

We consider the following baselines in our experiments: (a) GP-EI: this performs GP
optimization with EI as the acquisition function. We chose EI over UCB and TS because
EI has fewer hyper-parameters and is known to achieve similar performance as the other
two (Snoek et al., 2012). We used squared-exponential kernel in our experiments, and relied
on GPflow for the implementation (Matthews et al., 2017). GPflow automatically sets the
kernel hyper-parameters using maximum likelihood estimation, (b) NeuralLinTS (Xu
et al., 2020): this baseline performs linear TS on top of the feature representations of NN.
It has two hyper-parameters: variance of the prior (diagonal) covariance matrix γ and the
observation noise variance σ2. We do a grid search for γ over {10, 100, 1000} and for σ2 over
{0.001, 0.01, 0.1}, (c) NeuralUCB (Zhou et al., 2020): this baseline constructs confidence
bands that are motivated from NTK theory. It has two hyper-parameters: γ used to scale the
size of the confidence interval, and λ a regularization parameter. We do grid search for γ over
{0.01, 0.1}, and λ over {10−5, · · · , 10−2}, (d) NeuralEnsembles (Kim et al., 2021): this
baseline builds an ensemble of m neural networks with identical architectures but different
random initializations. This ensemble acts as a surrogate model. The different predictions
of networks in the ensemble can be interpreted as samples from the posterior distribution.
We use EI as the acquisition function over the predictions from the ensembles. Similar to
Kim et al. (2021) at each iteration, we warm-start the networks at their previous values and
update the model using GD. In our experiments, we set m = 10 and train the model to
convergence at each iteration. For NeuralLinTS, NeuralEnsembles, we use a 1-hidden layer
networks of widths 500 and 1000 respectively, as surrogate models. We use a smaller width
for NeuralLinTS, since it requires inversion of a df × df matrix, where df is the dimension
of the feature extracted from the neural network. For NeuralUCB, we can not use wide
networks as it involves inversion of a p× p matrix, where p is the number of parameters in
the NN. This can lead to computational and memory overflow issues. So we use smaller but
deeper models. In particular, we use a 2-hidden layer network of width 20 as surrogate model.
More details about our implementation can be found in the Appendix. Finally, we note that
we neither implement NeuralTS (Zhang et al., 2020) as it is geared towards finite search
spaces, nor NeuralLinUCB (Xu et al., 2020) as it has similar performance as NeuralLinTS.

F.2 Implementation details

Exploration budget. The exploration budget Te was set to 5d where d is the input
dimension, we also clip the exploration budget to lie between 2.5% and 7.5% of the total
budget, so as to not exhaust most of the budget on exploration. All experiments in this
paper are repeated 10 times with different seeds, and the average and standard deviation of
the results are reported.

Neural network implementation details. We primarily use 1-hidden layer neural
architectures with a large number (> 1000) of hidden nodes, with the exception of neural
UCB, for which we use a 2-layer and 20-wide neural networks as described in (Zhou et al.,
2020). The weights of the neural network are initialized with independent samples from a
normal distribution N (0, γ2/layer input size). We initialize the biases of the hidden layers
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with independent samples from a normal distribution N (0, γ2). We initialize the bias of
the final layer to 0, as is standard in neural network training. As described in the main
text, γ is a hyper-parameter that we tune for our proposed approaches SimpleSMBand
PosteriorSMB. We set γ = 1 for the baselines (as done in the original papers).

We implemented the above in python using Jax (Bradbury et al., 2018). The networks (i.e.,
surrogate models) were trained using the Adam optimizer (Kingma and Ba, 2014) with a
fixed learning rate of 0.001. We did not notice any practical difference from SGD other than
faster convergence. All our experiments were run on a server with a 40 core Intel Xeon Silver
4210 CPU @ 2.20GHz and 187 GB memory.

Acquisition optimization. Optimizing the acquisition function is an essential step in
all of the considered approaches. The acquisition function is built from the observed data.
It takes as input a point from the input domain and produces a scalar value denoting
the informativeness of the point. The acquisition function is optimized to select the most
informative point to query next. Examples of acquisition functions include the upper
confidence bound (Srinivas et al., 2009) and expected improvement (Jones et al., 1998).

Acquisition functions over continuous domains are typically differentiable and amenable to
gradient based optimizers. We used standard gradient descent to optimize the acquisition
function. We initialize the starting point with a uniform random sample from the input
domain and perform 500 gradient descent steps with a fixed learning rate of 0.01. We repeat
this process 10 times and return the best point found.

Hyper-parameters and acquisition functions. For each of these methods, we fix the
number of hidden layers and the width. The rest of the tunable hyper-parameters are
described below. Each hyper-parameter is tuned w.r.t. the cumulative regret over the last
T/2 steps of the algorithm, where T is the total budget.

SimpleSMB and PosteriorSMB: We set ν = 1, σ2 = 0, and set σW = σb within γ.
The only tuned hyper-parameter is the initialization variance parameter γ. We tune γ
in the range [0.5, 5.0]. For our methods, we use 1-hidden layer networks of fixed width
5000 as surrogate models. The effect of the initialization variance on the performance of
SimpleSMBis summarized in Figures 4 and 5 for the noiseless and noisy cases respectively.
The aquisition function in this case is the surrogate function returned from Algorithms 2
and 3.

NeuralUCB: The hyper-parameters for this method include γ, the scale of the confidence
interval (Algorithm 1 in (Zhou et al., 2020)) and λ the regularization parameter while training
the surrogate model on observations (Algorithm 2 in (Zhou et al., 2020)). We tune the
hyper-parameters over the sets γ ∈ {0.01, 0.1, 1.0} and λ ∈ {10−e}5e=2.

NeuralEnsemble: This approach requires no hyper-parameters. We train 10 independent
neural networks to convergence in each iteration. The neural networks are warm started
with the weights from the previous iteration.

NeuralLinTS: Following Riquelme et al. (2018), in this method we first train the neural
network on the observed data, extract the final hidden layer activations, and use them for
Bayesian linear regression. We assume a diagonal prior covariance γI on the linear regression
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Figure 4: Hyper-parameter search plots for SimpleSMB: The plots show the minimum value
observed over iterations for various initialization variances γ in SimpleSMB, for noiseless
oracles. The dimensionality of the blackbox functions is provided in parenthesis. These runs
were not averaged over multiple runs due to lack of computational resources.

weights, and a Gaussian zero mean noise with variance σ2. We tune the hyper-parameters
over the sets γ ∈ {10, 100, 1000} and σ2 ∈ {0.001, 0.01, 0.1}. We vary γ over relatively large
values in order to not regularize the regression weights too much.

GP-EI: For this, we estimate the GP kernel parameters from the data by maximizing the
marginal likelihood of the observations (Rasmussen, 2003). We use the expected improvement
acquisition function (Jones et al., 1998) with the estimated kernel parameters to select the
next observation point.

F.3 Benchmark black-box functions

We use a set of commonly used benchmark synthetic black-box functions to evaluate our
algorithm. Low-dimensional visualizations of the function are shown in Figure 6. We
refer the reader to the excellent repository of benchmarking functions by Surjanovic and
Bingham (2013) available at https://www.sfu.ca/~ssurjano/optimization.html, for the
exact expression of these functions.
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Figure 5: Noisy hyper-parameter search plots for SimpleSMB. The plots show the minimum
true value observed over iterations for various initialization variances γ in SimpleSMB, for
the noisy versions of the blackbox functions. The true value denotes the noise-free value
of the black box function. The dimensionality of the blackbox functions is provided in
parenthesis. These runs were not averaged over multiple runs due to lack of computational
resources.

Appendix G. Future Work

In the future, we aim to derive regret bounds for SimpleSMB and understand the settings
in which it achieves better performance than PosteriorSMB. There have been criticisms
of the NTK regime as not capturing the behavior of regular neural networks (Ghorbani et al.,
2021). An interesting future direction would be to study our algorithms in the non-NTK
regime and derive their regret bounds. Another important problem is to propose an approach
for automatically tuning γ, the initialization variance of the neural network parameters.
We noticed a significant impact of γ on the performance of our algorithm. In future, we
aim to rely on the connection between our algorithms and GPs to automatically set this
hyper-parameter using maximum likelihood estimation.
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(a) Branin-Hoo (2) (b) Schwefel (3) (c) Hartmann (6)

(d) Styblinski-Tang (10) (e) Levy (15) (f) Ackley (20)

(g) Rosenbrock (40)

Figure 6: The figures show 2-dimensional versions of the respective benchmark functions
wherever available. Hartmann 6 does not have a 2-dimensional version, and hence the
equation is displayed instead. All figures are credited to Surjanovic and Bingham (2013).
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