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Abstract

We introduce a simple and intuitive two-stage active learning algorithm for the training
of k-nearest neighbors classifiers. Under a Hölder-like smoothness condition on the con-
ditional probability function P(Y = y|X = x), we provide consistency guarantees for a
modified k-nearest neighbors classifier trained on samples acquired via our scheme, and
show that under a margin assumption, our actively trained classifiers enjoy tighter finite
sample guarantees than passively trained k-nearest neighbor classifiers.

1. Introduction

Active learning is perhaps the most studied theoretical framework allowing for the acquisi-
tion of specific types of labeled data. In active learning, the learner has access to unlabeled
training data from the data distribution, and can ask an annotator to selectively label a
subset of this data. A significant body of work has demonstrated the power of active learn-
ing to lower label complexities versus passive approaches, wherein every point from the
underlying distribution is labeled Balcan et al. (2006); Hanneke (2007); Beygelzimer et al.
(2008); Zhang and Chaudhuri (2014).

Though important results have given insight into the potential of active learning to train
nonparametric classifiers Castro and Nowak (2008); Minsker (2012), there is no complete
theory of active learning in these settings. For k-nearest neighbors (k-NN) in particular,
the most notable contributions are Dasgupta (2012), which gives consistency guarantees
for k-NN under a wide class of active strategies, but does not concern itself with sample
complexities, and Kontorovich et al. (2018), which uses a compression approach to give
guarantees for a 1-nearest neighbor classifier trained on a subset of an actively acquired
training sample; while this work is impressive, it does not come with consistency guarantees
or matching label complexity lower bounds, leaving the problem open.

In this work, we introduce a relatively straightforwards two-stage active learning algo-
rithm for nearest neighbors, and investigate one primary setting in which it outperforms
passive counterparts: when noise falls off fairly quickly around the decision boundary, sim-
ilar to the noise condition of Tsybakov Audibert and Tsybakov (2005). The simple con-
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struction of our algorithm makes for a natural consistency analysis, and has connections to
disagreement-based active learning techniques from the parametric setting.

2. Preliminaries

2.1 Setting

We study a binary classification setting where instances come from a metric space (X , ρ),
and the label space is Y = {0, 1}. We assume that we have access to labeled data from
some data generating measure P on X × Y. P is the product of µ, the marginal of P over
the instance space, and η : X → [0, 1], which denotes the conditional probability function
P(Y = 1|X = x).

We assume that after n i.i.d. samples from P, which are labeled by definition, we enter
a second phase of the sampling. In this phase, we may specify any R ⊆ X with µ(R) > 0,
and subsequently rejection sample from R. The main sampling algorithm, formalized in
Algorithm 1, makes use of this power to provide a more specialized training set for a
modified NN classifer, introduced in the following.

2.2 Classifier Considered

We use a modified k-NN classifier to facilitate analysis. For a given sample of size n + m,
and regions R ⊆ R+ ⊆ X with µ(R+) > 0, we consider the modified k-NN classifier

gRn+m,k(x) :=

{
1[ 1
k

∑k
i=1 Y

(i)
R+(x) ≥ 1

2 ], if x ∈ R
1[ 1
k

∑k
i=1 Y

(i)
P (x) ≥ 1

2 ], otherwise,

where Y
(i)
R+ denotes the ith nearest neighbor to x out of all of the samples drawn from the

acceptance region R+, and Y
(i)
P (x) the ith nearest neighbor of samples drawn from P. As a

piece of related notation, we denote via B(k+1)(x) the closed ball centered at x with radius

defined by the distance of x to it’s k+ 1st-NN under ρ, and η̂(B(k+1)(x)) := 1
k

∑k
i=1 Y

(i)
P (x).

2.3 Guarantees for k-NN in the Passive Setting

The main analytic tools we use in this work are based around those introduced in Chaudhuri
and Dasgupta (2014). The main idea there is that the k-NN classifier may disagree with
the Bayes optimal classifier g∗(x) := 1[η(x) ≥ 1

2 ] in a region of space where the distribution
is complex enough that n samples are not sufficient. One intermediate definition is needed
to introduce this region, which is referred to as the “effective decision boundary.”

Definition 1 For p ∈ (0, 1] the “probability radius” of a point x is the real number

r(x; p) := inf{r|µ (B(x, r)) ≥ p}.

The “effective decision boundary” can then be stated as in terms of this quantity.

Definition 2 For any p ∈ (0, 1] and ∆ ∈ (0, 1
2 ], the “effective decision boundary” is the set

∂p,∆ :=

{
x | ∃r ≤ r(x; p) s.t.

∣∣∣∣η(B(x, r))− 1

2

∣∣∣∣ < ∆

}
,
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where η(S) := 1
µ(S)

∫
S ηdµ, the probability of getting a 1 label conditional on an instance

being in S. The utility of this definition is illustrated by the following.

Theorem 3 (Theorem 1 of Chaudhuri and Dasgupta (2014)) Fix δ ∈ (0, 1), and
integers k < n + m. If we draw n + m i.i.d. samples from P, then with probability 1 − δ
over the sampling,

PrX∼µ (g∗(X) 6= gn+m,k(X)) ≤ µ(∂p,∆) + δ,

when for a constant cδ we have

p = cδ ·
k

n+m

∆ = min

(
1

2
,

√
1

k
· log(2/δ)

)
.

This work largely focuses on the role of the parameter p in determining guarantees, which
intuitively corresponds to investigating the “locality” of the voting procedure deciding the
prediction of the classifier. As such, we will fix ∆ as in the above theorem throughout.

3. Active Sampling Scheme

Algorithm 1 introduces the active sampling scheme. It is a two-phase sampling algorithm,
wherein the first phase is used to determine a region of instance space to target in the
second phase, and the second phase samples a mixture between rejection samples from
this target region and the underlying measure. The acceptance region used in the second
phase, is approximately speaking, the part of space where voting for the k-NN classifier is
contentious in the following sense.

Definition 4 Given a sample S of size n, the “estimated hard region” is the set

Ĥn,k :=

{
x ∈ X |

∣∣∣∣η̂(B(k+1)(x))− 1

2

∣∣∣∣ < 2∆ + ∆̃

}
,

where

∆̃ := c0

√
d log(n) + log(1/δ)

k
.

Here, c0 is a universal constant and d denotes the VC-dimension of balls in X .

This region approximates the“effective decision boundary” from the outside with high prob-
ability when η is sufficiently smooth, and as such, cautiously partitions instance space in
two: one part where we can be confident that k-NN will predict correctly, and one where
we can not be. This elimination of “non-contentious” parts of space is a standard technique
in disagreement-based active learning strategies. The choice of ∆̃ allows for uniform con-
vergence arguments over the estimation of conditional probabilities, which is vital for such
statements about set containment to hold Balsubramani et al. (2019).

In Algorithm 1, the actual region used for rejection sampling is a larger relative of this
set.
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Algorithm 1 Two-Round Sampling Algorithm

Initialize:
n ∈ N, m ∈ N, π ∈ [0, 1], S = ∅, i = n

S ← {(X1, Y1), . . . , (Xn, Yn)} ∼ P
⊗
n . Take n samples i.i.d. ∼ P

if µ(Ĥ+
n,k) > 0 then

while i < n+m do
(Xi, Yi)← ∅
Sample P ∼ Ber(π), X ∼ µ . ‘Sample’ means sample independently.
if P = 1 then

Xi ← X
Sample Yi ∼ Ber(η(X))

else
if X ∈ Ĥ+

n,k then
Xi ← X
Sample Yi ∼ Ber(η(X))

end if
end if
S ← S ∪ {(Xi, Yi)}
i← |S|

end while

else
S ← S ∪ {(Xn+1, Yn+1), . . . , (Xn+m, Yn+m)} ∼ P

⊗
m

end if

Definition 5 Given a sample S of size n, the “augmented hard region” is the set

Ĥ+
n,k :=

⋃
x∈Ĥn,k

B(k+)(x),

where k+ := Θ
(√

nd log(8/δ)
)

.

The Lebesgue measurability of this union of closed balls is guaranteed by Balcerzak and
Kharazishvili (1999).

4. Guarantees

Guarantees for this algorithm rely on smoothness of the conditional probability function η.
The notion of smoothness under which we operate is was also introduced in Chaudhuri and
Dasgupta (2014), and is designed to be evocative of traditional notions of Hölder continuity.

Definition 6 We say the conditional probability function η is “(α,L)-smooth” in (X , ρ, µ)
if for all x, x

′ ∈ X ,

|η(x)− η(x
′
)| ≤ Lµ

(
Bo(x, ρ(x, x

′
))
)α

.
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4.1 Consistency

A major upside of the method suggested in this paper is that consistency is almost imme-
diate. This is because much of our analysis centers around controlling the disagreement of
our modified classifier with the Bayes optimal classifier, which follows in the tradition of
Chaudhuri and Dasgupta (2014).

Theorem 7 Fix n ∈ N. Suppose (X , ρ, µ) satisfies the Lebesgue differentiation theorem,
and the following conditions govern the growth of kn+m as m→∞:

kn+m/ log(n+m)→∞, kn+m/(n+m)→ 0.

Suppose samples are drawn according to Algorithm 1. Then for any first round sample Sn
such that the boundary of the acceptance region ∂Ĥ+

n,k has µ(∂Ĥ+
n,k) = 0, it holds that

R(g
Ĥn,k
n+m,k)

a.s.→ R∗

over the choice of the second m samples, where R∗ is the risk of g∗.

Here, the boundary is the boundary of the set Ĥ+
n,k in the real-analytic sense, i.e. the set

difference between the closure and interior of the set as given by ρ.

4.2 Speedup under Margin

The gains of Algorithm 1 over passive sampling are most obvious under the β-margin
condition introduced in Chaudhuri and Dasgupta (2014). Evocative of Tsybakov noise
conditions, this condition describes an η that falls off from 1

2 near the decision boundary.

Definition 8 We say P satisfies the “β-margin condition” if there is some C > 0 for which

µ

({
x :

∣∣∣∣η(x)− 1

2

∣∣∣∣ ≤ t}) ≤ Ctβ.
The following result is a corollary (to a finite sample guarantee not shown in this docu-

ment) shows that under smoothness and the β-margin condition, our actively trained clas-
sifier has tighter high probability guarantees than the passive high probability guarantees
of Chaudhuri and Dasgupta (2014).

Corollary 1 Fix δ ∈ (0, 1), and m = Θ(n). Suppose that η is (α,L)-smooth such that

∆ ≥ 3L

(
k

n
+

√
16d log(8/δ)

n

)α
,

and set

k ∝ log(1/δ)
1

1+2α(1−β/2) log(n)
−αβ

1+2α(1−β/2)n
2α

1+2α(1−β/2) .

If in addition P satisfies the β-margin condition with β < 2, then for all ζ > 0, with
probability ≥ 1− δ over the draw of n+m training samples from Algorithm 1,

PrX∼µ

(
g∗(X) 6= gn+m,k(X; Ĥn,k)

)
≤ O

( log(1/δ)1−β
2

n

) αβ
1+2α(1−β/2)

· nζ
+ δ.
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The corresponding passive guarantee is Chaudhuri and Dasgupta (2014) Theorem 7a, which

states that for k ∝ log(1/δ)
1

1+2αn
2α

2α+1 , with probability ≥ 1 − δ over the draw of n + m
samples from P,

PrX∼µ (g∗(X) 6= gn+m,k(X)) ≤ O

((
log(1/δ)

n

) αβ
2α+1

)
+ δ.

The improvement of our active strategy primarily comes from the shrunken denominator
in the exponent of n−1, but shows up in the log(1/δ) term as well. We note that the condition
that

∆ ≥ 3L

(
k

n
+

√
16d log(8/δ)

n

)α
is not stringent, as ∆ falls off with 1

k . In general, it is important to choose k ∈ Ω(d log(n))

such that ∆̃ ↓ 0. The large size of k is a relic of uniform convergence arguments, and it is
not yet clear to what extent it is necessary.

5. Future Work

Having explored conditions under which our active learning scheme outperforms passive
schemes, natural followups include a thorough investigation of how close our guarantees
come to lower bounds for active learning strategies Castro and Nowak (2008). There is also
room to consider how such an algorithm can be extended to a multi-stage sampling scheme,
and just how much utility further sampling stages provide. A more thorough investigation
of necessity of working in a large k regime would also be ideal.
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