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Abstract
Bayesian optimization (BO) has become a popular strategy for global optimization of many expensive
real-world functions. Contrary to a common belief that BO is suited to optimizing black-box
functions, it actually requires domain knowledge on characteristics of those functions to deploy BO
successfully. Such domain knowledge often manifests in Gaussian process priors that specify initial
beliefs on functions. However, even with expert knowledge, it is not an easy task to select a prior.
This is especially true for hyperparameter tuning problems on complex machine learning models,
where landscapes of tuning objectives are often difficult to comprehend. We seek an alternative
practice for setting these functional priors. In particular, we consider the scenario where we have
data from similar functions that allow us to pre-train a tighter distribution a priori. To verify our
approach in realistic model training setups, we collected a large multi-task hyperparameter tuning
dataset by training tens of thousands of configurations of near-state-of-the-art models on popular
image and text datasets, as well as a protein sequence dataset. Our results show that on average,
our method is able to locate good hyperparameters at least 3 times more efficiently than the best
competing methods.

1. Introduction

Bayesian optimization (BO) has been successfully applied in numerous real-world global optimiza-
tion problems, ranging broadly from hyperparameter tuning (Snoek et al., 2012; Kotthoff et al.,
2019) to chemical synthesis (Shields et al., 2021; Griffiths and Hernández-Lobato, 2020), drug
discovery (Pyzer-Knapp, 2018), aerospace engineering (Lam et al., 2018), robotics (Drieß et al.,
2017; Wang et al., 2017a) and the list goes on. These successful BO applications benefit from expert
knowledge on characteristics of the function to be optimized and hands-on experience with BO on
similar tasks in the past. Such knowledge or experience can give intuitions about a functional form
of the problem and thus specifications of a functional prior (Turner et al., 2021). However, without
domain knowledge or hands-on experience, BO performance can be susceptible to misspecified
priors (Schulz et al., 2016) unless the misspecification is insignificant (Bogunovic and Krause, 2021).

Similar to how practitioners learn how to set good priors from past experience, we automate
the prior determination process by pre-training priors on data that are available on different but
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related tasks. Given the benefit of pre-trained priors on synthetic functions, simple tuning tasks and
complex robotics tasks (Wang et al., 2018b; Kim et al., 2019; Perrone et al., 2018), can we take it
to the level of real-world hyperparameter tuning problems for modern deep learning models (e.g.
ResNet50) and large-scale datasets (e.g. ImageNet)? To the best of our knowledge, there is no
such multi-task tuning benchmark available for modern large models and datasets, but this kind of
tuning task is most prevalent in hyperparameter tuning in recent years of ML-related publications
given the success of large models (He et al., 2016; Raffel et al., 2020; Brown et al., 2020). For
these problems, it is difficult to understand the landscapes of tuning objectives, hindering the use of
Bayesian optimization with almost unobtainable expert interventions on priors. To fill the vacancy of
a dataset for hyperparameter tuning in modern ML, we collected a large multi-task hyperparameter
tuning dataset by training tens of thousands of configurations of near-state-of-the-art models on
popular image and text datasets, as well as on a protein sequence dataset. Our open-sourced dataset
can save roughly 12,000 machine-days of computation for anyone who makes use of it.

On the modeling side, most existing meta BO methods either scale cubically in the number
of evaluations and tasks (Swersky et al., 2013; Bardenet et al., 2013), impose a restrictive set of
assumptions on the available data (Wang et al., 2018b; Swersky et al., 2013) for efficient solutions,
or make assumptions on the availability of GP parameters (Volpp et al., 2020) or descriptive task-
level features (Brazdil et al., 1994; Bardenet et al., 2013; Yogatama and Mann, 2014). To address
these issues, we introduce HyperBO: a meta BO method that builds upon Wang et al. (2018b)
with a simple assumption: all the related functions being optimized are samples from the same GP
prior distribution. Concretely, HyperBO assumes the functions are conditionally independent given
the hyperparameters, mean and covariance function of the GP. Compared to Wang et al. (2018b),
HyperBO does not impose any strict conditions on data or model structures. From a computational
perspective, HyperBO scales linearly in the number of tasks during training, and does not depend
on the number of tasks when deployed. By not imposing assumptions about the data collection
conditions, it can be used with large offline datasets or a few related optimization trajectories.

Our empirical results show that HyperBO is at least 3 times more efficient in function evaluations
than recent baseline methods to locate the best hyperparameters. Our main contributions are two-
fold: (1) a new method for BO with learned (as opposed to hand-designed) priors; (2) a large
multi-task hyperparameter tuning dataset that not only benefits our method but also serves as a
realistic benchmark to test future methods. Both open-sourced code and dataset are available at
https://github.com/google-research/hyperbo. Our extended paper (Wang et al.,
2022) is available for interested readers to deep dive.

2. Problem formulation

We consider the standard black-box function optimization scenario: given a real-valued function f
defined over a compact, hyper-rectangular space X ⊂ Rd and given observations of similar functions
f1, · · · , fN , we seek an x ∈ X optimizing f . We inherit our problem formulation from Wang et al.
(2018b), but we relax impractical assumptions on data availability (we do not require all observations
to be made on the same inputs across tasks) and model restrictions.

Assumptions and the goal. Concretely, we assume that there exists a Gaussian process GP(µ, k)
with unknown mean function µ : X→ R and kernel k : X× X→ R. Let N be the number of tasks
and let Mi be the number of observations we have for the ith task. Conditioned on independent
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function samples fi ∼ GP(µ, k) and inputs x(i)j ∈ X, i ∈ [N ], j ∈ [Mi], we observe evaluations

y
(i)
j ∼ N (fi(x

(i)
j ), σ2) perturbed by i.i.d. additive Gaussian noise N (0, σ2) with unknown variance

σ2. Taken together, the collection of sub-datasets Dfi = {(x(i)j , y
(i)
j )}Mi

j=1 define a dataset DN =

{Dfi}Ni=1. Finally, our goal is to maximize a new function independently sampled from the same
GP, f ∼ GP(µ, k); that is, solve arg max

x∈X
f(x) given dataset DN but unknown functions µ, k and

unknown parameter σ2.

An example. In our optimizer hyperparameter tuning application, a task corresponds to finding
the best optimizer hyperparameters to train a given model on a particular dataset,1 e.g. training a
ResNet (He et al., 2016) on ImageNet (Russakovsky et al., 2015). Notice that we do not assume that
the mean function µ, kernel k and noise variance σ2 are given. This is consistent with the reality of
solving real-world black-box optimization problems including hyperparameter tuning. We must learn
those unknown functions and parameters from data. However, in practice, searching in functional
spaces to find the right mean µ or kernel k is a daunting task. Hence for practical concerns, a well
defined search space for functions is required. More details on this can be found at §3.2.

Metrics. For simplicity, throughout this paper, we focus on the setting where the target function f
can only be optimized by iteratively choosing where to evaluate, and defer batch evaluation setups to
Sec. B. As we run BO on the target function f for T iterations, we accumulate a set of observations
Df = {(xt, yt)}Tt=1, yt ∼ N (f(xt), σ

2). We evaluate the quality of the optimization using the
simple regret metric: RT = maxx∈X f(x)− f(x̂), where x̂ is the final recommendation at the end
of the optimization process. There are various ways of setting x̂ based on the observations Df ; we
use the input that achieved the best evaluation: x̂ = xτ ; τ = arg maxt∈[T ] yt.

Notations. Let [n] denote {1, · · · , n},∀n ∈ Z+. For conciseness, we write the evaluation of a
function f : R → R on vector x = [xi]

n
i=1 as µ(x) := [µ(xi)]

n
i=1. Similarly, for two vectors

x,x′, we write the corresponding kernel matrix as k(x,x′) := [k(xi, x
′
j)]i∈[n],j∈[n′], and shorten

k(x) := k(x,x).
We denote a (multivariate) Gaussian distribution with mean u and variance Σ by N (u,Σ), and

a Gaussian process (GP) with mean function µ and covariance function k by GP(µ, k). Let σ2 be
the noise variance in observations. Given a set of observations D = {(xt, yt)}Tt=1,yT = [yt]

T
t=1 ∼

N (f(xT ), σ2I),xT = [xt]
T
t=1 and f ∼ GP(µ, k), we denote the corresponding conditional GP

distribution as GP(µ, k | D). Recall that the conditional distribution GP(µ, k | D) = GP(µD, kD),
is given for any x, x′ ∈ X as

µD(x) = µ(x) + ψ(x)(yT − µ(xT )), (1)

kD(x, x′) = k(x, x′)− ψ(x)k(xT , x
′), (2)

where we set ψ(x) = k(x,xT )(k(xT ) + σ2I)−1.

3. Our method

As shown in Alg. 1, our approach pre-trains the GP hyperparameters on a representative set of
datasets and fixes them for the duration of the optimization procedure; we refer to this approach as

1. Technically, we also consider different batch sizes to be different tasks.

3



HyperBO. HyperBO runs in two steps. First, we learn a GP model GP(µ̂, k̂) to approximate the
ground-truth (unknown) GP that generated the dataset DN . Then, we do standard BO to optimize a
new function f with the learned GP GP(µ̂, k̂). The initial pre-training process (Alg. 1, line 2) is the
critical difference between HyperBO and standard BO algorithms, as well as the key contribution of
this paper.

Algorithm 1 HyperBO with acquisition function α(·).

1: function HYPERBO (f,DN )
2: GP(µ̂, k̂)← PRE-TRAIN(DN )
3: Df ← ∅
4: for t = 1, · · · , T do
5: xt ← arg max

x∈X
α
(
x;GP(µ̂, k̂ | Df )

)
6: yt ← OBSERVE(f(xt))
7: Df ← Df ∪ {(xt, yt)}
8: end for
9: return Df

10: end function

In each iteration of the BO loop (Alg. 1,
lines 4-8), we update the conditional GP,
but do not re-estimate the GP mean and
kernel. By separating the data for condi-
tional GP update and GP parameter pre-
training, we minimize the computational
cost while still maintaining good perfor-
mance empirically. Moreover, we avoid
the BO chicken-and-egg dilemma (Wang
et al., 2018b) where the search strategy is
trained on data collected in the BO pro-
cess and the data points are selected by the
search strategy simultaneously.

Next, we introduce our GP pre-training strategy based on two types of objectives: KL divergence
between estimates and model predictions (§ 3.1) and negative log likelihood (§ 3.2).

3.1 Pre-training with empirical KL divergence

We first investigate the case where observations on the same set of inputs are available. This is
the main scenario considered by Wang et al. (2018b), but their method only works for Bayesian
linear regression. We now present HyperBO based on an empirical KL divergence to allow highest
flexibility on mean functions and kernels, e.g. a Matérn kernel on deep features shared with a mean
function. The objective is called empirical KL divergence because it is the KL divergence between
an empirically estimated multivariate Gaussian and model predictions from a GP.

Here we consider a special case of dataset DN which contains matching inputs across some tasks.
More formally, suppose we have a matching dataset D′N = {(xj ,yj)}Mj=1 where M is the number of
shared inputs across N tasks. For each input index j ∈ [M ] and input xj ∈ X, we have N observed
values yj = [y

(i)
j ]Ni=1 ∈ RN and each observation y(i)j ∼ N (f(xj), σ

2) corresponds to evaluating
input xj on a different task. In practice, dataset D′N can be constructed by querying a set of functions
f1, · · · , fN at the same set of input locations x = [xj ]

M
j=1 ∈ RM×d to obtain an observation matrix

y = [yj ]
M
j=1 ∈ RM×N .

By definition of a GP, the vector of all function queries f(x) is distributed according to a multi-
variate Gaussian distribution N (µ(x), k(x)). With our observation model, we get the distribution
for observations y ∼ N (µ(x), k(x) + Iσ2) for some unknown mean function µ and kernel k.

However, given that we have access to all observations y, we can estimate the mean on inputs
x as µ̃ = 1

N y1N ∈ RM and estimated covariance as K̃ = 1
N (y − µ̃1>N )(y − µ̃1>N )> ∈ RM×M ;

here 1N is a column vector of size N filled with 1s. We use a biased estimate of covariance to be
consistent with the maximum likelihood estimator in §3.2. But one may choose to re-scale learned
kernel by N

N−1 to be unbiased. Notice that the estimated covariance includes in diagonal terms the
variance of the observation noise.
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For any divergence function between the estimateN (µ̃, K̃) and model predictionN (µ(x), k(x)+

Iσ2), we obtain an objective to minimize, D
(
N (µ̃, K̃),N (µ(x), k(x) + Iσ2)

)
. While there are

different measures of distributional discrepancy, we adopt the KL divergence. Let µ = µ(x) and
K = k(x) + Iσ2. The empirical KL divergence is defined as

DKL

(
N (µ̃, K̃),N (µ,K)

)
=

1

2

(
tr(K−1K̃) + (µ− µ̃)>K−1(µ− µ̃) + ln

|K|
|K̃|
−M

)
, (3)

and we can estimate the mean, kernel and noise variance by minimizing DKL.

3.2 Pre-training with negative log likelihood

If we have arbitrary data points from each task, a straightforward way to pre-train a GP is by
optimizing a negative log likelihood (NLL) over parameters of the GP. The regression-based NLL
objective corresponds to how supervised pre-training is done with a cross-entropy loss on deep
learning models for classification tasks. Here, we use the NLL on the given observations from
multiple functions that are assumed to be independently sampled from the GP. The independence
naturally results in a summation over NLLs for all observed functions, which is a key difference to
the widely used type II maximum likelihood approximation for GP inference on a single function in
BO setups. The NLL loss function for our method is L(µ, k, σ2) = −

∑N
i=1 log p(Dfi | µ, k, σ2).

We then obtain a solution to the choice of mean function, kernel function and noise variance by
minimizing the NLL loss function.

4. Experiments

Our goal in this paper is to provide a practical approach for hyperparameter optimization when we
are given data on a range of tasks over the same search space. To analyze the effectiveness of our
proposal, we take the optimizer hyperparameter tuning problem in deep learning as a case study. We
collected a dataset composed of hyperparameter evaluations on various deep neural network training
tasks. The tasks included optimizing deep models on image, text, and other datasets. Our code and
dataset can be found at https://github.com/google-research/hyperbo.

To reduce ambiguity, we distinguish between datasets that individual neural networks are trained
on and the dataset we collected that includes optimizer hyperparameter points with their validation
errors (and other metrics). We will call the former (e.g. MNIST, CIFAR10) task datasets and call the
latter the tuning dataset. The tuning dataset is what we described as dataset DN in §2.

For HyperBO, we used thresholded probability of improvement as the acquisition function and
GP with a one-hidden layer neural network of size 8 as mean function and a Matérn32 covariance on
the feature layer of the mean function as kernel. H* NLL refers to HyperBO with GPs pre-trained
via the NLL objective in §3.2 and H* KL refers to pre-training via the KL objective in §3.1.

Our baselines include (1) Rand: Random search in the corresponding scaled search space.
(2) STBO: Single-task BO where in every BO iteration, STBO uses the same GP architecture as
HyperBO but optimizes the GP hyperparameters via type II maximum likelihood on data of the test
task. This implementation corresponds to the basic off-the-shelf BO setups. (3) STBOH: Single-
task GP-UCB with a hand-tuned prior on hyper-parameters including UCB coefficient Srinivas
et al. (2010); Golovin et al. (2017). (4) MIMO: Multi-task BO with GP bases as an ensemble
of feedforward neural networks with shared subnetworks (Kim et al., 2021; Havasi et al., 2021).
(5) RFGP: Multi-task BO with GP bases as random features (Snoek et al., 2015; Krause and Ong,
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Figure 1: (a) The performance profile for outperforming the median of best error rates at the 100th
BO iteration. (b) BO convergence of all methods: the median and 20/80 percentiles of the regrets
on error rates over 115 BO runs: 23 tasks and each with 5 repeats of different random seeds. (c) A
violin plot on the vertical slices of (b) at the 100th iteration; the white dot is the median and the black
line is the 20/80 percentile. Overall, HyperBO methods H* NLL and H* KL are able to achieve the
lowest regret on error rate on the majority of tasks with fewer iterations.

2011). (6) MAF: Meta acquisition function method based on reinforcement learning Volpp et al.
(2020), which assumes the knowledge of the best GP hyperparameters for each task.

Fig. 1 (a) shows the performance profiles, the fraction of all test tasks that each method is able to
outperform a baseline criterion at each BO iteration. MIMO is able to outperform other methods in
the beginning 20 BO iterations, but its leading position soon gets surpassed by HyperBO (H* NLL
and H* KL). Fig. 1 (b,c) illustrates the BO convergence curves of all competing methods, together
with the vertical slice at the 100th iterations. MAF, RFGP and STBO are both falling much behind
Rand. Surprisingly, the contextual information learned by RFGP did not generalize to a new task.
On the other hand, MIMO is able to obtain a slightly better error rate than STBOH. Overall, learning
the GP prior through data as with HyperBO outperforms other meta BO methods, and is a more
principled and effective way to obtain the GP prior when compared with hand-tuning.

To more precisely quantify HyperBO’s advantage, we also computed how much faster HyperBO
can get a better error rate than best alternatives, which can be different from task to task. We found
that on average, on over 50% tasks, H* NLL is at least 2.86 times faster than best non-HyperBO
alternatives; while on over 57% tasks, H* KL is at least 3.26 times faster than best non-HyperBO
alternatives. Moreover, on over 73% tasks, H* NLL is at least 7.74 times faster than random search;
and on over 75% tasks, H* KL is at least 6.07 times faster than random search.

5. Conclusion

We proposed HyperBO: a novel meta BO approach that supports practical applications that involve
continuous inputs queried at possibly non-aligned locations across tasks. HyperBO uses a simple
yet effective idea that is easy to implement and efficient to run. We evaluated HyperBO on real-
world big model optimizer tuning tasks, and the results demonstrated its superior performance over
state-of-the-art competing methods.
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Appendix A. Related work

There is a rich literature of innovative methodologies to improve the efficiency of BO given related
tasks or additional context. Here we discuss the most closely related work and explain why these
don’t solve the specific scenario which we envision. Specifically, our goal is a methodology that is
scalable enough to share information across thousands of tasks, each with potentially hundreds of
observations, such as in the context of a large BO service or library.

Pre-training and prior learning is directly related to meta learning, learning to learn and learning
multiple tasks (Baxter, 1996). We use the word pre-training to refer to supervised pre-training, which
is a general approach in the deep learning community (Girshick et al., 2014) to transfer knowledge
from prior tasks to a target task. The same as pre-training deep features on a variety of tasks, Wang
et al. (2018b) proposed prior learning for GPs to learn the basis functions by treating the independent
function outputs as individual heads of a neural network.

Several methods, including that which HyperBO extends, refer to their method as “meta-
BO” (Wang et al., 2018b; Volpp et al., 2020). However, in this work we use the term meta-BO
more generally to refer to the class of BO methods that use data from existing tasks to optimize a
new task. Since standard BO is a learning process, it is consistent to call those methods meta BO
methods given that they learn how to learn. Under this viewpoint, meta BO approaches also include
multi-task BO (Swersky et al., 2013; Poloczek et al., 2017; Yogatama and Mann, 2014), transfer
learning BO using contextual GPs (Krause and Ong, 2011; Bardenet et al., 2013; Poloczek et al.,
2016) and transfer learning based on quantiles (Salinas et al., 2020). Some meta BO methods have
also been studied for hyperparamter tuning tasks in machine learning (Feurer et al., 2015; Salinas
et al., 2020).

HyperBO assumes all tasks are independent (after conditioning on the GP), whereas both
multi-task and contextual BO rely heavily on the assumption that tasks are related. Thus the
latter approaches typically scale cubically in both the number of tasks and observations in each
task, meaning that they cannot gracefully scale across both without heavy approximations. When
assuming that all inputs are equal across tasks, multi-task BO can be sped up using a Kronecker
decomposition of the kernel to a task kernel and an input kernel which can be inverted separately; a
similar assumption is made by Wang et al. (2018b). In comparison, HyperBO scales linearly in the
number of tasks.
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Another thread of meta BO literature was started in the robot learning area by Kim et al. (2017,
2019), which estimated a multivariate Gaussian to transfer knowledge on scoring functions for search
strategies in robot manipulation tasks, and thus only considered finite discrete inputs. Wang et al.
(2018b) provided regret bounds for Kim et al. (2017, 2019) and extended it to continuous search
spaces by considering a GP as a Bayesian linear regressor with neural net basis functions.

Similar ideas were adopted by Perrone et al. (2018); Wistuba and Grabocka (2021) in the machine
learning hyperparameter tuning literature. These ideas, on a high level, can be viewed as special
cases of HyperBO or Wang et al. (2018b). Compared to Wang et al. (2018b), Perrone et al. (2018)
and Wistuba and Grabocka (2021) only use zero means, which, as shown by Kim et al. (2017, 2019),
is critical for learning the initial data points to acquire. As a remedy, Wistuba and Grabocka (2021)
developed an evolutionary algorithm based data-driven strategy to warm start the initialization of
data selection. Although different terms are used, Wang et al. (2018b) and Perrone et al. (2018)
concurrently proposed the idea of learning parameters of GP priors from multi-task datasets, while
Wang et al. (2018b) is the first to clarify the assumptions that those multi-task functions need to be
conditionally independent so that regret bounds hold for BO with an unknown GP prior.

HyperBO builds upon Wang et al. (2018b) and Kim et al. (2017, 2019), yet principally resolves
their limitations on search spaces and data availability. For both finite discrete search spaces and
continuous ones, Wang et al. (2018b) requires observations on the same set of inputs across tasks,
which is an assumption that is not required for HyperBO. Both arbitrary data points from different
tasks and observations on same inputs across tasks can be incorporated into HyperBO efficiently and
effectively. Another critical advantage of HyperBO is accommodations of very flexible kernels and
mean functions that are not limited by Bayesian linear regressors; this opens meta BO to a lot more
GP architectures involving combinations of deep features and kernels with infinite basis functions.

Appendix B. Discussion

In this work, we focused on the question of how to efficiently and effectively make use of multi-task
data to enable better BO with pre-trained priors. We simplified other aspects of BO that are orthogonal
to our focuses, such as parallel queries or different search spaces. Here we discuss extensions to our
work that would enable even more flexible uses.

Batch evaluation. For simplicity of this paper, we did not consider batch evaluation but rather
only focused on the prior selection dimension of the challenges in BO. However, it is straightforward
to adopt any batch BO methods in conjunction with HyperBO to support obtaining observations in
parallel. For example, we can directly use batch methods from Snoek et al. (2012); Kathuria et al.
(2016); Wang et al. (2017b) etc. to replace line 5 of Alg. 1.

High-dimensional and large scale data. Similar to batch BO, our method can also be naturally
combined with most high-dimensional and large scale BO methods to offer more capabilities. For
these cases, typically a probabilistic model different from vanilla GPs may be adopted. In line 2 of
Alg. 1, it is straightforward to adapt our method to optimize the cumulative marginal likelihood in
§3.2 instead for the new model. Our meta-learning idea in this paper in fact also brings benefit to
high-dimensional and large scale BO methods so that they can better identify their critical special
structures, e.g. low-dimensional embedding (Wang et al., 2016), cylindrical kernels (Oh et al., 2018)
or additive Mondrian kernels (Wang et al., 2018a).
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Different search spaces. Roughly speaking, there could be two circumstances for difference
search spaces. Case I is that tasks share the same search variables, but the search ranges for some
variables are different. For example, we may have each function fi : Xi → R, i ∈ [N ] and
Xi =

∏d
j=1[lij , hij ] ⊂ Rd. In this case, our solution still applies by simply setting a union search

space as X =
⋃N
i=1Xi for learning and use the designated search space of new tasks for optimization.

Case II is more complicated: the search space for each function fi is Xi ⊂ Rdi and each
dimension of Xi may have a different meaning than another search space Xj (i 6= j). This paper
does not have a solution for this scenario. Further research will be needed to reduce Case II to Case I
which can be then immediately combined with HyperBO.
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