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Abstract
In this paper, we consider active learning for unbalanced datasets. When class imbalance
exists, active learning algorithms tend to acquire more samples from the majority class. We
present a nonlinear rescaling mechanism to compensate for the effect of class imbalance.
Experiments on unbalanced datasets with multiple types of class imbalance show that
the proposed scheme yields noticeable performance gain when applied to existing active
learning algorithms.
Keywords: Active Learning, Class Imbalance, Extreme Value Theory

1. Introduction

Data inefficiency is one of the main challenges to deep neural networks because they usually
require substantial amounts of labeled data for training. Researchers may now easily collect
an abundant amount of unlabeled data from the web, but labeling these collected data for
training is still done by humans and costs excessive time and effort. Active learning tackles
this problem and aims to minimize the labeling cost by devising a scheme to determine the
unlabeled sample that, when labeled, would improve the final target performance to the
greatest extent. Thus, active learning is currently under vigorous research (Ash et al., 2020;
Gal et al., 2017; Sener and Savarese, 2018; Sinha et al., 2019; Pinsler et al., 2019).

However, most works on active learning assume that the dataset is balanced, which is
far from reality in most cases. For instance, real-world problems like anomaly detection
inherently involve an unbalanced dataset: anomalies are rare by definition. It is known
that class imbalance severely degrades the performance of neural networks (Johnson and
Khoshgoftaar, 2019). Since naive labeling of data from an unbalanced unlabeled dataset
will lead to an unbalanced labeled dataset, advanced active learning is necessary in such
cases. Typical active learning algorithms show suboptimal performance when the dataset is
unbalanced. Extreme value theory (De Haan and Ferreira, 2007) states that the maximum
value out of a pool increases as the size of the pool increases. So in a typical metric-based
sample selection scheme, more samples from the majority class will be selected even when
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their acquisition metric values are much lower on average than samples from the minority
class, solely due to their abundance (Figure 1).

Figure 1: Distribution of acquisition metric values computed using a popular active learning
algorithm maxent on an unbalanced dataset and the number of samples acquired from each
class. The number of samples belonging to a majority class (classes 6–10) is ten times larger
than the number of samples belonging to a minority class (classes 1–5). We can see that
even though the average metric values of the minority class samples are greater than those
of the majority class samples, the agent acquires more samples from the majority class.
Refer to Appendix A for a detailed explanation of what each part means.

This paper mainly focuses on unbalanced data and proposes a new active learning scheme
suited for such circumstances, although the proposed scheme can be applied to general
situations including balanced datasets. Numerical results show the efficacy of the proposed
method on unbalanced datasets with multiple types of class imbalance when applied to
existing active learning algorithms.

2. Problem Setting

In the active learning literature, there are mainly two different problem settings: one is
the single-pass online setting (Lughofer, 2012; Woodward and Finn, 2017), and the other
is the pool-based off-line setting (Ash et al., 2020; Gal et al., 2017; Kirsch et al., 2019;
Pinsler et al., 2019; Sener and Savarese, 2018; Sinha et al., 2019). In the online setting,
unlabeled data arrives continuously in a stream one by one. Whenever a sample arrives,
the agent should decide whether or not to request its label. On the other hand, in the
off-line setting, a pool of unlabeled data already exists. The agent searches for informative
unlabeled samples at each step and requests their labels. The process continues until the
agent is out of budget. In this paper, we assume the off-line setting that we describe in
detail below.
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Consider a pool of unlabeled samples denoted by U = {uj}. Let L(i) = {(xj , yj)} be the
set of labeled samples at step i, where yj is the true label of sample xj . With a slight abuse
of notation, we will write U \{x: (x, y) ∈ L(i) } as U \L(i), which denotes the set of samples
in U that remains unlabeled at step i. Let p(x; θ) be the classifier1 we want to optimize. At
step i, the agent trains the model parameter θ by minimizing the following empirical loss
based on L(i):

θ∗i = argmin
θ

1

|L(i)|
∑

(x,y)∈L(i)

`(p(x; θ), y), (1)

where ` is the standard cross-entropy loss. After finishing training, the agent searches for
an optimal set of samples R(i) ⊆ U \ L(i) and requests their true labels. Then, a human
expert labels the samples in R(i) and adds the newly labeled samples to L(i), yielding

L(i+1) = L(i) t { (x, y):x ∈ R(i), y is the true label of x }.

This procedure is repeated for each step i.
Most active learning algorithms select the samples for labeling based on some metric

that depends on the current model parameter θ∗i . Following Gal et al. (2017), we call this
metric the acquisition function and denote it by a(x; θ∗i ), where x ∈ U . Since training takes
a significant amount of time and the effect of adding a single labeled sample is negligible,
we usually acquire multiple samples at each step. This leads us to define a batch acquisition
function a(B; θ∗i ), where B ⊆ U \L(i). Then, the acquisition step can be expressed as finding
the batch B ⊆ U \ L(i) of K samples that maximizes a(B; θ∗i ), where K is the maximum
number of samples the agent can request true labels for at each step. That is, at step i the
agent selects B(i) as

B(i) = argmax
B⊆U\L(i)

|B|≤K

a(B; θ∗i ). (2)

and the agent requests labels of the samples in B(i). The most straightforward way to define
a(B; θ∗i ) is

a(B; θ∗i ) =
∑
u∈B

a(x; θ∗i ), (3)

which turns the optimization problem (2) into simply selecting K samples with the highest
acquisition function values. Some works discuss the use of batch acquisition functions that
incorporate intra-batch sample diversity and thus cannot be written simply as (3), which
comes with an increased computational cost (Ash et al., 2020; Kirsch et al., 2019; Pinsler
et al., 2019).

3. Proposed Method

During the acquisition phase, the agent computes a(x; (θF )
∗
i , φ

∗
i ) for each x ∈ U \ L(i).

Since our dataset is unbalanced, U \ L(i) is highly likely to be unbalanced. Under this
situation, just selecting the top K samples with the highest acquisition function scores is

1. In this paper, we only consider the object classification task, but active learning in general can be applied
to other tasks such as object detection or image segmentation (Casanova et al., 2020).
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problematic because the extreme values (i.e., the maximum and the minimum values) of a
population with a shared distribution increase as the population size grows (De Haan and
Ferreira, 2007). So the samples from a majority class will have higher acquisition function
values than those from a minority class, not because they are more informative but just
because there are more of them. This phenomenon would not happen if the dataset were
balanced. In order to correct the class imbalance, we should mitigate the effect of the class
size on the acquisition function value. Extreme value theory provides the scaling law of the
maximum value of a population as the population size increases (De Haan and Ferreira,
2007). However, what we need is not just a scaling law but a concrete method to eliminate
the effect of the class size and normalize the acquisition value for a fair comparison across
the classes.

We propose a normalization scheme based on the following observation on the relation-
ship between the sample size of a population and its extreme value:

Theorem 1 Let X1, X2, . . . , XN be independent and identically distributed (i.i.d.) random
variables; let FX be the cumulative distribution function (cdf) of X1. Then, for all x,

P (max{g(X1), g(X2), . . . , g(XN )} ≤ x) = P (X1 ≤ x) ,

where g : R→ R is defined by the equation

g(y) = F−1
X (FX(y)N ). (4)

Proof Let Y = max{X1, X2, . . . , XN}. It is obvious that

max {g(X1), g(X2), . . . , g(XN )} = g(Y ).

Since g(Y ) ≤ x if and only if Y ≤ g−1(x), which holds if and only if Xi ≤ g−1(x) for all i.

P (g(Y ) ≤ x) =
N∏
i=1

P (Xi ≤ g−1(x)) = [P (X1 ≤ g−1(x))]N = [FX(g−1(x))]N .

From (4), we know that
FX(g(y)) = [FX(y)]N ,

so if we let y = g−1(x),

P (g(Y ) ≤ x) = [FX(y)]N = FX(g(g−1(x))) = FX(x) = P (X1 ≤ x).

This theorem implies that by applying the transform g defined by (4) on the acquisition
metric values, we can remove the effect of the population size N from max{X1, X2, . . . , XN}.

Unfortunately, two obstacles block us from applying this rule to sample selection in
active learning. First, we do not know what class each unlabeled sample belongs to unless
we request their labels. Second, we need access to the cdf in order to compute the transform
g. We bypass these hurdles by pseudo-labeling the samples according to the trained classifier
p(x; θ∗i ) and distribution fitting using the maximum likelihood method. The parametric
distribution family { f(·;φ) : φ ∈ Φ } used for modeling the distribution of acquisition metric
values should be selected a priori. If the acquisition metric is known to be bounded, the beta
distribution will be a reasonable choice. Otherwise, we may use the gamma distribution or
the normal distribution. Algorithm 1 presents a pseudo-code for the proposed method.
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Algorithm 1 Normalizing Acquisition Metric Values
i← 0.
while |L(i)| < M do

Initialize θ randomly.
Train the network with the cross-entropy loss on L(i) to obtain θ∗i .

5: S1, S2, . . . , SC ← ∅
for x ∈ U \ L(i) do

P (x)← argmaxk pk(x; θ
∗
i ) . Pseudo-label

SP (x) ← SP (x) ∪ {x}
end for

10: for j ← 1, . . . , C do
φ∗
j ← argmaxφj∈Φ

∑
x∈Sj

log f(a(x; θ∗i );φj) . Maximum likelihood estimate
end for
B(i) ← arg topkx∈U\L(i) F−1

([
F
(
a(x; θ∗i );φ

∗
P (x)

)]|SP (x)|
;φ∗

P (x)

)
. (4)

Request labels for B(i) and create L(i+1)

15: i← i+ 1.
end while

(a) Step-5 (b) Step-10

Figure 2: Number of samples that belong to each class for each type of class imbalance.

4. Experiments

This section provides numerical results to evaluate the proposed active learning algorithm.
Since it is difficult to find popular datasets with class imbalance, we followed the practice of
Buda et al. (2018) and created an artificial imbalance by removing samples from an existing
balanced dataset. Each class in our artificial dataset is either a minority class or a majority
class. The number of samples is equal across the minority classes, and so it is across the
majority classes. That is, |C`| = mink{|Ck|} if ` is a minority class and |C`| = maxk{|Ck|}
if ` is a majority class, where Ck is the set of samples in U belonging to class k. Two
parameters µ and ρ can characterize the imbalance, where they are defined as

µ =
# of minority classes

d
, ρ =

maxk{|Ck|}
mink{|Ck|}

.

We tested our algorithm on two types of imbalance: step imbalance with µ = 0.5 and
ρ = 10 (step-10) and step imbalance with µ = 0.5 and ρ = 5 (step-5). We used CIFAR-
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(a) Step-10 (DBAL) (b) Step-10 (maxent) (c) Step-5 (DBAL) (d) Step-5 (maxent)

Figure 3: Performance comparison. The shaded region denotes one standard deviation.

10 (Krizhevsky et al., 2009) as our base dataset. Figure 2 shows the number of samples
belonging to each class for each type of imbalance.

We began our experiments with |L(0)| = 100 and acquired K = 1000 samples at each step
until 30% of the entire dataset was labeled. We used the CIFAR-variant of ResNet-18 (He
et al., 2016) as the architecture for our backbone network. We trained for 100 epochs during
training phase using the Adam (Kingma and Ba, 2015) optimizer with learning rate 5×10−4

and batch size 256. We measured the performance of the classifier at each step, using the
balanced test set of the original CIFAR-10 dataset. The algorithm was implemented with
PyTorch (Paszke et al., 2019), and the distribution fitting was done using SciPy (Virtanen
et al., 2020).

We applied our algorithm to two active learning algorithms DBAL (Gal et al., 2017) and
maxent. Since DBAL requires the network to contain a dropout layer, we added a dropout
layer with dropout probability 0.5 right before the last fully-connected layer. We sampled
25 times for the Monte Carlo approximation of the acquisition function used by DBAL.
For fair comparison, we also sampled the maxent acquisition function 25 times and used its
mean value. The acquisition metrics used in both algorithms are bounded from below by
0 and bounded from above by logC (See Appendix B). So we used the beta distribution
scaled by logC to fit the data. Figure 3 shows the change in test accuracy as samples get
labeled. We can see that our algorithm outperforms the baselines for both types of datasets.

5. Conclusion

In this paper, we have proposed an active learning algorithm for unbalanced datasets that
compensates for the class imbalance. In order to resolve the class imbalance effect, we
introduced a special type of nonlinear transform based on distribution fitting. The transform
allows us to remove the dependency of the extreme value in each class on the class population
size, while preserving their statistical information. Although the proposed algorithm shows
its effectiveness for active learning on unbalanced datasets, it has some limitations and
rooms for improvement. First, the usage of imperfect pseudo-labels are not justified and
may lead to performance degradation. Second, it is not straightforward to apply our method
to batch acquisition functions introduced in recent works such as Ash et al. (2020), Kirsch
et al. (2019), or Pinsler et al. (2019). Finally, the experiments were performed on artificial
datasets constructed from CIFAR-10. Experiments on more realistic unbalanced datasets
are necessary. We leave them as future work.
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Appendix A. Experiments on the Class Imbalance Effect

To investigate the effect of class imbalance, we conducted a simple experiment on the step-
10 dataset. The result is depicted in Figure 1. The blue scatter plot shows how the maxent
acquisition function values are distributed for each class. That is, each sample in U \ L(0)

is depicted as a blue dot in the plot, where its x-axis is the sample’s true label, and the
y-axis is the acquisition function value. The orange line plot indicates the mean maxent
acquisition function value of samples that belong to each class. Based on the computed
maxent acquisition function values of the samples in U \ L(0), we acquired K = 1000
samples with the highest entropy values. The bar graph shows the class distribution of the
K = 1000 selected samples. It is evident that samples belonging to the majority classes
(6–10) are acquired more than those belonging to the minority classes (1 – 5), even though
the mean acquisition function values of the majority classes are lower than those of the
minority classes.

Appendix B. Bound Analysis of Acquisition Functions

It is well known that the entropy of a discrete probability distribution is nonnegative and
is maximized by the uniform distribution. So the maxent acquisition function is bounded
below by 0 and bounded above by

−
C∑

k=1

pk log pk = −
C∑

k=1

1

C
log

1

C
=

C∑
k=1

1

C
logC = logC,

where pk denotes pk(x; θ
∗
i ).

DBAL uses the following acquisition function:

−
C∑

k=1

(
1

T

T∑
t=1

p
(t)
k

)
log

(
1

T

T∑
t=1

p
(t)
k

)
+

1

T

C∑
k=1

T∑
t=1

p
(t)
k log p

(t)
k , (5)

where p
(t)
k is the t-th Monte Carlo sample pk(x; θ

(t)
i ). Note that p̂k = 1

T

∑T
t=1 p

(t)
k forms a

probability mass function of a discrete random variable that can take C values because

C∑
k=1

p̂k =
C∑

k=1

1

T

T∑
t=1

p
(t)
k =

1

T

T∑
t=1

C∑
k=1

p
(t)
k =

1

T

T∑
t=1

1 = 1.
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Since the first term of (5) is the entropy value of this distribution, it is bounded from above
by logC, and the maximum is attained when

p̂k =
1

T

T∑
t=1

p
(t)
k =

1

C
(6)

for each k = 1, 2, . . . , C. For each t = 1, 2, . . . , T ,
∑C

k=1 p
(t)
k log p

(t)
k is the negative entropy

value of the distribution (p
(t)
1 , p

(t)
2 , . . . , p

(t)
C ), so it is bounded above by 0, and the maximum

is attained when
p
(t)
k = δjk for some j ∈ {1, 2, . . . , C}. (7)

Conditions (6) and (7) can both be satisfied when

p
(t)
k =

{
1 if t ≡ k (mod C)

0 otherwise.

Therefore (5) is bounded from above by logC.
To compute the lower bound, observe that by the convexity of the function g(x) =

x log x,

g

(
1

T

T∑
t=1

p
(t)
k

)
≤ 1

T

T∑
t=1

g(p
(t)
k )

for each k = 1, 2, . . . , C. Therefore,

(5) = −
C∑

k=1

g

(
1

T

T∑
t=1

p
(t)
k

)
+

C∑
k=1

T∑
t=1

g(p
(t)
k ) ≥ 0,

that is, (5) is bounded below by 0. The minimum is attained when

p
(t)
k =

{
1 if k = 1,

0 otherwise.
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