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Abstract

Identifying potential cancer treatments with machine learning holds great promise to preci-
sion oncology. However, anticancer drugs screening is a lengthy and cost-intensive process.
To address this challenge, we formulate drug screening studies as a contextual bandit prob-
lem, in which an algorithm selects anticancer therapeutics based on contextual information
about cancer cell lines while adapting its treatment strategy to maximize treatment re-
sponse. We propose using a novel deep Bayesian bandits framework that uses functional
prior to approximate posterior for drug response prediction based on genomic features and
drug structure and leverage inherent information between actions. We empirically evalu-
ate our method on three large-scale in-vitro pharmacogenomic datasets and show that our
approach outperforms several benchmarks in identifying the optimal treatment for a given
cell line.
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1. Introduction

By using genomic signatures and identifying druggable targets, the landscape of precision
oncology has progressed rapidly.(Yang et al., 2012; Jordi et al., 2012; Iorio et al., 2016)
One approach is to conduct anticancer therapeutics screening but this approach remains
challenging as drug screening study is often an expensive, time-consuming process. More-
over, most of the studies rely on exhaustively experimenting all available drugs without
considering cancer heterogeneity. To solve in-vitro identification and treatment allocation
in anticancer therapeutics screening more efficiently, a natural attempt is to cast it as a con-
textual bandit problem, a well-known tool for personalization (Li et al., 2010). Contextual
bandits framework enables effective personalized intervention by taking appropriate actions
based on sample’s characteristics instead of random or uniform treatment assignment. Re-
cently, contextual bandits methods, especially Thompson Sampling (Thompson, 1933), are
being tailored to healthcare applications in a different domains, including mobile health
(Tomkins et al., 2020) and risk stratification for multiple myeloma.(Zhou et al., 2019)

However, naively applying conventional bandit algorithms to drug screen studies is not
feasible. First of all, the performance relies on accurate assumptions about the reward
environment, which can be highly complex and non-linear. Second, finding a proper set
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of candidate models to map genomic features to drug sensitivity may also be difficult.
Moreover, due to inherent heterogeneity across and within different cancer types and drug
metabolism (Dagogo-Jack and Shaw., 2018), modeling uncertainty plays an important role
in determining the right decision. Third, the exploration-exploitation dilemma adds another
layer of complexity, meaning that more action-context pairs would be required to obtain a
better approximation of different policies. Insufficient sample size or model of less expressive
power would lead to a wrong decision. (Zhou et al., 2019) Finally, most conventional
contextual bandit algorithms treat each action as an unrelated discrete point and fail to
leverage the similarity and inherent structure between each action. For instance, in cancer
trial, OTX015, a BET inhibitor (BETi) that exhibits anti-tumor activity in non-small cell
and small cell lung cancer, shares a similar structure with JQ1 (Riveiro et al., 2016). Under a
conventional bandit setting, without knowing the inherent relationship between two similar
drugs, unnecessary exploration would be conducted.

In this work, our contributions are as follows. First, we adapt a deep Bayesian bandits
approach in drug screening studies as it provides a natural solution to uncertainty estimation
with high-dimensional data. Second, under this settings, to find an approach to approxi-
mate posterior distribution of drug response prediction function, we use ‘functional prior’
(Hafner et al., 2019; Sun et al., 2019; Tran et al., 2020) and, following Sun et al. (2019),
update functional posterior with variational inference through the Stein gradient estima-
tor (SSGE)(Liu and Wang, 2019). Third, to avoid unnecessary exploration, for functional
posterior update, to select proper measurement data points, we use a bootstrap procedure
to sample from both perturbed genomics contexts and drug compound features. We em-
pirically evaluated our method and compared it with other treatment allocation strategies
using three large-scale drug sensitivity screens. Our method delivers the best performance
against several benchmark algorithms.

2. Background and Related Work

2.1 Contextual Bandits

Contextual bandits (Li et al., 2010) is a generalization of the multi-armed bandit in which
the policy for choosing future actions is dependent on context information at each step
t. For example, in clinical trial, the context could be patients’ symptoms or laboratory
observations. It is characterized by a sequence of a context-reward pairs {xt, rt}t=1,2,...,T ∈
X × R|A|, where X ,A are some arbitrary context space and action space (e.g., a set of
treatment choices), respectively. Given a candidate policy set Π, the contextual bandits
problem aims to learn a policy π : X → A, or a mapping from context to actions that
maximizes cumulative rewards, or equivalently to minimize the total regret compared to
the best policy in hindsight.

2.2 Thompson Sampling & Deep Bayesian Bandits

Thompson Sampling is a Bayesian approach (Thompson, 1933; Agrawal and Goyal, 2011)
that allows sampling from the posterior distribution, P (θ), over plausible problem instances
such as rewards or model parameters. At each round t, it observes the context, xt, and an
arm a is chosen according to the probability that it maximizes the expected reward. The
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posterior distribution is then updated after the result of an action is observed. Through the
lens of Thompson Sampling, deep Bayesian bandits refer to tackling contextual bandits by
parameterizing the action-value function and a prior distribution over P0(θ) placed over the
parameters. Although the weight posterior for neural networks is analytically intractable,
it can be approximated by methods such as Dropout (Kingma et al., 2015; Srivastava
et al., 2014) or Monte Carlo methods (Betancourt, 2017). Riquelme et al. (2018) conduct a
comprehensive analysis of different approximation methods in deep Bayesian bandit settings.

3. Methods

3.1 Problem Setup

We formulate treatment allocation in anti-cancer therapeutics as a Bayesian contextual
bandit problem. That is, we have a context set X ⊂ Rd1 , defined as the individual genomics
information with d1-dimension; a discrete action set A ⊂ Rd2 , defined as a set of given drugs
whose compounds can be expressed as a d2-dimension feature vector; and a reward set
R ⊂ R|A|, where each reward vector is a possible collection of corresponding drug responses
(pIC-50/Activity Area) for all drugs. Finally, we are given a policy set Π : X → A, which
is deep Bayesian neural net here. The protocol is as follows:

• At time t, we are given a context, xt ∈ X , and a non-observable reward vector rt ∈ R,
that are jointly drawn from some unknown i.i.d distribution D. In our case, this
scenario can be regarded as randomly sampled cancer cell line at time t whose actual
responses to various drugs are unknown.

• Then we play at ∈ A based on previous history and observe only the corresponding
rt(at), for example, the drug response in our case, not in the whole rt vector.

By repeating this process for a total of T times (or T incoming samples), we can obtain
the total cumulative reward

∑T
t=1 rt(at). We measure the difference between our algorithm

performance and the benchmark performance by the notion of cumulative regret R(T ),
defined as

R(T ) = max
π∗

T∑
t=1

rt(π
∗(xt))−

T∑
t=1

rt(at). (1)

3.2 Drug Response Prediction with Genomics and Drug Contexts

In precision oncology, treatment efficacy depends not only on patients’ genomics features
but also on therapeutics information which have shown to improve the predictive perfor-
mance. (Kuenzi et al., 2020; Preuer et al., 2017) Here, our solution is to treat both genomics
features and therapeutics context as a combined input into our neural network and show
that the trained neural net can automatically capture inherent relationships between the
two, genomics information (RNA expression) and drug features (MorganFingePrint); there-
fore, explore more efficiently. Specifically, on each round t for each action a, we denote such
concatenated feature vector as xt = (xg, xd) ∈ Rd1+d2 , where d1 and d2 are the dimension
of genomics and drug features, respectively. When the agent selects an action ad based on
xg, corresponding drug information xd will be provided for reward estimation.
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3.3 Functional Prior and Posterior Approximation for multi-modal Data

Even though drug features can provide additional information in reward prediction, mul-
timodal data of different data types complicates determining the prior distribution. The
weight distribution would be highly variable and difficult to express with some commonly
used prior distributions, such as the Gaussian distribution. (Hafner et al., 2019; Tran et al.,
2020) Therefore, we are not aiming to learn a posterior distribution of weights in weight
space but a distribution of functional posterior (Hafner et al., 2019; Sun et al., 2019; Tran
et al., 2020) which is a function space that maps pharmacogenomics data to drug response.
Sun et al. (2019) introduce function space variance, analogous to weight space variational
inference.

f(x) = gϕ(x, ξ) (2)

Here f(x) is a sampled function for some function gϕ, a neural network with stochastic
weights and stochastic inputs, and ξ, a random noise vector, corresponding to randomness
in functional space. For any given dataset D, the functional variance inference maximizes
functional ELBO (fELBO) defined as:

L(q) = Eq[log(p(D|f))]− sup
n∈N,x∈Xn

KL[q(fX)||p(fX)]. (3)

As there is no analytical form for the functional KL divergence, following Sun et al. (2019),
we also utilize the spectral Stein gradient estimator (SSGE) to approximate log density
derivatives. SSGE is proposed by Liu and Wang (2019) is an estimator that only requires
measurement samples from the targeted implicit distribution i.e., distributions without
tractable densities, functional space for drug response prediction in out case.

3.4 Sampling Measurement Sets for Cancer Treatment Exploration

To estimate KL divergence properly with SSGE, we need unbiased samples from the implicit
distribution of genomic contexts and drug features. Typically, one can sample from the
training set where noise is injected into the data or from region of testing data. (Hafner
et al., 2019). Here we use a combination of two approaches (Tran et al., 2020): to encourage
exploration, we use sample not only from history Dt but also from random drug feature
xa′ in the action space that we are interested in exploring. To address this problem, we
use a simple bootstrapped method (Osband and Roy, 2015) to sample measurement sets.
Accordingly, we sample a new history set H from both training history Dt and D̃t with
perturbed action-context-concatenated features x̃t.

D̃t = (x̃1, . . . x̃t); x̃t = (xg, xd̃); Ht ∼ Dt ∪ D̃t. (4)

Therefore, with H as our measurement set, fELBO can be re-written as

LH(q) = Eq[log(p(D|f))]− sup
n∈N,x∈Xn

KL
[
q(fH)||p(fH)

]
. (5)

With SSGE and proper measurement samples, we can approximate the entropy of both q
and p, which are both from implicit distribution; then, we can sample from the implicit
posterior of drug response prediction for different compounds in bandits settings.
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Algorithm 1 Functional Posterior Update
1: Universal parameters : KL weight λ
2: Input: Dt, functional variational posterior g(·|ϕ)
3: D̃t ∼ Dt; ▷ Sample D̃t from D with perturbed genomics and action contexts.
4: f = g([D̃t, Dt], E|ϕ) ▷ Sample a new function f(.) with noise vector E .
5: ∆1 = 1

|Dt|∇ϕ logp(y|fi) ▷ Compute reconstruction loss.

6: ∆2 = SSGE(D̃t, Dt) ▷ Estimate KL divergence from implicit posterior.
7: ϕ← optimize(ϕ,∆1 − λ∆2)
8: Return functional variational posterior g(·|ϕ)

4. Experimental Design and Data

4.1 Simulated Drug Screen Design

In this work, we simulate anticancer treatment trials and evaluate our algorithms in three
large-scale cancer cell line screenings, including Genomics in Drug Sensitivity in Cancer
(GDSC-1 and GDSC-2) (Yang et al., 2012; Iorio et al., 2016) and the Cancer Cell Line En-
cyclopedia (CCLE) (Jordi et al., 2012). For cancer cell lines, we used RNA expressions and
performed principal component analysis (PCA) to reduce the RNA expression dimension
to 500. For drug context, we converted the drug SMILE string to Morgan fingerprint with
256 bits. (Capecchi et al., 2020) For drug-dose response, in GDSC, we adapted negative log
of half-maximal inhibitory concentration, pIC50. In CCLE, since some IC50 measurements
are missing, we used activity area (AA) instead. All cancer cell lines and drug responses
were scaled into the range of [0,1]. We run the bandits/simulated trials for 5000 rounds.

4.2 Evaluation Metrics and Benchmark Algorithms

As described in Equation 1, we reported cumulative regrets, the reward difference between
competing algorithm, π, and an oracle, π∗, that would have access to the (unknown) treat-
ment effect functions. We test our algorithm against competing algorithms (Appendix
A.4) of different posterior approximations that demonstrated promising results. (Riquelme
et al., 2018)

5. Results

5.1 Effect of Different Measurement Sets on the fBNN posterior

Here we show the effectiveness of using drug compound features as input contexts and
adding action perturbation. From Figure 1, we show that our strategy gives much lower
cumulative regret compared to ones without them. To demonstrate that context-action
pair perturbation as proxy of functional prior improves uncertainty estimation for drug
response prediction, we compared the performance of models updated with different samples
for SSGE, including (i) perturbing only genomics context, x′g = xg + ϵ; ϵ ∼ N (0, 1) (ii)

perturbing only action (drug) context x′d ∈ Rd2 and (iii) random sampling from multivariate
Gaussian distribution, x′g ∈ Rd1 ;xg ∼ N (0, 1) and random selected drugs from the action

set, x′d ∼ U(Rd2). Our sampling method, compared to the other proxy samples as in Figure
1, improves the quality of approximation of the desired prior and achieves lower regret.
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5.2 Molecular Therapeutics Recommendation in Cancer Treatment

Now we empirically evaluate our functional Bayesian neural bandit with benchmark algo-
rithms in deep bayesian bandits in selecting drug compounds that would maximize drug
response. Selecting optimal treatment requires not only learning drug response function
but also uncertainty estimation for exploration. As shown in Table 1, models that can only
optimize both, for example, NeuralGreedy and BBB performs poorly. (Riquelme et al.,
2018) Bootstrap and ParameterNoise seem to provide better posterior approximations for
drug response prediction but suffer from under exploration, sometimes committing to the
suboptimal drug in the experiments (Riquelme et al., 2018; Sun et al., 2019). Our method,
on the other hand, by using genomics-action pair as proxy for functional prior, provides a
better exploration strategy.

Figure 1: Cumulative regrets between (a) with and without drug context in the GDSC
dataset, and (b) Functional Bayesian Neural Network with different measurement
set samples. The confidential interval is generated through 20 trials.

Table 1: Cumulative regret distribution at the final step in 3 drug screen studies. We report
the mean and standard error of the mean over 20 trials.

Algorithm GDSC-1 GDSC-2 CCLE

Uniform 2011 ± 10.2 995 ± 6.7 2509 ± 12.3
NeuralGreedy 531.4 ± 194.3 262.2 ± 152 1361.4 ± 361.7
BayesByBackprop(BBB) 1500.2 ±396.4 497.3 ± 187.3 1682.3 ± 390.0
DropOut 508.3± 33.4 378.2 ± 84.0 1176.2 ± 342.1
BootstrappedNN 429.7 ± 162.2 179.1 ± 70.5 705.5 ± 409.8
ParameterNoise 467.5 ± 287.5 170.6 ± 65.4 785.51 ± 585.5
FunctionalPosterior 202.4 ± 70.0 98.46 ± 30.3 252.8 ± 35.5

6. Conclusion

In this work, we introduce a new deep Bayesian bandit approach for in-vitro anticancer
therapeutics selection. To enable efficient exploration in a contextual bandit setting with
drug compound features and gene expression, we use functional variational approach to
approximate this pharmacogenomics posterior. Empirically, we demonstrate that our ap-
proach explores efficiently and performs the best. The result is consistent across three
publicly available pharmacogenomics datasets in cancer treatment recommendations. We
hope that our work will serve as a stepstone towards improving the efficacy and quality of
treatment allocation strategy in both pre-clinical therapeutic discovery and clinical study.
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Appendix A.

A.1 Contextual bandits in Healthcare

An instantiation of the contextual bandits framework in treatment recommendations.

Algorithm 2 Contextual Bandits in Healthcare

1: Available treatment options a ∈ A, and the treatment period length T .
2: for t = 1, 2, . . . , T do
3: Agent receives the context information xt for the current patient.
4: A treatment at is determined based on the history and the context information.
5: Record the post-treatment health outcome rt for the patient.
6: end for

A.2 Thompson Sampling & Deep Bayesian Bandits

Deep Bayesian Bandits refers to posterior approximation with a deep neural network. For
example, in Algorithm 3, can be neural neural networks parameters drawn from a weight
distribution, P (θ). Riquelme et al. (2018) conduct a comprehensive analysis of differ-
ent approximation methods in deep Bayesian bandit settings and propose NeuralLinear,
a Bayesian linear regression built on the representation of the last layer of a neural net-
work. Blundell et al. (2015) introduce Bayes by Backprop, which learns the probability
distribution of weights. Kveton et al. (2019) propose DeepFPL, a neural network that uses
ensemble sampling as an approximation to generating new noise in each round. In addition
to posterior approximation of model weights, Zhang et al. (2020) propose Neural Thomp-
son Sampling, which focuses on the posterior distribution of reward. Sun et al. (2019)
introduce the functional prior, sampling from the functional posterior by concatenating a
random noise vector into input.

Algorithm 3 Thompson Sampling

1: f(· | θ̂0); prior distribution over models, P0(θ) : θ̂0 ∈ Θ→ [0, 1]
2: for t = 1, 2, . . . , T do
3: Observe context xt ∈ Rd.
4: Sample model parameter θ̂t ∼ Pt(θ).
5: at = argmaxa f(x, a | θ̂t).
6: Select action at and observe reward rt(at).
7: Update the history Dt ← Dt−1 ∪ (xt, at, rt(at)).
8: Update the posterior distribution Pt+1(θ) = PosteriorUpdate(Dt, Pt).
9: end for

A.3 Dataset

GDSC is the resource for therapeutic biomarker discovery in cancer cells. The GDSC1
dataset was generated between 2009 and 2015 using a matched set of cancer cell lines;
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contains 987 cell lines and 367 compounds. GDSC2 was generated in 2015 following im-
provements to screen design and assay (Iorio et al., 2016); contains 198 Compounds and 809
cell lines. The Cancer Cell Line Encyclopedia (CCLE) project, started in 2008, contains
pharmacological profiles for 24 anticancer drugs across 479 cell lines. For all datasets, we
first filtered out cancer cell lines with missingness in drug-dose response greater than 70%.
We then filtered out drug compounds with missing sensitivity in at least one of the curated
cell lines.

Dataset number of cell lines number of drugs Drug Response

GDSC1 472 133 IC-50
GDSC2 602 116 IC-50
CCLE 411 21 Activity Area

Table 2: Summary Statistics of drug response dataset used in the work

A.4 Baselines & Benchmark Algorithms

Uniform a baseline for which an agent takes each action at random with equal probability.

NeuralGreedy is a algorithm trained with a neural network and acts greedily (take
action that predicted with the highest drug response.) where a random action is selected
with probability ϵ.

BayesByBackprop (BBB) is proposed by Blundell et al. (2015) and is one of the
commonly used variational approaches that aproximate posterior by minimizing KL diver-
gence. It is a Bayesian neural network with sampled weights from the variational posterior,
w ∼ q(w|θ). Variational parameters θ are updated with KL divergence between a mixture
of two Gaussian densities prior and model weights distribution. BBB is a commonly used
baseline in deep Bayesian bandits.

Dropout is a training technique where the output of each neuron is independently zeroed
out with probability p at each forward pass (Srivastava et al., 2014; Kingma et al., 2015).
Following the best action with respect to the random dropout prediction can be interpreted
as an implicit form of Thompson sampling.

BootstrappedNN is an empirical approach to approximate the posterior sampling dis-
tribution (Osband and Roy, 2015). The idea is to train q models with different dataset
Di where Di is typically created by sampling with replacement from an original dataset,
D. In our case, we train q models with the same structure as NeuralGreedy and D is the
history context that the agent has seen. In action selection, we sample a model uniformly
at random (with probability 1/q) and take action predicted reward to be the best by the
sampled model.

DirectNoiseInjection is a recently proposed method by Plappert et al. (2018). Parameter-
noise injection is an exploration technique proved successful in RL. Through noise injection
in parameter space: θ̃ = θ +N (0, σ2), we can perform state-dependent exploration. When
selecting action, model weights are perturbed with isotropic Gaussian noise so that we get
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at = πθ̃(st). The magnitude of noise is adaptively adjusted based on distance measure
between perturbed and non-perturbed policy in action space.(Plappert et al., 2018)

Network Structure and Hyper-Parameter Tuning For our oracle policy, we trained
a 2-layer fully connected feedforward network with full access to genomics features, drug
structure and corresponding drug response in the dataset. For each experiment, we ran 20
trials with 5,000 steps in each trials. All algorithms were updated every 30 steps. The size
of each batch is 32. For all neural network structures, we adopted the same number of layers
and hidden dimensions. as our oracle policy. We performed a grid search over parameters
within a plausible range and reported the best results for each algorithm. We did a grid
search over {1e−1, 1e−2, 1e−3, 1e−4, 1e−5} for learning rate. For NeuralGreedy, we performed
grid search for ϵ over {0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. For DirectNoiseInjection, we searched
noise range over {1e−1, 1e−2, 1e−3, 1e−4, 1e−5}. For Dropout, we searched over probability
{0.2, 0.4, 0.6, 0.8}. For BayesByBackprop, we searched prior noise over {1, 1e−1, 1e−2} and
prior mean over {1, 1e−1, 1e−2}. For BootstrappedNN, we searched the number of models
over {2, 3, 5, 10}.

A.5 Extra Results

Figure 2: Comparison of (mean) cumulative regrets at each step in maximizing cancer treat-
ment effect for 5,000 rounds over 20 trials in GDSC-1, GDSC-2, & CCLE. (left
to right.)
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