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Abstract

Treatment effect estimation is a fundamental problem in causal inference. We focus on
designing efficient randomized controlled trials, to accurately estimate the effect of some
treatment on a population of n individuals. In particular, we study sample-constrained
treatment effect estimation, where we must select a subset of s � n individuals to ex-
periment on. This subset must be further partitioned into treatment and control groups.
Algorithms for partitioning the full population into treatment and control groups, or for
choosing a single representative subset, have been well-studied. The key challenge in our
setting is jointing choosing a representative subset and a partition for that set.

We focus on both individual and average treatment effect estimation, under a linear ef-
fects model. We give provably efficient experimental designs and corresponding estimators,
by identifying connections to discrepancy minimization and leverage-score-based sampling
used in randomized numerical linear algebra. Our theoretical results obtain a smooth
transition to known guarantees when s equals the population size. We also empirically
demonstrate the performance of our algorithms.

Keywords: Treatment effect estimation, experimental design, causal inference.

1. Introduction

Experimentation has long been held as a gold standard for inferring causal effects since
one can explicitly enforce independence between treatment assignment and other variables
which influence the outcome of interest. We consider the the finite population setting
of the potential outcomes framework [36, 39], where each individual is associated with a
control and treatment value, also called the potential outcomes, and based on the treatment
assignment, we can observe only one of these values. In the absence of assumptions on the
functional form of the potential outcomes, the minimax optimal approach for conducting an
experiment is to assign individuals to treatment or control completely at random, without
consideration of baseline covariates (features) [24]. However, by considering covariates for
each individual, and using additional assumptions of smoothness, substantial gains can be
made in terms of the variance of the treatment effect estimate via alternative assignment
procedures. The most common approach attempts to minimize imbalance, i.e., the difference
between the baseline covariates in the treatment and control groups [6, 24, 34].
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While experimental designs that minimize imbalance increase the power of an experi-
ment for a given pool of subjects, there are many practical applications where the experi-
menter wishes to minimize the total number of subjects who are placed into the experiment.
For example, in medicine, clinical trials may carry nontrivial risk to patients. Within in-
dustrial applications, experiments may carry substantial costs in terms of testing changes,
which decrease the quality of the user experience, or have direct monetary costs.

In this paper, we examine the problem of selecting a subset of s individuals from a larger
population and assigning treatments such that the estimated treatment effect has a small
error. We consider two different estimands: individual treatment effect (ITE) and average
treatment effect (ATE).

We represent the d-covariates of a population of n individuals using X ∈ Rn×d. We
assume that the treatment and control values, denoted by y1,y0 ∈ Rn, are linear functions
of the covariates. Under the linearity assumption, the treatment and control values are a
linear function of the covariates. Formally, for some βββ0,βββ1 ∈ Rd,

y1 = Xβββ1 + ζζζ1 and y0 = Xβββ0 + ζζζ0,

where ζζζ1, ζζζ0 ∈ Rn are noise vectors, with each coordinate drawn independently from the
Gaussian distribution with zero mean and variance σ2, i.e., N(0, σ2).

The ITE for the ith individual is y1
i − y0

i and ATE is the average of all the ITE values.
The goal is to pick a subset of s individuals and partition this subset into control and
treatment groups. For an individual i in the treatment group, we measure y1

i , and for an
individual j in the control, we measure y0

j . From this small set of measurements, we seek to
estimate the ITE or ATE over the full population. In Appendix G, we provide additional
related work and discuss the main differences to the active learning setting.

Our Contributions. We make the SUTVA assumption, i.e., the treatment outcome value
of any individual is independent of treatment assignments of others in the population [46].
For ITE estimation, we propose an algorithm using leverage score sampling [49], which
is a popular approach to subset selection for fast linear algebraic computation. For ATE
estimation, we employ a recursive application of a covariate balancing design [19].

For ITE estimation, we give a randomized algorithm that selects Θ(d log d) individuals
in expectation, using leverage scores, which measure the importance of an individual based
on their covariates. Our algorithm obtains, with high probability, root mean squared error

O
(√

log d/n · (
∥∥βββ1

∥∥+
∥∥βββ0

∥∥) + σ
)

(see Corollary 3.2). We argue that this is optimal up to

constants and a
√

log d factor, even for approaches that experiment on the full population.

The key challenge in achieving this bound is to extend leverage scores to our simulta-
neous linear regression setting, ensuring that we do not share samples across the treatment
and control effect estimation problems. To do this, we introduce a smoothed covariate ma-
trix, whose leverage scores are bounded. This ensures that, when applying independent
leverage score sampling, with high probability few individuals are randomly assigned to
both control and treatment, and thus removing such individuals from one of the groups
does not introduce too much error.

For ATE estimation we give a randomized algorithm that selects at most s individuals for
treatment/control assignment and obtains an error of Õ

(
σ/
√
s+ (

∥∥βββ1
∥∥+

∥∥βββ0
∥∥)/s

)
, where
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Õ(·) hides logarithmic factors (see Theorem 4.1). The error decreases with increasing values
of s and when s = n, it matches state-of-the-art guarantees due to Harshaw et al. [19].

Our algorithm for ATE estimation is based on covariate balancing. This is a popular
approach where one attempts to assign similar individuals to the treatment and control
groups, to ensure that the observed effect is attributed to the administered treatment alone.
Harshaw et al. [19] designed an algorithm by minimizing the discrepancy of an augmented
covariate matrix, which achieves low ATE estimation error. To extend their approach to our
setting, first, we need to select a subset of s individuals that are representative of the entire
population, and then balance the covariates. Uniform sampling or importance sampling
techniques give high error here. Instead, we employ a recursive strategy, which repeatedly
partitions the individuals into two subsets by balancing covariates, and selects the smaller
subset to recurse on, until we have selected at most s individuals.

We observe that our techniques for ITE and ATE estimation should extend to the
setting when the outcomes are non-linear functions of the covariates, which are linear in
some higher-dimensional kernel space. This is immediate for our discrepancy minimization
design for ATE, which only requires knowing the pairwise inner products of the covariate
vectors. For ITE estimation, leverage score sampling for kernel ridge regression [3] is most
likely applicable. Extensions to broader classes of non-linear models are beyond the scope
of this work, but they are an interesting future direction.

Finally, in Section 5, we provide an empirical evaluation of the performance of our ITE
and ATE estimation methods, comparing against uniform sampling and other baselines on
several datasets. Our results suggest that our techniques can help reduce the costs associated
with running randomized controlled trials using only a small fraction of the population.

2. Preliminaries

Notation. For a population of n individuals, we represent each with an integer in [n]

where we denote [n]
def
= {1, 2, · · · , n}. We use bold capital letters, e.g., X to denote matrices

and bold lowercase letters, e.g., y to denote vectors. We use X[i, :] and X[:, j] to denote
the ith row and jth column of X respectively, which we always view as column vectors.
We assume that X is row-normalized, i.e., ‖X[i, :]‖ ≤ 1 ∀i ∈ [n]. The ith largest singular
value of X is denoted by σi(X). For any vector x, the Euclidean norm or the `2-norm
is denoted by ‖x‖. The leverage score of jth row X[j, :], denoted by `j(X), is defined as:

`j(X)
def
= X[j, :]>(X>X)

+
X[j, :], where + denotes the Moore–Penrose pseudo-inverse.

Definition 2.1 (Root Mean Squared Error). For a set of estimated individual treatment

effects, ÎTE(j) for j ∈ [n], the root mean squared error (RMSE) is defined as:

RMSE
def
= 1√

n
·
∥∥∥ÎTE(j)− ITE(j)

∥∥∥ .
3. Individual Treatment Effect Estimation

We now describe our algorithm for ITE estimation. The algorithm identifies a subset of the
population to experiment on, using importance based sampling techniques, that are well-
studied in randomized numerical linear algebra [49]. Missing details are in Appendix H.

Overview of our approach. Under the linearity assumption, we can reformulate the
problem of estimating the ITE for every individual as simultaneously solving two linear
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regression instances: one for control and one for treatment, i.e., we regress y0,y1 on X.
Intuitively, we want to select s individuals (or equivalently rows) that capture the entire
row space of X and use them to estimate the ITE of all other individuals. Leverage scores
capture the importance of a row in making up the row space. E.g., if a row is orthogonal
to all the other rows, it’s leverage score will be the maximum value of 1.

Unfortunately, if we apply leverage score sampling independently to the regression prob-
lems for y0 and y1, rows with high leverage leverage scores may be sampled for both in-
stances. This presents a problem, since we can only read at most one of y0

j or y1
j . To

mitigate this issue, we construct a smoothed matrix X∗, which consists of X projected onto
its singular vectors with high singular values. Intuitively, this dampens the effects of high
leverage score ‘outlier’ rows that don’t contribute significantly to the spectrum of X. For-
mally, we prove that the maximum leverage score of X∗ is bounded, which let’s us solve
our two regression problems via independent sampling. There will be few repeated samples
across our subsets, which introduce minimal error.

Algorithm Sampling-ITE. We perform row sampling twice, with probabilities, given by
πππ ∈ Rn, proportional to the leverage scores of X∗, to construct two sets S0, S1. These two
sets are used to estimate the vectors y0 and y1, respectively. Missing details about the
exact values of probabilities are included in Appendix I.

It is possible that a row gets included in both S0 and S1. In that case, we simple
remove the row from S1. As a result, jth row is included in S1 with probability πππj · (1−πππj)
for every j ∈ [n]. We construct sampling matrices W0 and W1 using probabilities πππ and
πππ(1−πππ) respectively. Finally, we solve the following linear regressions, for i = 0, 1 separately:

β̃ββ
i

= arg minβββ∈Rd

∥∥WiX∗βββ −Wiyi
∥∥2
.

Our estimate for each ITE(j), denoted by ÎTE(j) is set to jth entry of X∗β̃ββ
1
−X∗β̃ββ

0
.

Observe that S0 ∩ S1 is empty. This ensures that we have access to only one of y0
j or y1

j

for any individual j in solving the above two subsampled regressions. Formally, we obtain:

Theorem 3.1. Suppose s ≥ 120c0d log d. There is a randomized algorithm that selects a
subset S ⊆ [n] of the population with E[|S|] ≤ s, and, with probability at least 9/10, returns

ITE estimates ÎTE(j) for all j ∈ [n] with error:

RMSE = O
(√ 1

n
max

{s
d
, log d

}
· (
∥∥βββ1

∥∥+
∥∥βββ0

∥∥) + σ
)
.

The corollary below follows immediately from Theorem 3.1.

Corollary 3.2 (Main ITE Error Bound). The root mean squared error obtained by Algo-
rithm 1 is minimized when s = Θ(d log d) and is given by:

RMSE = O
(√ log d

n
· (
∥∥βββ1

∥∥+
∥∥βββ0

∥∥) + σ
)
.

Our upper bound on RMSE increases with s, if s grows strictly faster than d log d
asymptotically, i.e., s = ω(d log d). Therefore, to obtain low error, we set s = c · d log d for
some constant c, even if the sample constraint allows for larger values. We believe this is an
artifact of our analysis; in Section 5, we observe empirically that the error decreases with s.

4



4. Average Treatment Effect Estimation

In this section, we describe our approach for estimating ATE by building upon a recent
work on efficient experimental design [19]. Missing details are in Appendix I.

Horvitz-Thompson Estimator. Suppose S+ ⊆ [n] is the population assigned to the
treatment group and S− = [n] \ S+ is the remaining population, i.e., the control group. A
well-studied estimator for estimating the average treatment effect is the Horvitz-Thompson
estimator [21], denoted by τ̂ . If every individual is assigned to S+ (or S−) with probability
0.5, then, τ̂ is defined as follows: τ̂ = 2

n

(∑
i∈S+ y1

i −
∑

i∈S− y0
i

)
.

Overview of Recursive-Covariate-Balancing. Our main idea is to partition the pop-
ulation using the Gram-Schmidt-Walk design (GSW) recursively until the total size of pop-
ulation that we can experiment on reduces to s. The Gram-Schmidt-Walk design produces
a random partition of the population with a good balance of covariates in every dimension.
In each recursive call, we start by partitioning the available individuals Zt into treatment
and control groups, denoted by Z+

t ,Z
−
t using GSW. Next, we identify the smaller of these

two subsets, say Z+
t and recurse on Z+

t . We stop after k recursive calls when there are
only s individuals to experiment on, i.e., |Z+

k ∪ Z−k | ≤ s. Finally, we construct our estima-
tor τ̂s, similar to the Horvitz-Thompson estimator, by scaling the treatment and control

contributions due to Z+
k and Z−k as: τ̂s = 2t/n ·

(∑
j∈Z+

t
y1
j −

∑
j∈Z−t

y0
j

)
.

Theoretical Guarantees. Our analysis approach, inspired by the coreset construction
for discrepancy minimization [25], is based on the observation that if we can obtain good
estimates for the contributions

∑
i∈[n] y

1
i and

∑
i∈[n] y

0
i , we obtain a good estimate for ATE.

Theorem 4.1 (Main ATE Error Bound). The estimator τ̂s in Algorithm Recursive-
Covariate-Balancing obtains the following guarantee, with probability at least 2/3:

|τ̂s − τ | = O

(√
log log(n/s) ·

(
σ√
s

+

∥∥βββ1
∥∥+

∥∥βββ0
∥∥

s

))
.

Remark. When s = n, the above theorem matches the guarantees obtained by GSW de-
sign [19]. Moreover, we obtain a better dependence compared to sampling s rows uniformly
at random and using the y1,y0 values of the sampled rows to estimate the population
mean of treatment and control groups in ATE. An application of standard concentra-
tion inequalities or the central limit theorem, will yield a multiplicative factor increase
in one of the error terms, with a dependence of Õ

(
1/s · ‖X‖2 (

∥∥βββ1
∥∥+

∥∥βββ0
∥∥)
)
, instead of

the Õ
(
1/s · (

∥∥βββ1
∥∥+

∥∥βββ0
∥∥)
)

obtained by our algorithm, where ‖X‖2 denotes the spectral

norm of X and Õ(·) hides the logarithmic factors.

5. Experimental Evaluation

In this section, we provide an evaluation of our algorithms on five datasets: IHDP [20, 13],
Twins [5], Lalonde [28], Boston [18], and Synthetic [32]. Missing details are in Appendix J.

Baselines. (A) ITE. We compare the performance of our Algorithm Sampling-ITE
(referred to as ‘Leverage’ ) with respect to three baselines: (i) Uniform – where we use
uniform sampling of X, (ii) Leverage-nothresh – where we use our Algorithm Sampling-
ITE on X, instead of X∗, (iii) Lin-regression – which captures the best linear fit regression
error, i.e., assuming we have access to both y1,y0. (B) ATE. We compare the performance
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of our Algorithm Recursive-Covariate-Balancing (referred to as ‘Recursive-GSW’ ) to
three baselines: (i) Uniform – in which we sample s rows uniformly and assign them
to treatment or control with equal probability, (ii) GSW-pop – we partition the entire
population using GSW, (iii) Complete Randomization – we partition the population with
equal probability. The last two baselines are over all the n individuals.

Evaluation. To evaluate the performance of average treatment effect estimation (τ) on the
datasets, we compare the deviation error of the estimator τ̂s, given by |τ̂s − τ | for different
sample sizes. To evaluate the performance of individual treatment effect estimates, we
compare the root mean squared error RMSE (see Defn. 2.1) for different sample sizes.

(a) IHDP (b) Synthetic

Figure 1: We compare the performance of various
methods for estimating ITE, measured us-
ing RMSE on y-axis, against different sam-
ple sizes (as proportion of dataset size) on
x-axis.

(a) IHDP (b) Twins

Figure 2: We compare the performance of various
methods for estimating ATE, measured us-
ing deviation error on y-axis, against
different sample sizes (as proportion of
dataset size) on x-axis.

Results. For every dataset, we run each experiment for 1000 trials and plot the mean
using a colored line and shade the region between 30 and 70 percentile around the mean to
signify the confidence interval in Figs. 2, 1 representing ATE and ITE results.
(i) ITE. For all sample sizes, we observe that the RMSE obtained by our algorithm labeled
as Leverage in Figure 1, is significantly smaller than that of all the other baselines, including
Uniform and Leverage-nothresh. E.g., we observe that when the sample size is 20% of the
population in IHDP dataset, the error obtained by Leverage is at least 50% times smaller
than that of Uniform and Leverage-nothresh. For the Synthetic dataset, the error obtained
by Leverage is extremely close to that of the error due to the best linear fit, Lin-regression
(see the zoomed in part of the figure). Our algorithms result in a reduction of experimental
costs for ITE estimation using only a fraction of the dataset. (ii) ATE. For all datasets, we
observe that the deviation error obtained by our algorithm labeled as Recursive-GSW in
Figure 2, is significantly smaller than that of Uniform baseline. Surprisingly, for the IHDP
dataset, our approach is significantly better than Complete-randomization, for all sample
sizes, including using just 10% of data. For all the remaining datasets using a sample of
size 30%, we achieve the same error (up to the confidence interval) as that of Complete-
randomization. Complete randomization is one of the most commonly used methods for
experimental design and our results indicate a substantial reduction in experimental costs.
For IHDP dataset, a sample size of about 10% of the population is sufficient to achieve a
similar error as that of GSW-pop. For the remaining datasets, we observe that for sample
sizes of about 30% of the population, the deviation error obtained by our algorithm is within
the shaded confidence interval of the error obtained by GSW-pop. Therefore, for a specified
error tolerance level for ATE, we can reduce the associated experimental costs using just a
small subset of the dataset using our algorithm.
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F. Preliminaries

Assumption F.1 (Linearity Assumption). Under the linearity assumption, the treatment
and control values are a linear function of the covariates. Formally, for some βββ0,βββ1 ∈ Rd,

y1 = Xβββ1 + ζζζ1 and y0 = Xβββ0 + ζζζ0,

where ζζζ1, ζζζ0 ∈ Rn are noise vectors, with each coordinate drawn independently from the
Gaussian distribution with zero mean and variance σ2, i.e., N(0, σ2). We further assume
that X is row-normalized, i.e., ‖X[i, :]‖ ≤ 1 ∀i ∈ [n].

Definition F.2 (Individual Treatment Effect). Given a population of n individuals, the
individual treatment effect (ITE) of j ∈ [n] is the difference between the treatment and
control values:

ITE(j)
def
= y1

j − y0
j .

Definition F.3 (Average Treatment Effect). Given a population of n individuals, the av-
erage treatment effect (ATE), denoted by τ , is the average individual treatment effect:

τ
def
=

1

n

∑
j∈[n]

ITE(j) =
1

n

∑
j∈[n]

y1
j − y0

j .

The following claim about leverage scores is well known.

Claim F.4 ([49]).
∑

j∈[n] `j(X
∗) = rank(X∗).

We will employ the following well-known result on the `2-norm of a Gaussian vector.

Fact F.5. Suppose ζζζ ∈ Rn be a vector such that each co-ordinate ζζζi is drawn independently
from the normal distribution N(0, σ2). Then, with probability ≥ 1− 1/n:

‖ζζζ‖ ≤ 2σ ·
√
n.

G. Related Work

Parametric Assumptions. Without parametric assumptions, ITE estimation is not fea-
sible [42]. We focus on linear models in particular, since they are important in developing
theory. E.g., in the literature on optimal designs in active learning, much of the foundational
theory is built around linear models. Identifying estimators based on linearity assumptions
is an active area of study in the causal inference literature [19, 48].

Active Learning. Our setup is similar to active learning [41], where the goal is to min-
imize the number of individual labels that we access for solving linear regression or other
downstream tasks. They key difference is that we must both select a subset of individuals,
and for each i, can measure only one of two labels: y1

i or y0
i . In particular, ITE estimation

can be thought of as solving two simultaneous active linear regression problems – one for
the treatment outcomes and one for the control outcomes. Thus, standard active learning-
based approaches, such as [11, 12, 33], fall short. Even when s equals the population size
n, i.e., when active learning becomes trivial, our problem does not. We must still pick a

11



partition of the full population into treatment and control groups. Overall, sample con-
strained treatment effect estimation by designing efficient randomized controlled trials has
received little attention, compared to various approaches that use observational data, such
as [23, 38, 45].

Other Related Work. For ATE estimation, the most well-studied approaches to experi-
ment design are covariate balancing and randomization. A variety of design techniques have
been studied based on these approaches, such as blocking [17], matching [22, 44], rerandom-
ization [29, 34], and optimization [24]. Using observational data, treatment effect estimation
using covariate regression adjustment [30] and various active learning-based sampling tech-
niques have gained recent attention [23, 37, 45]. Compared to ATE, estimating ITE is
significantly harder and has received attention only recently using machine learning meth-
ods [7, 42, 47]. There has been a lot of recent work on efficient experimental designs to min-
imize experimental costs, in various domains, such as causal discovery [1, 2, 15, 16, 27, 43],
multi-arm bandits [4, 26, 35], and group testing [9, 10, 14].

H. Individual Treatment Effect Estimation

In this section, we present the missing details from section 3.

For some γ ≥ 0, to be fixed later, we define a smoothed matrix for X, the projection
onto singular vectors with high singular values, as follows:

Definition H.1 (Smoothed matrix). Given X ∈ Rn×d with singular value decomposition
X = UΣV>, let Γ∗ be the set of indices corresponding to singular values greater than
√
γ, i.e., Γ∗

def
= {i | σi(X) ≥ √γ}; we denote d′

def
= |Γ∗|. Let Σ∗ = Σ(Γ∗,Γ∗) denote

the principal sub-matrix of Σ associated with these large singular values. Similarly, let
U∗ ∈ Rn×d′ ,V∗ ∈ Rd×d′ be the associated column sub-matrices of U and V. Then, we

define: X∗
def
= U∗Σ∗V∗T .

H.1 Leverage Score Sampling

Sampling Matrix. Our algorithm Sampling-ITE, will sample individuals, corresponding
to rows of the smoothed matrix of X, i.e., X∗, independently – the ith row is included in
the sample with some probability πππi. Let the set of rows sampled be denoted by S.

We can associate a sampling matrix W with S. The jth row of W is associated with
the jth element in the set S (under some fixed order). If the jth element in S is the row for
individual i for some i ∈ [n], then, W[j, :] is equal to ei/

√
πππi. Here, ei ∈ Rn denotes the

ith standard basis vector. In this way, WX∗ consists of the subset of rows sampled in S,
reweighted by the inverse squareroot of their sampling probabilities, which is necessary to
keep expectations correct in solving the linear regression.

H.2 Theoretical Guarantees

First, we bound the error due to sampling. Critically, we show that the leverage scores of
X∗, and in turn the probabilities πππ, are bounded by 1/γ. Thus, the sampling probabilities
for S1, πππ(1− πππ) are not too far from πππ itself.

12



Algorithm 1 Sampling-ITE

Input: Smoothed covariates X∗ ∈ Rn×d, sampling probabilities πππ ∈ [0, 1]n.
Output: Estimates for ITE(j) for each individual j ∈ [n].

1: Add each j ∈ [n] to set S0 independently, with prob. πππj .
2: Add each j ∈ [n] to set S1 independently, with prob. πππj .
3: Construct sampling matrix W0 from S0 using probabilities πππ.
4: Construct sampling matrix W1 from S1 \ S0 using probabilities πππ(1− πππ).

5: Let β̃ββ
i

= arg minβββ∈Rd

∥∥WiX∗βββ −Wiyi
∥∥2 for i = 0, 1.

6: For each j ∈ [n], let ÎTE(j) be the jth entry of the vector X∗β̃ββ
1
−X∗β̃ββ

0
.

7: return ÎTE(j) ∀j ∈ [n].

We argue that the error introduced by ignoring small singular values and using X∗ in
place of X is small. Using X∗ instead of X introduces error that depends on the threshold
γ used in the construction of X∗ (Def H.1).

Claim H.2. For every βββ ∈ Rd, ‖X∗βββ −Xβββ‖ ≤ √γ · ‖βββ‖.

Proof. Using the singular value decomposition of X,X∗:

‖X∗βββ −Xβββ‖ = ‖U∗Σ∗V∗βββ −UΣVβββ‖
≤ ‖U∗Σ∗V∗ −UΣV‖2 · ‖βββ‖ ,

where ‖·‖2 denotes the spectral norm (the largest singular value) of the matrix. By con-
struction, ‖U∗Σ∗V∗ −UΣV‖2 ≤

√
γ, giving the claim.

We next argue that the leverage scores of the smoothed matrix X∗ are bounded by
1/γ. As we assume the row norms of X are bounded by 1, the row norms of X∗ are also
bounded. Thus, there can be no rows in X∗ that are nearly orthogonal to all other rows
– i.e., there can be no rows with very high leverage scores. Such rows would lead to small
singular values. However, we know that the smallest singular value of X∗ is at least

√
γ. In

particular, we prove:

Claim H.3. `j(X
∗) ≤ 1/γ, for all j ∈ [n].

Proof. It is well known that `j(X
∗) = X∗[j, :]T (X∗TX∗)

+
X[j, :] = ‖U∗[j, :]‖2. This can be

checked by writing X∗ in its SVD. Further, ‖X∗[j, :]‖2 ≤ ‖X[j, :]‖2 and so, by assumption,
‖X∗[j, :]‖2 = ‖Σ∗U∗[j, :]‖2 ≤ 1. Since all diagonal entries of Σ∗ are at least

√
γ, this gives,

`j(X
∗) = ‖U∗[j, :]‖2 ≤ 1/γ, completing the claim.

Setting πππ. It is well known that if we sample rows of X∗ with probabilities πππ proportional to
the leverage scores, we will obtain a (1±ε) relative error approximation for linear regression
[40]. The result of Sarlos [40] applies to sampling s rows with replacement, each equal to j
with probability πππj/ ‖πππ‖. It is not hard to observe that it extends to the variant where each
row is included in the sample independently with similar probability. Therefore, we have:

Lemma H.4 (Follows from [40]). For X ∈ Rn×d, y ∈ Rn, let S ⊆ [n] include each j ∈ [n]
independently with probability πππj satisfying πππj ≥ min

{
1, `j(X) · c · [log(rank(X)) + 1

δε ]
}

for

some large enough constant c. Let W ∈ R|S|×n be a sampling matrix that includes row
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ej/
√
πππj if j ∈ S, where ej ∈ Rn is the jth standard basis vector. Let

β̃ββ = arg minβββ∈Rd ‖WXβββ −Wy‖2 . Then, E[|S|] =
∑n

j=1πππj and with probability ≥ 1− δ:∥∥∥Xβ̃ββ − y
∥∥∥ ≤ (1 + ε) ·min

βββ
‖Xβββ − y‖ .

If the πππj’s are within constants of the required bound, E[|S|] = O
(
d log d+ d

εδ

)
.

Note that the bound on E[|S|] follows from the well known fact that the sum of leverage
scores, is equal to the rank, i.e.,

∑n
j=1 `j(X) = rank(X) ≤ d [49].

The sampling probabilities are set to πππj = min {1, `j(X∗) · c0 · [log(rank(X∗)) + 30/ε]}
for some constant c0 ≥ 2c, where c is the constant in Lemma H.4. Thus, by the lemma, we

will have, with probability ≥ 29/30,
∥∥∥X∗β̃ββ0

− y0
∥∥∥ ≤ (1 + ε)

∥∥X∗βββ0 − y0
∥∥ .

It remains to show that we will have a similar guarantee for the control group. The
rows in S1 are included independently with probability πππj · (1 − πππj). If we can prove that
πππj · (1− πππj) ≥ πππj

2 , then Lemma H.4 will still apply, since we have set c0 = 2c. To do so, it
suffices to argue that πππj ≤ 1/2 by setting the parameters appropriately.

Claim H.5. If γ = 4c0 max {log(rank(X∗)), 30/ε} and πππj = min{1, `j(X∗)·c0·[log(rank(X∗))+
30/ε]}, we have πππj ≤ 1/2 for every j ∈ [n].

Proof.

πππj ≤ `j(X∗) · c0 · [log(rank(X∗)) + 30/ε] ≤ 1/γ · c0 · [log(rank(X∗)) + 30/ε] (Claim H.3)

≤ c0[log(rank(X∗)) + 30/ε]

4c0 max {log(rank(X∗)), 30/ε}
≤ 1

2
.

Combining Lemma H.4 and Claim H.5, we get:

Lemma H.6. Suppose γ = 4c0 max {log(rank(X∗)), 30/ε} and πππj = min
{

1, `j(X
∗) · c0 ·

[log(rank(X∗))+30/ε]
}

, for some sufficiently large constant c0. Then, Algorithm Sampling-
ITE satisfies, for i = 0, 1, with probability at least 14/15:∥∥∥X∗β̃ββi − yi

∥∥∥ ≤ (1 + ε) ·
∥∥X∗βββi − yi

∥∥ .
Further, E[|S0 ∪ S1|] ≤ 2

∑n
j=1πππj = O(d log d+ d/ε).

Proof. From Lemma H.4 and Claim H.5, we have:∥∥∥X∗β̃ββi − yi
∥∥∥ ≤ (1 + ε) ·

∥∥X∗βββi − yi
∥∥ for every i = 0, 1.

Using union bound, the total failure probability is ≤ 1
30 + 1

30 ≤
1
15 .

From Algorithm 1, let S0, S1 denote the set of people assigned to treatment and control
respectively. From Lemma H.4, we have:

E[|S0 ∪ S1|] ≤ 2
n∑
j=1

πππj ≤ 2
∑
j∈[n]

`j(X
∗) · c0 · [log(rank(X∗)) + 30/ε]

≤ 2c0d · [log d+ 30/ε] = O(d log d+ d/ε) (using Claim F.4 and rank(X∗) ≤ d).
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Corollary H.7. Suppose γ = 4c0 max {log(rank(X∗)), 30/ε} and πππj = min
{

1, `j(X
∗) · c0 ·

[log(rank(X∗))+30/ε]
}

, for some sufficiently large constant c0. Then, Algorithm Sampling-
ITE satisfies, for i = 0, 1, with probability at least 14/15:∥∥∥X∗β̃ββi − yi

∥∥∥ ≤ (1 + ε) ·
(√
γ
∥∥βββi∥∥+

∥∥ζζζi∥∥) for i = 0, 1.

Proof.∥∥∥X∗β̃ββi − yi
∥∥∥ ≤ (1 + ε) ·

∥∥X∗βββi − yi
∥∥ (from Lemma H.6)

≤ (1 + ε) ·
(∥∥X∗βββi −Xβββi

∥∥+
∥∥Xβββi − yi

∥∥) (using triangle inequality)

≤ (1 + ε) ·
(√
γ
∥∥βββi∥∥+

∥∥ζζζi∥∥) (from Claim H.2)

RMSE Guarantees. The root mean squared error (Defn. 2.1) for the ITE estimates is
given by:

RMSE =
1√
n

∥∥∥(X∗β̃ββ
1
−X∗β̃ββ

0
)− (y1 − y0)

∥∥∥ .
By setting ε = 120c0d log d/s in Corollary H.7, we get the following theorem for our

Algorithm 1:

Theorem H.8 (Theorem 3.1 restated). Suppose s ≥ 120c0d log d. There is a randomized
algorithm that selects a subset S ⊆ [n] of the population with E[|S|] ≤ s, and, with probability

at least 9/10, returns ITE estimates ÎTE(j) for all j ∈ [n] with error:

RMSE = O
(√ 1

n
max

{s
d
, log d

}
· (
∥∥βββ1

∥∥+
∥∥βββ0

∥∥) + σ
)
.

Proof. Let ε = 120c0d log d
s and γ = 4c0 max {log d, 30/ε}. Using triangle inequality, we have:∥∥∥(X∗β̃ββ

1
−X∗β̃ββ

0
)− (y1 − y0)

∥∥∥
2
≤
∥∥∥X∗β̃ββ1

− y1
∥∥∥

2
+
∥∥∥X∗β̃ββ0

− y0
∥∥∥

2

≤ (1 + ε) ·
(√
γ
∥∥βββ1

∥∥+
√
γ
∥∥βββ0

∥∥+
∥∥ζζζ0
∥∥+

∥∥ζζζ1
∥∥) (from Corollary H.7)

From the definition of RMSE, we get:

RMSE =

(
1

n

∥∥∥(X∗β̃ββ
1
−X∗β̃ββ

0
)− (y1 − y0)

∥∥∥2
)1/2

≤ 1√
n

[
2
√
γ · (

∥∥βββ1
∥∥+

∥∥βββ0
∥∥) + 2 · (

∥∥ζζζ0
∥∥+

∥∥ζζζ1
∥∥)
]

≤ 1√
n

[
2
√
γ · (

∥∥βββ1
∥∥+

∥∥βββ0
∥∥) + 8σ

√
n
]

(from Lemma F.5)

≤ 2

√
4c0

n
max

{
log d,

s

c0d

}
· (
∥∥βββ1

∥∥+
∥∥βββ0

∥∥) + 8σ

15



Using union bound, the probability of failure is upper bounded by 1
15 + 2

n ≤
1
10 , for large n.

From Algorithm 1, let S0, S1 denote the set of people assigned to treatment and control
respectively. From Lemma H.6, we have:

E[|S0 ∪ S1|] ≤ 2
n∑
j=1

πππj ≤ 2
∑
j∈[n]

`j(X
∗) · c0 · [log(rank(X∗)) + 30/ε]

≤ 2c0d · [log d+ 30/ε] (using Claim F.4 and rank(X∗) ≤ d)

≤ 4c0dmax

{
log d,

s

4c0d log d

}
= max {4c0d log d, s} ≤ s.

Hence, the theorem.

The corollary below follows immediately from Theorem 3.1.

Corollary H.9 (Corollary 3.2 restated). The root mean squared error obtained by Algo-
rithm 1 is minimized when s = Θ(d log d) and is given by:

RMSE = O
(√ log d

n
· (
∥∥βββ1

∥∥+
∥∥βββ0

∥∥) + σ
)
.

Our upper bound on RMSE increases with s, if s grows strictly faster than d log d
asymptotically, i.e., s = ω(d log d). Therefore, to obtain low error, we set s = c · d log d for
some constant c, even if the sample constraint allows for larger values. We believe this is an
artifact of our analysis; in Section 5, we observe empirically that the error decreases with s.

Remark. We observe that the RMSE bound in Corollary 3.2 is nearly optimal, even for
algorithms that experiment on the full population. The O(σ) term cannot be improved by
more than constants, as a consequence of our noise model (Linearity Assumption). Even if
we knew the true βββ1 and βββ0, our RMSE would be O(σ).

The term (
∥∥βββ0

∥∥ +
∥∥βββ1

∥∥)/
√
n is also necessary. Suppose the matrix X is such that all

rows, except row j, are zero vectors. Row j is a standard basis vector, i.e., its ith entry is 1
for some i. Suppose also that βββ1 and βββ0 are both independently set to that same standard
basis vector with probability 1/2, and set to zero otherwise. Then, with probability 1/2,
ITE(j) = 0 and with probability 1/2, ITE(j) = ±1. No algorithm which observes just one
of y1

j or y0
j can obtain expected error o(1) in estimating ITE(j). That is, no algorithm can

obtain RMSE o(1/
√
n) = o

(
(
∥∥βββ0

∥∥+
∥∥βββ1

∥∥)/
√
n
)
.

I. Average Treatment Effect Estimation

Harshaw et al. [19] present an experimental design based on the Gram-Schmidt-Walk al-
gorithm for discrepancy minimization [8]. Their Gram-Schmidt-Walk design produces a
random partition of the population with a good balance in every dimension, i.e., control
and treatment groups have similar covariates. For the Horvitz-Thompson estimator, they
give a tradeoff between covariate balancing and robustness (estimation error). Formally,
they obtain:
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Algorithm 2 Recursive-Covariate-Balancing

Input: Covariate matrix X ∈ Rn×d, number of experiments to be run s.
Output: Estimate for ATE.

1: Set t = 1,Zt := X, nt = n.
2: while True do
3: Z+

t ,Z
−
t ← Gram-Schmidt-Walk(Zt, δ

′) where δ′ = log(16 log(n/s)).
4: if nt ≤ s then
5: break
6: else if size(Z+

t ) ≥ size(Z−t ) then
7: Set Zt+1 ← Z−t and nt+1 ← size(Z−t ).
8: else
9: Set Zt+1 ← Z+

t and nt+1 ← size(Z+
t ).

10: end if
11: t← t+ 1
12: end while
13: Use Z+

t ,Z
−
t to construct the ATE estimator as:

τ̂s = 2t/n ·

∑
j∈Z+

t

y1
j −

∑
j∈Z−

t

y0
j

 .

14: return τ̂s.

Lemma I.1 (Proposition 3 in [19]). For all ∆ > 0, with probability at least 1−2 exp
(
−∆2n

8L

)
,

the Gram-Schmidt-Walk design satisfies: |τ̂ − τ | ≤ ∆, where

L =
2

n
min
βββ∈Rd

(∥∥∥∥y1 + y0

2
−Xβββ

∥∥∥∥2

+ ‖βββ‖2
)
.

Theoretical Guarantees. Our analysis approach, inspired by the coreset construction
for discrepancy minimization [25], is based on the observation that if we can obtain good
estimates for the contributions

∑
i∈[n] y

1
i and

∑
i∈[n] y

0
i , we obtain a good estimate for ATE

(τ). Using the next lemma, we argue that after a call to GSW algorithm that partitions [n]
into the sets S+ and S−, we can obtain additive approximations of

∑
i∈[n] y

1
i and

∑
i∈[n] y

0
i .

Our approximations are the contributions of treatment and control values in S+ and S−

scaled appropriately, i.e.,
∑

i∈S+ 2 · y1
i and

∑
i∈S− 2 · y0

i .

Lemma I.2. Suppose the Gram-Schmidt-Walk design [19] partitions the population [n]
into two disjoint groups S+ and S−. Under the linearity assumption, with probability 1 −
1/3 log(n/s), for both the control and treatment groups, the following holds:∣∣∣∣∣∣

∑
j∈S+

2yij −
∑
j∈[n]

yij

∣∣∣∣∣∣ ≤ 4
√

log(16 log(n/s)) ·
(
2σ
√
n+

∥∥βββi∥∥) for i = 0, 1.

Proof. The Gram-Schmidt-Walk design uses the covariate matrix X but not the treatment
and control values y1,y0, for constructing the partition of the population S+,S−. For the
sake of analysis, consider the setting where y1

i = y0
i for all i ∈ [n]. Therefore, the average

treatment effect, τ = 0, and the estimator τ̂ satisfies:

τ̂ − τ =
2

n

(∑
i∈S+

y1
i −

∑
i∈S−

y0
i

)
=

2

n

(∑
i∈S+

y1
i −

∑
i∈S−

y1
i

)
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From Lemma I.1, we have:

L =
2

n
min
βββ∈Rd

(∥∥∥∥y1 + y0

2
−Xβββ

∥∥∥∥2

+ ‖βββ‖2
)

=
2

n
min
βββ∈Rd

(∥∥y1 −Xβββ
∥∥2

+ ‖βββ‖2
)

≤ 2

n

(∥∥y1 −Xβββ1
∥∥2

+
∥∥βββ1

∥∥2
)

=
2

n

(∥∥ζζζ1
∥∥2

+
∥∥βββ1

∥∥2
)
.

From Lemma I.1, with probability at least 1− 2/ log(16 log(n/s)), we have:

|τ̂ − τ | =

∣∣∣∣∣∣ 2n
∑
i∈S+

y1
i −

∑
i∈S−

y1
i

∣∣∣∣∣∣
≤
√

16log(16 log(n/s))

n2

(
‖ζζζ1‖2 + ‖βββ1‖2

)
≤

4
√

log(16 log(n/s))

n
·
(∥∥ζζζ1

∥∥+
∥∥βββ1

∥∥)
For simplicity, let :

∆1 = 4
√

log(16 log(n/s)) ·
(∥∥ζζζ1

∥∥+
∥∥βββ1

∥∥)
≤ 4
√

log(16 log(n/s)) ·
(
2σ
√
n+

∥∥βββ1
∥∥) ,

where the last inequality follows from Fact F.5, with probability at least 1− 1/n.

∑
i∈S−

y1
i ≥

∑
i∈S+

y1
i −∆1

∑
i∈S−

y1
i +

∑
i∈S+

y1
i ≥

∑
i∈S+

y1
i +

∑
i∈S+

y1
i −∆1

∑
i∈[n]

y1
i ≥

∑
i∈S+

2y1
i −∆1

⇒ 2
∑
i∈S+

y1
i −

∑
i∈[n]

y1
i ≤ ∆1.

Similarly, we can argue that
∑

i∈[n] y
1
i−2

∑
i∈S+ y1

i ≤ ∆1. Using union bound, the inequality

holds with probability at least 1− 2
16 log(n/s) −

1
n ≥ 1− 1

6 log(n/s) . Following the exact proof,

we can obtain a similar bound for y0 using the set S−. Hence, the lemma.

Building upon the previous lemma, we argue in Theorem I.3 that the additive ap-
proximation errors obtained from repeated use of GSW in our algorithm Recursive-
Covariate-Balancing result in a low estimation error.
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Theorem I.3 (Theorem 4.1 restated). The estimator τ̂s in Algorithm Recursive-Covariate-
Balancing obtains the following guarantee, with probability at least 2/3:

|τ̂s − τ | = O

(√
log log(n/s) ·

(
σ√
s

+

∥∥βββ1
∥∥+

∥∥βββ0
∥∥

s

))
.

Proof. Suppose the Algorithm Recursive-Covariate-Balancing gets terminated after
k ≤ dlog(n/s)e recursive calls to Gram-Schmidt-Walk. Therefore, in the estimator τ̂s,
we scale it using 2k. For simplicity of notation, we use S+,S− to denote the sets Z+

k and Z−k
respectively. Using Lemma I.2 , we show that the scaled contribution of treatment values,
i.e.,

∑
j∈S+ 2k · y1

j is close to the contribution on the entire population, i.e.,
∑

j∈[n] y
1
j . As

this holds for both the control and treatment groups, our final estimate τ̂s has low error.
We have:

τ̂s − τ =
2k

n

∑
j∈S+

y1
j −

∑
j∈S−

y0
j

− 1

n

∑
i∈[n]

y1
i −

∑
i∈[n]

y0
i


n |τ̂s − τ | ≤

∣∣∣∣∣∣
∑
j∈S+

2k · y1
j −

∑
i∈[n]

y1
i

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
j∈S−

2k · y0
j −

∑
i∈[n]

y0
i

∣∣∣∣∣∣
Consider the first term to which we add and subtract

∑
j∈S+∪S− y1

j . This gives us:∣∣∣∣∣∣
∑
j∈S+

2k · y1
j −

∑
i∈[n]

y1
i

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣2k−1

∑
j∈S+

2 · y1
j −

∑
j∈Zk

y1
j

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
j∈Zk

2k−1 · y1
j −

∑
i∈[n]

y1
i

∣∣∣∣∣∣
≤
∣∣∣2k−1 · 4

√
log(16 log(n/s))

(
2σ
√
|Zk|+

∥∥βββ1
∥∥)∣∣∣+

∣∣∣∣∣∣
∑
j∈Zk

2k−1 · y1
j −

∑
i∈[n]

y1
i

∣∣∣∣∣∣ ,
where the last step follows from Lemma I.2. Repeating this k times gives us:∣∣∣∣∣∣

∑
j∈S+

2k · y1
j −

∑
i∈[n]

y1
i
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log(16 log(n/s)) · 2k·
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1
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2
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√
|Z1|
2k

)
σ +

(
1
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.
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Similarly, we can show that:∣∣∣∣∣∣ 1n
∑
j∈S−

2k · y0
j −

∑
i∈[n]

y0
i

∣∣∣∣∣∣ ≤ 4
√

log(16 log(n/s)) ·

(
4σ√
s

+

∥∥βββ0
∥∥

s

)
.

Using union bound, the total failure probability is upper bounded by 1
3 log(n/s) ·log(n/s) ≤

1
3 . Hence, the theorem.

J. Experimental Evaluation: Additional Details

Data Generation We evaluate our approaches on five datasets:

(i) IHDP. This contains data regarding the cognitive development of children, and con-
sists of 747 samples with 25 covariates describing properties of the children and their
mothers, and whose outcome values are simulated [20, 13].

(ii) Twins. This contains data regarding the mortality rate in twin births in USA between
1989-1991 [5]. Following the work of [31], we select twins belonging to same sex, with
weight less than 2kg, resulting in about 11984 twins (pairs), each with 48 covariates.
The purpose of the experiment is to evaluate the effect of weight (treatment) on
mortality (outcome). We use the binary value corresponding to the mortality value
as the treatment outcome. As we have a pair of outcome values for every twin pair,
we use them as potential outcomes.

(iii) LaLonde. This contains data regarding the effectiveness of a job training program
on the real earnings of an individual after completion of the program [28], which is
also the outcome value. The corresponding covariate matrix contains 445 rows and
10 covariates per row.

(iv) Boston. This is constructed based on the housing prices in the Boston area [18]. The
treatment variable was air pollution and the outcome value recorded for each sample
is the median house price. The corresponding covariate matrix contains 506 rows and
12 covariates per row.

(v) Synthetic. In Figure 3, we observe a high disparity in the leverage score values (and
the spectrum) of the covariate matrix in the real datasets. In order to generate fully
synthetic dataset that shows a similar pattern, we used an approach due to [32]. In
particular, we used their third dataset configuration, i.e., X ∈ Rd is generated from
multi-variate t-distribution with 1 degree of freedom and the covariance matrix is
Σ ∈ Rd×d where Σij = 2 ·(0.5)|i−j|. For both the potential outcomes, we use a random
linear function and add Gaussian noise. E.g., for the control outcome y0 = Xβββ0 +ζζζ0,
we generate βββ0 ∈ Rd by drawing each co-ordinate uniformly from [0, 1] and normalize
it to make it a unit vector. The Gaussian noise is generated from N(0, c ·In×n), where
we vary c in the range of [1/n0.5, 1/d0.5] to ensure that the contribution of the noise
term to the `2-norm is very small.
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Setup We used a personal Apple Macbook Pro laptop with 16GB RAM and Intel i5
processor for conducting all our experiments. It took less than an hour to complete each
experiment on each dataset. We used publicly available code for the implementation of
GSW algorithm [19].

Baselines (i) ATE. We compare the performance of our Algorithm Recursive-Covariate-
Balancing (referred to as ‘Recursive-GSW’ ) to three baselines: (i) Uniform. We sample
s rows uniformly at random and assign them to treatment and control groups with equal
probability. By scaling the total sum of treatment values from the sampled set by the inverse
sampling probability, we estimate the contribution of treatment values in ATE and follow
a similar procedure for the control group. (ii) GSW-pop. We use the GSW algorithm to
partition the full population and return the estimate obtained using the Horvitz-Thompson
estimator for ATE. (iii) Complete Randomization. We partition the population into treat-
ment and control using complete randomization, i.e., with equal probability, and return the
estimate obtained using the Horvitz-Thompson estimator for ATE. The last two baselines
are overall n individuals rather than a subset of size s.

(ii) ITE. We compare the performance of our Algorithm Sampling-ITE (referred to
as ‘Leverage’ ) with respect to three baselines: (i) Uniform. We run Algorithm 1 on X
and uniform sampling distribution given by πππj = s/n ∀j.(ii) Leverage-nothresh. We run
Algorithm 1 on X, instead of X∗ with the probability distribution πππj ∝ `j(X)∀j.(iii) Lin-
regression. This captures the best linear fit regression error, i.e., assuming we have access
to both y1,y0, we regress these vectors on X to obtain βββ1,βββ0, and use the resultant ITE
estimates Xβββ1 −Xβββ0.

Results For every dataset, we run each experiment for 1000 trials and plot the mean
using a colored line. Also, we shade the region between 30 and 70 percentile around the
mean to signify the confidence interval as shown in Figures 4, 5 representing ATE and ITE
results respectively.

(i) ATE. For all datasets, we observe that the deviation error obtained by our algorithm
labeled as Recursive-GSW in Figure 4, is significantly smaller than that of Uniform baseline.
Surprisingly, for the IHDP dataset, our approach is significantly better than Complete-
randomization, for all sample sizes, including using just 10% of data. For almost all the
remaining datasets using a sample of size 30%, we achieve the same bias (up to the confidence
interval) as that of Complete-randomization. For the Boston dataset, our approach is better
than Complete-randomization, for all sample sizes. Complete randomization is one of the
most commonly used methods for experimental design and our results indicate a substantial
reduction in experimental costs. For IHDP dataset, a sample size of about 10% of the
population is sufficient to achieve a similar bias as that of GSW-pop. For the remaining
datasets, we observe that for sample sizes of about 30% of the population, the deviation
error obtained by our algorithm is within the shaded confidence interval of the bias obtained
by GSW-pop. Therefore, for a specified error tolerance level for ATE, we can reduce the
associated experimental costs using just a small subset of the dataset using our algorithm.

(ii) ITE. For all sample sizes, we observe that the RMSE obtained by our algorithm
labeled as Leverage in Figure 5, is significantly smaller than that of all the other baselines,
including Uniform and Leverage-nothresh. E.g., we observe that when the sample size is
20% of the population in IHDP dataset, the error obtained by Leverage is at least 50%
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times smaller than that of Uniform and Leverage-nothresh. For the Synthetic and Twins
datasets, the error obtained by Leverage is extremely close to that of the error due to the
best linear fit, Lin-regression (see the zoomed in part of the figure). Similar to ATE results,
our algorithms result in a reduction of experimental costs for ITE estimation using only a
fraction of the dataset.
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(a) IHDP

(b) Twins

(c) Lalonde

(d) Boston

(e) Synthetic

Figure 3: We plot the histogram of leverage scores of the covariate matrices for each of the
datasets. On y-axis, we measure the percentage of the dataset corresponding to
a particular leverage score (on the x-axis).
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(a) IHDP

(b) Twins

(c) Lalonde

(d) Boston

(e) Synthetic

Figure 4: We compare the performance of various methods for estimating ATE, measured
using deviation error on y-axis, against different sample sizes (as proportion of
dataset size) on x-axis.
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(a) IHDP

(b) Twins

(c) Lalonde

(d) Boston

(e) Synthetic

Figure 5: We compare the performance of various methods for estimating ITE, measured
using RMSE on y-axis, against different sample sizes (as proportion of dataset
size) on x-axis.
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