
ICML2022 Workshop on Adaptive Experimental Design and Active Learning in the Real World

Neural Design for Genetic Perturbation Experiments

Aldo Pacchiano apacchiano@microsoft.com

Drausin Wulsin drausin@immunai.com

Luis Voloch luis@immunai.com

Robert Barton robert.barton@immunai.com

Abstract
The problem of how to genetically modify cells in order to maximize a certain cellular
phenotype has taken center stage in drug development over the last few years (with,
for example, genetically edited CAR-T, CAR-NK, and CAR-NKT cells entering cancer
clinical trials). Exhausting the search space for all possible genetic edits (perturbations)
or combinations thereof is infeasible due to cost and experimental limitations. This work
provides a theoretically sound framework for iteratively exploring the space of perturbations
in pooled batches in order to maximize a target phenotype under an experimental budget.
Inspired by this application domain, we study the problem of batch query bandit optimization
and introduce the Optimistic Arm Elimination (OAE) principle designed to find an almost
optimal arm under different functional relationships between the queries (arms) and the
outputs (rewards). We validate that OAE outperforms other other strategies in finding
optimal actions in experiments on simulated problems, public datasets well-studied in
bandit contexts, and in genetic perturbation datasets when the regression model is a deep
neural network. OAE also outperforms the benchmark algorithms in 3 of 4 datasets in the
GeneDisco experimental planning challenge.
Keywords: Active Learning, Optimism, Genetic Perturbation

1. Introduction

We are inspired by the problem of finding the genetic perturbations that maximize a given
function of a cell (a particular biological pathway or mechanism, for example the proliferation
or exhaustion of particular immune cells) while performing the least number of perturbations
required. In particular, we are interested in prioritizing the set of genetic knockouts (via
shRNA or CRISPR) to perform on cells that would optimize a particular scalar cellular
phenotype. Since the space of possible perturbations is very large (with roughly 20K human
protein-coding genes) and each knockout is expensive, we would like to order the perturbations
strategically so that we find one that optimizes the particular phenotype of interest in fewer
total perturbations than, say, just brute-force applying all possible knockouts.

With this objective in mind we propose a simple method for improving a cellular phenotype
under a limited budget of genetic perturbation experiments. Although this work is inspired
by this concrete biological problem, our results and algorithms are applicable in much more
generality to the setting of experimental design with neural network models. We develop the

1

Optimistic Arm Elimination (OAE) algorithm for the batch query bandit problem and show
that it is compatible with the use of neural network function approximation. During each
time-step OAE fits a reward model on the observed responses seen so far while at the same
time maximizing the reward on all the arms yet to be pulled. OAE then queries the batch of
arms whose predicted reward is maximal among those not tried out yet.

We conduct a series of experiments on synthetic and public data from the UCI (3) database
and show that OAE is able to find the optimal “arm" using fewer batch queries than other
algorithms such as greedy and random sampling. We validate OAE on the public CMAP
dataset (16), which contains tens of thousands of genetic shRNA knockout perturbations,
and show that it always outperforms a baseline and almost always outperforms a simpler
greedy algorithm in both convergence speed to an optimal perturbation and the associated
phenotypic rewards. These results illustrate how perturbational embeddings learned from
one biological context can still be quite useful in a different biological context, even when the
reward functions of these two contexts are different. Finally we also benchmark our methods
in the GeneDisco dataset and algorithm suite (see (9)) and show OAE to be competitive
against benchmark algorithms in the task of maximizing HitRatios.

2. Related Work

The field of Bayesian optimization has long studied the problem of optimizing functions
severely limited by time or cost Jones et al. (4). For example, Srinivas et al. (15) introduce the
GP-UCB algorithm for optimizing unknown functions. Other approaches based on adaptive
basis function regression has also been used to model the payoff function as in (14). These
algorithms have also been used in the drug discovery context. Mueller et al. (10) applied
Bayesian optimization to the problem of optimizing biological phenotypes. Very recently,
GeneDisco was released as a benchmark suite for evaluating active learning algorithms for
experiment design in drug discovery (9). Perhaps the most relevant to our setting are the
many works that study batch acquisition in Bayesian active learning such as (6; 5). In this
work we move beyond the typical parametric and Bayesian assumptions from these works
and provide an algorithm that works in conjunction with neural network models.

3. Problem Definition

Let f∗ : A → R be a function over the set of actions, where A ⊂ Rd. We assume f∗ ∈ F
for some (known)1 function class F such that the “reward" of action a ∈ A equals f∗(a).
Following the typical online learning terminology we call actions A as arms. In this work we
allow A to be infinite, although we only consider finite A in practice.

In our setting the experiment designer interacts with f∗ and A in a sequential manner.
During the t−th round the learner is required to query a batch of B ∈ N arms {at,i}Bi=1 ⊂ A
and observe responses {yt,i = f∗(at,i) + ξt,i}Bi=1 where ξt,i is conditionally zero mean.

We will develop a procedure able to recover an ‘almost optimal’ arm a ∈ A in the least
number of arm pulls possible. We consider the following optimality objective,

τ−quantile optimality. Find an arm aτ ∈ A in the top τ−quantile of {f⋆(a)}a∈A.

1. As our experimental results show, precise knowledge of F is not required in practice.

2

This objective is a measure of optimality better related to practical objectives used in
evaluation, such as hit ratio in the GeneDisco benchmark library (9). We show in Section 5
that our algorithms are successful at producing almost optimal points under this optimality
criteria after a small number of queries. The main challenge is designing a smart choice of
batch queries {at,i}Bi=1 as this obeys the competing objectives of exploring new regions of
the arm space and zooming into others that have shown promising arm values.

At time t the learner will output a candidate approximate optimal arm ât among all the
arms whose labels she has queried (henceforth referred to as Dt) for example by considering
(ât, ŷt) = argmax(a,y)∈Dt

y, the point with the maximal observed reward so far. We use the
statistics of these values to gauge the performance of our algorithms in the public datasets
we evaluate on. Our objective is to design algorithms (possibly randomized) for which the
first timestep where a τ−quantile optimal point ât been proposed is as small as possible.

4. Optimistic Arm Elimination

With these objectives in mind, we introduce the Optimistic Arm Elimination Algorithm
(OAE). We call Ut to the subset of arms yet to be queried by our algorithm. OAE produces
a batch of query points of size b from2 Ut. Our algorithm starts by fitting an appropriate
response predictor f̃t : Ut → R based on the historical query points Dt and their observed
responses so far. Instead of just fitting the historical responses with a square loss and produce
a prediction function f̃t, we encourage the predictions of f̃t to be optimistic on points in Ut.

We propose two ways of achieving this. First by fitting a model (or an ensemble of models)
f̃o
t to the data in Dt and explicitly computing a measure of uncertainty ũt : Ut → R of its

predictions on Ut. We define the optimistic response predictor f̃t(a) = f̃o
t (a) + ũt(a). Second,

we achieve this by defining f̃t to be the approximate solution of a constrained objective,

f̃t = argmax
f∈F

A(f, Ũt) s.t.
∑

(x,y)∈Dt

(f(x)− y)2 ≤ γ. (1)

where γ ≥ 0 and A(f,U) is an acquisition objective tailored to produce an informative
arm from Ut. We consider a couple of acquisition objectives, Aavg(f,U) = 1

|U|
∑

a∈U f(a),
Ahinge(f,U) = 1

|U|
∑

a∈U (max(0, f(a)))p and Asoftmax(f,U) = log
(∑

a∈U exp(f(a))
)
. An

important acquisition function of theoretical interest, although hard to optimize in practice
is Amax(f,U) = maxa∈U f(a). Our algorithm then produces a query batch Bt by solving,

Bt = argmax
B⊂Ut||B|=b

∑
a∈B

f̃t(a). (2)

When the acquisition function equals Amax(f,U) the OAE algorithm balances exploration
and exploitation by acting greedily with respect to a model that fits the rewards of the arms
in Dt as accurately as possible but induces large responses from the arms she has not tried.

4.1 Tractable and Implementations of OAE

We start by discussing the case when the acquisition function equals Aavg(f,U) and see
how we may implement this objective in practice. We mainly focus on this simple tractable

2. The batch equals Ut when |Ut| ≤ B.

3

Algorithm 1 Optimistic Arm Elimination (OAE)
Input Action set A ⊂ Rd, num batches N , batch size B, λreg

Initialize Unpulled arms U1 = A. Observed points and labels dataset D
for t = 1, · · · , N do

Solve for f̃t and compute Bt = argmaxB⊂Ut||B|=b

∑
a∈B f̃t(a).

Observe batch rewards Yt = {yt,i for xt,i ∈ Bt}
Update Dt+1 = Dt ∪ {(Bt, Yt)} ∈ D and Ut+1 = Ut\Bt .

setting here described in our experimental evaluation. Since solving problem 1 may prove
intractable, in practice -when using DNN models- we consider an approximate regularized
objective whose solution will produce a surrogate solution f̂t,

f̂t = argmin
f∈F

1

|Dt|
∑

(x,y)∈Dt

(f(x)− y)2 − λreg

|Au|
∑
u∈Au

f(u) (3)

and define Bt = argmaxB⊆Au s.t. |B|=b

∑
x∈B f̂t(x). In Section 5, we use the acquisition

function Aavg(f,U). We refer to this method as MeanOpt. In Appendix A the reader may
find experiments where the acquisition function is set to Asoftmax(f,U) and Ahinge(f,U) with
p = 4. We also consider a ensemble method (Ensemble) that fits M models {f̂ i

t}Mi=1 to Dt

and defines a surrogate solution f̂t(a) = maxi f̂
i
t (a) for all a ∈ Ut.

5. Experiments

We demonstrate the effectiveness of our OAE algorithm in several problem settings across
public and synthetic datasets. We evaluate the algorithmic implementations described in
Section 4.1 by setting the acquisition function to Aavg(f,U) and the batch selection rule as in
Equation 2 and the ensemble size M = 10. We test OAE’s performance over different values
of the regularization parameter λreg, including the ‘greedy’ choice of λreg = 0, henceforth
referred to as Greedy. We compare these algorithms to RandomBatch the baseline method
that selects points Bt by selecting a uniformly random batch of size B from Ut .

5.1 Public Supervised Learning Datasets

We test our methods on public regression (BikeSharingDay, BikeSharingHour, BlogFeedback)
datasets from the UCI repository (3). To evaluate our algorithm we assume the response
(regression target or binary classification label) values are noiseless. Each observation i in a
dataset represents a discrete action with feature ai and reward f∗(ai).

Figure 1 shows results for BikeSharingDay and BlogFeedback. We use a neural network
with two hidden layers of size 100 and 10 trained using 5, 000 batch gradient steps (with
a batch size of 10). In this case Ensemble outperforms both RandomBatch and Greedy
in τ -quantile convergence time on BlogFeedback dataset. Low-λ MeanOpt also performs
competitively. Thus, the optimal optimism scaling may be a property of the dataset.

4

Figure 1: Algorithm τ -quantile batch convergence (left) and corresponding rewards over
batches (right) on public BikeSharingDay and BlogFeedback datasets with original
response values.

Figure 2: Algorithm τ -quantile batch convergence (left) and corresponding rewards over
batches (right) on genetic perturbation datasets.

5.2 Transfer Learning Across Genetic Perturbation Datasets

In order to show the effectiveness of OAE in the large batch - small number of iterations
regime we consider genetic perturbations from the CMAP dataset (16), which contains a 978-
gene bulk expression readout from thousands of single-gene shRNA knockout perturbations3

across a number of cell lines. We consider the setting in which we have observed the effect
of knockouts in one biological context (i.e., cell line) and would like to use it to plan a
series of knockout experiments in another. Related applications may have different biological
contexts, from different cell types or experimental conditions. We use the level 5 CMAP
observations, each of which contains of 978-gene transcriptional readout from an shRNA
knockout of a particular gene in a particular cell line. In our experiments, we choose to
optimize a cellular proliferation phenotype, defined as a function on the 978-gene expression
space. See Appendix B for details.

We use the 4 cells lines with the most number genetic perturbations in common: VCAP
(prostate cancer, n = 14602), HA1E (kidney epithelium, n = 10487), MCF7 (breast cancer,
n = 6638), and A375 (melanoma, n = 10033). We first learn a 100-dimensional action
(perturbation) embedding ai for each perturbation in VCAP with an autoencoder. The
autoencoder has a 100-dimension bottleneck layer and two intermediate layers of 1500 and
300 ReLU units with dropout and batch normalization and is trained using the Adam
optimizer on mean squared reconstruction loss. We use these 100-dimensional perturbations
embeddings as the features to train the f̃t reward functions for each of the other cell types.
According to our OAE algorithm, we train a fresh feed-forward neural network with two
intermediate layers (of 100 and 10 units) for after observing the phenotypic rewards for each
batch of 50 gene (knockout) perturbations.

Figure 2 shows the convergence and reward results for two of the 4 cell lines. Since the
perturbation action features were learned on VCAP (though agnostic to any phenotypic
reward), the optimal VCAP perturbations are found quite quickly by both the Greedy

3. The shRNA perturbations are just a subset of the 1M+ total perturbations across different perturbation
classes.

5

and OAE relative to RandomBatch. Interestingly, OAE still outperforms RandomBatch
and Greedy in the HA1E cell line. Results for the MCF7 and A375 cell lines are similar
(Appendix A.3). This performance indicates that OAE is robust to a degree of difference in
the biological contexts of the perturbation embedding and the phenotypic reward.

Dataset TopUncertain SoftUncertain OAE
Schmidt et al. 2021 (IFNg) 0.057 0.046 0.062
Schmidt et al. 2021 (IL2) 0.083 0.081 0.107
Zhuang et al. 2019 (NK) 0.035 0.047 0.085

Zhu et al. 2021 (SarsCov2) 0.035 0.049 0.0411

Figure 3: Hit Ratio Results after 50 batches of size 16. BNN model trained with Achilles
descriptors. Final Hit Ratio average of 5 runs. TopUncertain selects the 16 points
with the largest uncertainty and SoftUncertain samples them using a softmax.

6. GeneDisco Experimental Planning Benchmark

We test our OAE algorithm against the GeneDisco benchmark (9), which assess the "Hit Rate"
of different experimental planning algorithms over a number of pooled CRISPR experiments.
We assess our performance against the other acquisition functions provided in the public
implementation4 that select batches based solely on uncertainty considerations. We use the
public implementation of GeneDisco and do not change the neural network architecture
provided corresponding to a Bayesian Neural Network with a hidden layer of size 32. We
use the 808 dimensional Achilles treatment descriptors and built f̃t by adding the BNN’s
uncertainty to the model base predictions. We test our algorithm in the Schmidt et al. 2021
(IFNg), Schmidt et al. 2021 (IL2), Zhuang et al. 2019 (NK), and Zhu et al. 2021 (SarsCov2)
datasets and tested for performance using the Hit Ratio metric after collecting 50 batches of
size 16. This is defined as the ratio of arm pulls lying in the top .05 quantile of genes with
the largest absolute value. Our results are presented in Table 3. OAE outperforms the other
algorithms by a substantial margin in 3 out of the 4 datasets that we tested.

7. Conclusion

In this work we introduce the OAE algorithm for batch bandit optimization and show
lower bounds for the query complexity for linear and Lipshitz classes. Through a variety
of experiments in synthetic, public and biological data we show that method can quickly
search through a space of actions for the almost optimal ones. We show OAE need not be
faced with a target function from a known regression class to outperform the RandomBatch
and Greedy baselines. For example the perturbational embeddings learned in one biological
context can predict with some accuracy the rewards in another context with a different
reward function and be used in conjunction with OAE. Finally, our approach outperforms
the other benchmark methods in the public GeneDisco problem in three of four datasets
we tested. An exciting avenue for future work is to design adaptive algorithms that can
select the best OAE implementation for the dataset at hand. We hypothesize this could be
achieved by leveraging model selection techniques from any of (12; 2; 11; 8; 1).

4. https://github.com/genedisco/genedisco-starter

6

https://github.com/genedisco/genedisco-starter

Appendix A. Additional Experimental Details

A.1 Synthetic One Dimensional Datasets

Figure 4: (top row) Synthetic one dimensional datasets (bottom) Evolution of OAE in the
MultiValleyOneDimHole dataset using λreg = 0.001. From left to right: Iterations
5, 15, 25, 45.

Figure 5: Algorithm τ -quantile batch convergence (left) and corresponding rewards over
batches (right) on the OneHillValleyOneDim (easier) and MultiValleyOneDim
(harder) simulated datasets show how the OAE algorithm can achieve higher
reward faster than RandomBatch or Greedy.

Figure 4 shows different one dimensional synthetic datasets that we used to validate our
methods. The leftmost, the OneHillValleyOneDim dataset consists of 1000 arms uniformly
sampled from the interval [−10, 10]. The responses y are unimodal. The learner’s goal is
to find the arm with x−coordinate value equals to 3 as it is the one achieving the largest
response. We use the dataset OneHillValleyOneDimHole to test for OAE’s ability to find
the maximum when the surrounding points are not present in the dataset.

The remaining two datasets MultiValleyOneDim and MultiValleyOneDimHole are built
with the problem of multimodal optimization in mind. Each of these datasets have 4 local
maxima. We use MultiValleyOneDim to test the OAE’s ability to avoid getting stuck in
local optima. The second dataset mimics the construction of the OneHillValleyOneDimHole
dataset and on top of testing the algorithm’s ability to escape local optima, it also is meant
to test what happens when the global optimum’s neighborhood isn’t present in the dataset.
Since one of the algorithms we test is the greedy algorithm (corresponding to λ = 0), the
‘Hole’ datasets are meant to present a challenging situation for this class of algorithms.

7

We use the same reward neural network architecture across all experiments in this work:
2 hidden layers of 100 and 10 units with ReLU activation functions trained for 5000 steps
via the Adam optimizer using batches of size 10. We use batch size B = 3 and repeat each
experiment a total of 25 times, reporting average results with standard error bars at each time
step. We compare OAE with a simple RandomBatch strategy that selects a random batch
of size B from the dataset points that have not been queried yet and a Greedy algorithm
corresponding to OAE with λreg = 0.

Figure 5 shows representative results for the OAE algorithm with (λreg = 0.001, 0.01, 0.1),
Ensemble, Greedy, and RandomBatch algorithms evaluated for two of the simulated datasets.
(See Figure 6 for more results.) In all of the experiments we have conducted on these synthetic
one dimensional datasets setting λreg optimistically (i.e. λreg > 0) outperforms RandomBatch
and λreg > 0 substantially outperform Greedy in the MultiValley dataset. Although the
RandomBatch method is fast at the start of optimization in finding points with large reward
values it takes longer than OAE and Greedy in converging to the exact optimum in both
one dimensional unimodal datasets.

Figure 6: Algorithm τ -quantile batch convergence (left) and corresponding rewards over
batches (right) on the OneHillValleyOneDimHole (easier) and MultiValleyOneD-
imHole (harder) simulated datasets. The ensemble method outperforms all other
approaches on the easy dataset while the λ−optimism approaches worked best in
the multi valley dataset. In all cases optimistic approaches beat both RandomBatch
and Greedy.

A.2 Public Supervised Learning Datasets

We test our methods on public binary classification (Adult, Bank) and regression (BikeSharingDay,
BikeSharingHour) datasets from the UCI repository (3).

8

Figure 7: Algorithm τ -quantile batch convergence (left) and corresponding rewards over
batches (right) on the Adult, BikeSharingDay, BikeSharingHour and Bank datasets
with regression-fitted response values. Optimistic approaches outperform Random-
Batch.

We first use all 4 public datasets to test OAE in the setting when the true function class
F is known (in this case, a neural network) is known contain the function OAE learns over
the course of the batches. We train a neural network under a simple mean squared error
regression fit to the binary responses (for the binary classification datasets) or real-valued
responses (for the regression datasets). This regression neural network consists of a neural
network with two hidden layers of dimension 100 and 10 trained on the provided datasets
using 5, 000 batch gradient steps (with a batch size of 10). For each dataset, we use the
real-valued response predicted by our regressor as the reward for the corresponding action.

9

Figure 8: Regression mean squared error loss for models that predict cell-line specific pheno-
typic rewards from VCAP-derived perturbational features.

This ensures the dataset’s true reward response model has the same architecture as the
reward model used by OAE.

We use the same experimental parameters and comparison algorithms as in the synthetic
dataset experiments. Figure 7 shows the results on the binary classification Adult, Bank
and regression BikeSharingHour, BikeSharingDay datasets using these fitted responses. We
observe the OAE algorithm handily outperforms RandomBatch on all datasets and Greedy
on all except BikeSharingHour.

A.3 Transfer Learning Across Genetic Perturbation Datasets

Figure 8 shows the mean squared error loss of models trained to predict the cell-line specific
phenotypic reward from the 100-dimensional VCAP-derived perturbational features. These
models are trained on successive batches of perturbations sampled via RandomBatch. Not
surprisingly, the loss for the VCAP reward is one of the lowest, but that of two other cell lines
(HA1E and MCF7) are also quite similar, showing that our neural net regressor function class
is flexible to learn the reward function in one context from the perturbational embedding in
another.

In figure 10 we present the OAE performance in the A375 and MCF7 datasets and in
figure 9 we have a diagramatic representation of the whole transfer learning pipeline we study
in this section.

10

Figure 9: Neural design for genetic perturbation experiments. (a) Learn a perturbation
action embedding space by training an autoencoder on the gene expression resulting
from a large set of observed genetic perturbations in a particular biological context
(e.g., shRNA gene knockouts for a particular cell line in CMAP). (b) Select an
initial batch of B perturbation actions to perform in parallel within a related (but
different) biological context. Selection can be random (uniform) or influenced
by prior information about the relationship between genes and the phenotype
to be optimized. (c) Perform the current batch of experimental perturbations
in vitro and observed their corresponding phenotypic rewards. (d) Concatenate
the latest batch’s features and observed rewards to those of previous batches to
update the perturbation reward training set. (e) Train a new perturbation reward
regression (with some degree of pre-defined optimism) network on the observed
perturbation rewards. (f) Use this regressor to predict the optimistic rewards
for the currently unobserved perturbations. (g) Select the next batch from these
unobserved perturbations with the highest optimistic reward.

11

Figure 10: CMAP data. Batch size 50. Additional experiments.

Figure 11: Softmax Optimism. CMAP data. Batch size 50.

A.4 Softmax Optimism

A.5 Hinge Optimism

Figure 12: Hinge Optimism. CMAP data. Batch size 50.

12

Appendix B. Cellular proliferation phenotype

Let G be the list of genes present in CMAP also associated with proliferation phenotype
according to the Seurat cell cycle signature, and let xi,g represent the level 5 gene expression
of perturbation ai for gene g ∈ G. We define the proliferation reward for perturbation ai as
the average expression of the genes in G,

fprolif
∗ (ai) =

1

|G|
∑
g∈G

xi,g

For convenience, G = {AURKB,BIRC5,CCNB2,CCNE2,CDC20,CDC45,
CDK1,CENPE,GMNN,KIF2C,
LBR,NCAPD2,NUSAP1,PCNA,PSRC1,
RFC2,RPA2, SMC4,STMN1,TOP2A,
UBE2C,UBR7,USP1}.

Appendix C. Diversity seeking versions of OAE

In the case B > 1, the explore / exploit trade-off is not the sole consideration in selecting the
arms that make up Bt. In this case, we should also be concerned about selecting sufficiently
diverse points within the batch Bt to cover the space. Since reward feedback is collected on
the totality of the batch points at once, it may prove wasteful to query points that are very
close by within the same batch. Nonetheless we did not see substantial gains from adding
a diversity seeking term to our algorithms. The experimental details are described below.
We conjecture this is because in these tasks we tested these approaches where the batch
size is large, there may be enough inherent diversity in the initial batches that explicitly
encouraging diversity may harm exploitation in subsequent steps.

C.1 Diversity via Determinants

Inspired by diversity-seeking methods in the Determinantal Point Processes (DPPs) litera-
ture (7), we introduce the OAE−DvD algorithm. DPPs can be used to produces diverse
subsets by sampling proportionally to the determinant of the kernel matrix of points within
the subset. From a geometric perspective, the determinant of the kernel matrix represents
the volume of a parallelepiped spanned by feature maps corresponding to the kernel choice.
We seek to maximize this volume, effectively “filling” the feature space. Using a determinant
score to induce diversity has been proposed as a strategy in other domains, most notably in
the form of the Diversity via Determinants (DvD) algorithm from (13) for Population Based
Reinforcement Learning. It is from this work that we take inspiration to name our algorithm
OAE−DvD. The method works as follows. At time t, the learner will build a regression
estimator f̃t using the arms and responses contained in the data collected so far Dt.

We assume access to a kernel function K : Rd × Rd → R. Let ct = |Ut|.
We build a kernel matrix Kt ∈ Rct×ct defined as,

Kt[i, j] = K(ai, aj), ∀i, j ∈ Ut.

For any subset B ⊆ Ut we define a diversity-aware score as,

13

Div(B, f) = A(f,B) + λdivDet(Kt[B,B])

Where Kt[B,B] corresponds to the submatrix of Kt with columns (and rows) indexed by
B and λdiv is a diversity regularizer. In our experiments we use Aavg as the batch score.
Since this optimization problem may prove to be extremely hard to solve, we design a greedy
maximization algorithm to produce a surrogate solution. We build the batch Bt greedily.
The first point a(1)t in the batch is selected to be the point in Ut that maximizes the response
f̃t. For all i ≥ 2 the point a

(i)
t in Ut is selected from Ut\{a(j)t }i−1

j=1 such that,

a
(i)
t = max

a∈Ut\{a(j)t }i−1
j=1

Div(f̃t, {a} ∪ {a(j)t }i−1
j=1)

In our experiments we set λdiv = 1 and set f̃t to be the result of solving problem 3 for
different values of λreg. We used a gaussian Kernel in our experiments. The remaining
experimental details such as the neural network architecture and the number of experiment
repetitions is the same as in the main.

Algorithm 2 Optimistic Arm Elimination - DvD (OAE−DvD)
Input Action set A ⊂ Rd, num batches N , batch size B, λreg

Initialize Unpulled arms U1 = A. Observed points and labels dataset D
for t = 1, · · · , N do

if t = 1 then
Sample uniformly a size B batch Bt ∼ U1.

else
Solve for f̃t via Equation 3.
Compute Bt using the Greedy procedure described above.

Observe batch rewards Yt = {f∗(x) for x ∈ Bt}
Update Dt+1 = Dt ∪ {(Bt, Yt)} ∈ D.
Update Ut+1 = Ut\Bt .

Figure 13: Determinants Diversity Guided Optimism. CMAP data. Batch size 50.

14

C.2 Sequential batch selection rules

In this section we introduce OAE− Seq a more general form of the OAE algorithm. We
propose an algorithm that produces a query batch by solving a sequence of B optimization
problems. The first one of these makes use of Dt, the set of arms pulled so far as well as Ut

(the set of arms yet to be pulled) to produce a function f̃t,1 that is used to determine the
initial arm in the batch via the greedy choice at,1 = argmaxa∈Ut

f̃t,1(a). Having chosen this
arm, in the case when B > 1, a virtual reward ỹt,1 (possibly different from ŷt) is assigned to
the query arm at,1, and datasets D̃t,1 = Dt ∪ {(at,1, ỹt,1)} and Ũt,1 = Ut\{at,1} are defined.
The same optimization procedure that produced f̃t,1 is used to output f̃t,2 now with D̃t,1

and Ũt,1 as inputs. Arm at,2 is defined as the greedy choice at,2 = argmax
a∈Ũt,1

f̃t,2(a). The
remaining batch elements (if any) are determined by successive repetition of this process.
The trace of this procedure leaves behind a sequence of functions and datasets {(f̃t,i, Ũt,i)}Bi=1

such that at,i = argmaxŨt,i
f̃t,i(a). The prediction function f̃t may encourage optimism (or

not).

Algorithm 3 Optimistic Arm Elimination - Batch Sequential (OAE− Seq)
Input Action set A ⊂ Rd, num batches N , batch size B, λreg

Initialize Unpulled arms U1 = A. Observed points and labels dataset D
for t = 1, · · · , N do

if t = 1 then
Sample uniformly a size B batch Bt ∼ U1.

else
Solve for {(f̃t,i, Ũt,i)}bi=1

Compute Bt = {at,i = argmax
a∈Ũt,i

f̃t,i(a)}bi=1.

Observe batch rewards Yt = {f∗(x) for x ∈ Bt}
Update Dt+1 = Dt ∪ {(Bt, Yt)} ∈ D.
Update Ut+1 = Ut\Bt .

If instead the querying procedure over arms {at,1}bi=1 took place sequentially, the discovery
of reward values {yt,j}j≤i−1 can inform the learner what to try out next. In particular, if an
early arm of the batch resulted in a small reward value, the learner would be imprudent to
waste lots of query arms in the vicinity of that small value arm. For this reason, we introduce
the use of fictitious rewards ỹt,i when fitting the model f̃t,i to ensure the empirical maximizer
of the model f̃t,i over arms Ũt,i takes into account the possibility that previous arm values
{at,j}j≤i−1 could have an underwhelming reward. Optimizing with these objectives in mind
ensures OAE not only successfully trades off the need to explore new arms and exploit arms
in high reward regions, but also that the batch Bt achieves diverse coverage of the arm space.

To determine the value of the virtual rewards ỹt,i, we consider a variety of options. We
start by discussing the case when the fake reward ỹt,i = f̃t(at,i) and the acquisition function
equals Aavg(f,U).

15

This is perhaps the simplest as it can be shown that in this case where γ = 0 this implies
f̃t,i = f̃t independent of i ∈ [B]. In this case producing Bt can be done by solving for f̃t,

f̃t = argmax
f∈F

∑
a∈Ut

f(a) s.t.
∑

(x,y)∈D̃t,i

(f(x)− y)2 = 0. (4)

And defining the batch Bt as

Bt = argmax
b⊂Ut s.t. |b|=B

∑
a∈b

f̃t(a).

The equivalence between these two batch selection rules follows by noting the equality con-
straint from 4 ensures each of the intermediate problems defining the sequence {(f̃t,i, Ũt,i)}Bi=1

satisfies f̃t,i = f̃t.
Algorithm 3 allowing for more general batch selection rules that may yield intermediate

arm selection functions {f̃t,i}. In our experiments we compute f̃t,i as an average of f̃optimistic
t,i

and f̃pessimistic
t,i . The function f̃optimistic

t,i is produced by solving Equation 3 over the augmented
batch Ũt,i with a λreg > 0 while f̃pessimistic

t,i is produced by solving Equation 3 over the
augmented batch Ũt,i with a λreg < 0. In each experiment we use the same value of λreg and
it is the λ value appearing in the plot labels. The function producing the fictitious rewards

is the average of the pessimistic and optimistic predictors f̃t,i =
f̃optimistic
t,i +f̃pessimistic

t,i

2 . The
remaining experimental details such as the neural network architecture and the number of
experiment repetitions is the same as in the main.

Figure 14: Sequential in Batch Optimism. CMAP data. Batch size 50.

Appendix D. Quantifying the Query Complexity of F

Let ϵ ≥ 0 and define tϵopt(A, f) to be the first time-step when an ϵ−optimal point ât is
proposed by a learner (possibly randomized) when interacting with arm set A ⊂ Rd and
the pseudo rewards are noiseless evaluations {f(a)}a∈A with f ∈ F . We define the query
complexity of the A,F pair as,

Tϵ(A,F) = min
Alg

max
f∈F

E
[
tϵopt(A, f)

]
16

Where the minimum iterates over all possible learning algorithms. We can characterize
the upper bound of the problem complexity for several simple problem classes,

Lemma 1 When A = {∥x∥ ≤ 1 for x ∈ Rd} and

1. If F is the class of linear functions defined by vectors in the unit ball F = {x →
θ⊤x : ∥θ∥ ≤ 1 for θ ∈ Rd} then Tϵ(A,F) ≥ d when ϵ < 1

d and Tϵ(A,F) ≥ ⌈d− ϵd⌉
otherwise.

2. If F is the class of 1-Lipschitz functions functions then Tϵ(A,F) ≥
(
1
4ϵ

)d.
Proof As a consequence of Yao’s principle, we can restrict ourselves to deterministic
algorithms. Indeed,

min
Alg

max
f∈F

E
[
tϵopt(A, f)

]
= max

DF
min

DetAlg
Ef∼DF

[
tϵopt(A, f)

]
Thus, to prove the lower bound we are after it is enough to exhibit a distribution DF over
instances f ∈ F and show a lower bound for the expected tϵopt(A, f) where the expectation
is taken using DF .

With the objective of proving item 1 let DF be the uniform distribution over the sphere
Unifd(1). By symmetry it is easy to see that

Eθ∼Unifd(r) [θi] = 0, ∀i ∈ d and ∀r ≥ 0.

Thus,

Varθ∼Unifd(r) (θi) = Eθ∼Unifd(r)[θ
2
i]

(i)
=

r2

d
. (5)

Equality (i) follows because

d∑
i=1

Eθ∼Unifd(r)[θ
2
i] = Eθ∼Unifd(r)[∥θ∥

2] = r2

and because by symmetry for all i, j ∈ [d] the second moments agree,

Eθ∼Unifd(r)[θ
2
i] = Eθ∼Unifd(r)[θ

2
j]

Finally,

Eθ∼Unifd(r)[|θi|] ≤
√

Eθ∼Unifd(r)[θ
2
i] =

r√
d
. (6)

Let DetAlg be the optimal deterministic algorithm for DF and a1 be its first action. Since
DF is the unofrm distribution over the sphere, inequality 6 expected scale of the reward
reward experienced is upper bounded by 1√

d
, and furthermore, since ∥a1∥ = 1, the expected

second moment of the reward experienced (where expectations are taken over DF) equals 1
d .

We now employ a conditional argument, if DetAlg has played a1 and observed a reward
r1,

17

We assume that up to time m algorithm DetAlg has played actions a1, · · · , am and
received rewards r1, · · · , rm.

Given these outcomes, DetAlg can recover the component of θ lying in span(a1, · · · , am).
Let am+1 be DetAlg’s action at time m+ 1. By assumption this is a deterministic function
of a1, · · · , am and r1, · · · , rm. Since θ is drawn from Unifd(1), the expected squared dot
product between the component of a⊥m+1 = Proj(am+1, span(a1, · · · , am)⊥) satisfies,

Eθ∼DF |{a⊤1 θ=ri}mi=1

[(
θ⊤a⊥m+1

)2
]
=

1− ∥θ0m∥2

d−m

(
1− ∥a0m+1∥2

)
=

1− ∥θ0m∥2

d−m
. (7)

where θ0m = Proj(θ, span(a1, · · · , am)). The last inequality follows because the conditional
distribution of Proj(θ, span(a1, · · · , am)⊥) given a1, · · · , am and r1, · · · , rm is a uniform
distribution over the d−m dimensional sphere of radius

√
1− ∥θ0m∥2, the scale of a⊥m+1 is√

1− ∥a0m+1∥2 and we have assumed the ∥a0m+1∥ = 0. Thus, the agreement of a⊥m+1 with

Proj(θ, span(a1, · · · , am)⊥) satisfies Equation 5.
We consider the expected square norm of the recovered θ up to time m. This is the

random variable ∥θ0m∥2 =
∑m

t=1

(
θ⊤a⊥t

)2 where a⊥t = Proj(at, span(a1, · · · , at−1)
⊥). Thus,

Eθ∼DF

[
∥θ0m∥2

]
= Eθ∼DF

[
m∑
t=1

(
θ⊤a⊥t

)2
]

= Eθ∼DF

[
m∑
t=1

Eθ∼DF |{a⊤1 θ=ri}t−1
i=1

[(
θ⊤a⊥t

)2
]]

(i)
= Eθ∼DF

[
m∑
t=1

1− ∥θ0t−1∥2

d−m

]

Equality (i) holds because of 7. Recall that by Equation 5,

Eθ∼DF

[
∥θ01∥2

]
=

1

d
.

Thus by the above equalities,

Eθ∼DF

[
∥θ02∥2

]
=

1

d
+

1− 1
d

d− 1
=

2

d
.

Unrolling these equalities further we conclude that

Eθ∼DF

[
∥θ0m∥2

]
=

m

d
.

This implies the expected square agreement between the learner’s virtual guess ât is upper
bounded by m

d . Thus, when ϵ < 1
d , the expected number of queries required is at least d.

When ϵ > d, the expected number of queries instead satisfies a lower bound of ⌈d− ϵd⌉.

18

We now show shift our attention to Lipschitz functions. First we introduce the following
simple construction of a 1−Lipschitz function over a small ball of radius ϵ. We use this
construction throughout our proof. Let x ∈ Rd be an arbitrary vector, define B(x, ϵ) as the
ball centered around x of radius 2ϵ under the ∥ · ∥2 norm and S(x, 2ϵ) as the sphere (the
surface of B(x, 2ϵ)) centered around x

Define the function f ϵ
x : Rd → R as,

f ϵ
x(z) =

{
minz′∈S(x,2ϵ) ∥z− z′∥2 if z ∈ B(x, 2ϵ)

0 o.w.

It is easy to see that f ϵ
x is 1−Lipschitz. We consider three different cases,

1. If z1, z2 ∈ B(x, 2ϵ)c then |f ϵ
x(z1)− f ϵ

x(z2)| = 0 ≤ ∥z1 − z2∥. The result follows.

2. If z1 ∈ B(x, 2ϵ) but z2 ∈ B(x, 2ϵ)c. Let z3 be the intersection point in the line going
from z1 to z2 lying on S(x, 2ϵ). Then |f ϵ

x(z1) − f ϵ
x(z2)| = minz′∈S(x,2ϵ) ∥z1 − z′∥2 ≤

∥z1 − z3∥2 ≤ ∥z1 − z2∥2.

3. If z1, z2 ∈ B(x, 2ϵ). It is easy to see that |f ϵ
x(z1)−f ϵ

x(z2)| = |∥z1−x∥2−∥z2−x∥2|. And
therefore by the triangle inequality applied to x, z1, z2, that |∥z1 − x∥2 − ∥z2 − x∥2| ≤
∥z1 − z2∥2. The result follows.

Let N (B(0, 1), 2ϵ) be a 2ϵ−packing of the unit ball. For simplicity we’ll use the notation
N2ϵ = |N (B(0, 1), 2ϵ)|. Define the set of functions F ϵ = {f ϵ

x for all x ∈ N (B(0, 1), 2ϵ)} and
define DF as the uniform distribution over F ϵ ⊂ F . Similar to the case when F is the set of
linear functions, we make use of Yao’s principle. Let DetAlg be an optimal deterministic
algorithm for DF .

Let ai be DetAlg’s i−th query point and ri be the i−th reward it receives. If the
ground truth was f ϵ

x and the algorithm does not sample a query point from inside B(x, 2ϵ),
it will receive a reward of 0 and thus would not have found an ϵ−optimal point. Thus
topt(f

ϵ
x) ≥ first time to pull an arm in B(x, 1). As a consequence of this fact,

Efϵ
x∼DF [1(a1 ∈ B(x, 2ϵ))] ≤ 1

N2ϵ
.

Hence Efϵ
x∼DF [1(a1 ̸∈ B(x, 2ϵ))] ≥ N2ϵ−1

N2ϵ
. Therefore,

E
[
tϵopt

]
≥

N2ϵ∑
ℓ=1

N2ϵ − ℓ

N2ϵ − ℓ+ 1

≥
N2ϵ/2∑
ℓ=1

N2ϵ − ℓ

N2ϵ − ℓ+ 1

≥ 1

4
N2ϵ.

Since N2ϵ

(i)

≥ Covering(B(0, 1), 4ϵ)
(ii)

≥
(
1
4ϵ

)d where inequality (i) is a consequence of Lemma
5.5 and inequality (ii) from Lema 5.7 in (17).

19

The results of Lemma 1 hold regardless of the batch size B. It is thus impossible to
design an algorithm that can single out an ϵ-optimal arm in less than Tϵ(A,F) queries for
all problems defined by the pair A,F simultaneously.

Translating to Quantile Optimality . The results of Lemma 1 can be interpreted in
the langauge of quantile optimality by imposing a uniform measure over the sphere. In this
case ϵ−optimality is equivalent (approximately) to a 1− 2−d(1−ϵ)2 quantile.

Noisy Labels and Repeated Queries . The OAE principle can be used in the presence
of noisy labels and when it makes sense to repeatedly query arms. In this case, many options
are available such as repeated querying of any selected arm (for noise reduction) or setting
Ut to the set of all arms, avoiding the elimination of queries in the batch Bt.

References

[1] Alekh Agarwal, Haipeng Luo, Behnam Neyshabur, and Robert E Schapire. Corralling a
band of bandit algorithms. In Conference on Learning Theory, pages 12–38. PMLR,
2017.

[2] Ashok Cutkosky, Christoph Dann, Abhimanyu Das, Claudio Gentile, Aldo Pacchiano,
and Manish Purohit. Dynamic balancing for model selection in bandits and rl. In
International Conference on Machine Learning, pages 2276–2285. PMLR, 2021.

[3] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http:
//archive.ics.uci.edu/ml.

[4] Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization
of expensive black-box functions. Journal of Global optimization, 13(4):455–492, 1998.

[5] Tarun Kathuria, Amit Deshpande, and Pushmeet Kohli. Batched gaussian process
bandit optimization via determinantal point processes. Advances in Neural Information
Processing Systems, 29:4206–4214, 2016.

[6] Andreas Kirsch, Joost Van Amersfoort, and Yarin Gal. Batchbald: Efficient and diverse
batch acquisition for deep bayesian active learning. Advances in neural information
processing systems, 32:7026–7037, 2019.

[7] Alex Kulesza and Ben Taskar. Determinantal point processes for machine learning.
arXiv preprint arXiv:1207.6083, 2012.

[8] Jonathan Lee, Aldo Pacchiano, Vidya Muthukumar, Weihao Kong, and Emma Brunskill.
Online model selection for reinforcement learning with function approximation. In
International Conference on Artificial Intelligence and Statistics, pages 3340–3348.
PMLR, 2021.

20

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

[9] Arash Mehrjou, Ashkan Soleymani, Andrew Jesson, Pascal Notin, Yarin Gal, Stefan
Bauer, and Patrick Schwab. Genedisco: A benchmark for experimental design in drug
discovery. arXiv preprint arXiv:2110.11875, 2021.

[10] Jonas Mueller, David Reshef, George Du, and Tommi Jaakkola. Learning optimal
interventions. In Artificial Intelligence and Statistics, pages 1039–1047. PMLR, 2017.

[11] Aldo Pacchiano, Christoph Dann, Claudio Gentile, and Peter Bartlett. Regret bound
balancing and elimination for model selection in bandits and rl. arXiv preprint
arXiv:2012.13045, 2020.

[12] Aldo Pacchiano, My Phan, Yasin Abbasi Yadkori, Anup Rao, Julian Zimmert, Tor
Lattimore, and Csaba Szepesvari. Model selection in contextual stochastic bandit
problems. Advances in Neural Information Processing Systems, 33:10328–10337, 2020.

[13] Jack Parker-Holder, Aldo Pacchiano, Krzysztof M Choromanski, and Stephen J Roberts.
Effective diversity in population based reinforcement learning. Advances in Neural
Information Processing Systems, 33:18050–18062, 2020.

[14] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan
Sundaram, Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scalable bayesian opti-
mization using deep neural networks. In International conference on machine learning,
pages 2171–2180. PMLR, 2015.

[15] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. Gaussian
process optimization in the bandit setting: No regret and experimental design. arXiv
preprint arXiv:0912.3995, 2009.

[16] Aravind Subramanian, Rajiv Narayan, Steven M Corsello, David D Peck, Ted E Natoli,
Xiaodong Lu, Joshua Gould, John F Davis, Andrew A Tubelli, Jacob K Asiedu, David L
Lahr, Jodi E Hirschman, Zihan Liu, Melanie Donahue, Bina Julian, Mariya Khan,
David Wadden, Ian C Smith, Daniel Lam, Arthur Liberzon, Courtney Toder, Mukta
Bagul, Marek Orzechowski, Oana M Enache, Federica Piccioni, Sarah A Johnson,
Nicholas J Lyons, Alice H Berger, Alykhan F Shamji, Angela N Brooks, Anita Vrcic,
Corey Flynn, Jacqueline Rosains, David Y Takeda, Roger Hu, Desiree Davison, Justin
Lamb, Kristin Ardlie, Larson Hogstrom, Peyton Greenside, Nathanael S Gray, Paul A
Clemons, Serena Silver, Xiaoyun Wu, Wen-Ning Zhao, Willis Read-Button, Xiaohua
Wu, Stephen J Haggarty, Lucienne V Ronco, Jesse S Boehm, Stuart L Schreiber, John G
Doench, Joshua A Bittker, David E Root, Bang Wong, and Todd R Golub. A next
generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell, 171
(6):1437–1452.e17, November 2017.

[17] Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, vol-
ume 48. Cambridge University Press, 2019.

21

	Introduction
	Related Work
	Problem Definition
	Optimistic Arm Elimination
	Tractable and Implementations of OAE

	Experiments
	Public Supervised Learning Datasets
	Transfer Learning Across Genetic Perturbation Datasets

	GeneDisco Experimental Planning Benchmark
	Conclusion
	Additional Experimental Details
	Synthetic One Dimensional Datasets
	Public Supervised Learning Datasets
	Transfer Learning Across Genetic Perturbation Datasets
	Softmax Optimism
	Hinge Optimism

	Cellular proliferation phenotype
	Diversity seeking versions of OAE
	Diversity via Determinants
	Sequential batch selection rules

	Quantifying the Query Complexity of F

