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Abstract

We use a simulation study to compare three methods for adaptive experimentation: Thomp-
son sampling, Tempered Thompson sampling, and Exploration sampling. We gauge the
performance of each in terms of social welfare and estimation accuracy, and as a function
of the number of experimental waves. We further construct a set of novel “hybrid” loss
measures to identify which methods are optimal for researchers pursuing a combination
of experimental aims. Our main results are: 1) the relative performance of Thompson
sampling depends on the number of experimental waves, 2) Tempered Thompson sam-
pling uniquely distributes losses across multiple experimental aims, and 3) in most cases,
Exploration sampling performs similarly to random assignment.
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Adaptive experiments have recently gained popularity in the social sciences.1 While
traditional methods for adaptive experimentation target participant welfare, a body of lit-
erature shows that these methods forgo statistical power and can introduce bias in the
estimation of the efficacy of some interventions.2 We compare three methods for adaptive
experimentation — Thompson sampling (Thompson, 1933), Exploration sampling (Kasy
and Sautmann, 2021) and Tempered Thompson sampling (Caria et al., 2020) — and inves-
tigate their relative performance as a function of the number of experimental waves, and
with respect to a diverse set of base and hybrid loss measures, corresponding, respectively,
to singular and dual experimental aims.

1. Problem Setup and Background

Consider an experimenter who has access to a population of N experimental participants,
each of whom participates in one of T experimental waves, indexed by t = {1, . . . , T}. Nt

refers to the number of participants who participate in wave t.3 We index each participant

†. Joint first authors.
1. Other literature refers to similar methods as response-adaptive randomization.
2. See, e.g., Trippa et al. (2012), Wason and Trippa (2014), Lin and Bunn (2017), Wathen and Thall (2017),

Viele et al. (2020), Ryan et al. (2020) and Kaibel and Biemann (2021).
3. In our simulations, where N is always evenly divisible by T , Nt =

N
T

∀ t.
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by i = {1, . . . , Nt}. For each participant i at time t, the experimenter observes an outcome
Yi,t ∈ {0, 1}, with 1 indicating the participant experienced a desirable outcome and 0
indicating the absence of that outcome.

Each participant i at time t is assigned to one of a fixed set of treatments, or inter-
ventions, Di,t ∈ D where |D| = K. The outcome conditional on reception of treatment
Dk is assumed to follow a Bernoulli(θk) distribution. θk is the average potential outcome
corresponding to treatment Dk. The number of participants assigned to Dk at time t is
denoted nk

t . The experimenter starts with a prior distribution on the average potential
outcome of each treatment Dk. After each wave t, they use Bayesian inference to update
this distribution based on the observed outcomes. p(θk) denotes the posterior probability
of θk.

We use k∗ to index the treatment with the highest average potential outcome (unknown
to the experimenter). k̂ indexes the treatment with the highest estimated average potential
outcome at the end of the experiment, i.e., k̂ ≡ argmaxk∈{1,...,K}

∫
θk
θk p(θk) dθk. In prac-

tice, this can be thought of as the treatment deemed most likely to be effective based on
the data collected, and perhaps implemented as policy.

2. Description of Assignment Mechanisms

Each adaptive experimentation method, or assignment mechanism, we evaluate differs in
how nk

t , the number of participants assigned to each treatment Dk at wave t, is determined.
We compare all assignment mechanisms to the baseline of random assignment (RA) in which
the probability of assignment to each treatment is constant across waves and is simply 1

K .

When using Thompson sampling (Thompson, 1933), the probability of assignment to
treatment group k in experimental wave t is:

pthompson
t,k = P(k = k∗)

Exploration sampling (Kasy and Sautmann, 2021) provides a slight modification to
Thompson sampling and is designed to increase power for rejecting suboptimal treatments.
This is achieved by modifying the assignment probabilities as follows:

pexplorationt,k =
pthompson
t,k (1− pthompson

t,k )∑
k p

thompson
t,k (1− pthompson

t,k )

Tempered Thompson sampling is a method intended to strike a balance between painting
an overall picture of the effectiveness of each treatment and minimizing in-sample regret
(Caria et al., 2020). It assigns participants to arm k proportionally to the weighted average

of 1
K (the assignment probability under RA) and pthompson

t,k . In other words, the probability
of assignment to treatment group k in experimental wave t is:

ptempered
t,k = (1− γ)pthompson

t,k +
γ

K
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Description Notation Calculation

Regret
In-sample regret Rsample

1
N

∑T
i=1

∑Nt
i=1∆Di,t

Policy regret Rpolicy ∆Dk̂

Estimation RMSE of θk̂ PRECbest RMSEk̂

precision Average RMSE PRECavg
1
K

∑K
k=1RMSEk

Statistical Fails to order

SP 1− I
(
P
(
θ̂(k) > θ̂(k−1)

)
< α ∀k ∈ {2, . . . ,K}

)
power treatments by

θk

Table 1: Loss measures.

where γ ∈ [0, 1] allows researchers a degree of freedom in how much weight is placed on
the Thompson assignment probabilities. γ can also be thought of as controlling how much
the sampling process targets regret minimization over estimation accuracy.4

3. Experimental Setup

Each of our simulated experiments tested three “treatments,” each with a true average
potential outcome drawn from a standard uniform distribution. For each set of three treat-
ments, we ran experiments using each of the four assignment mechanisms described above
at each of three levels of Nt: Nt ∈ {4, 10, 100}. For each experiment we fixed the total
population size N at 1, 000, in effect predetermining the number of experimental waves,
T ∈ {250, 100, 10}. We thus ran 4 assignment mechanisms × 3 levels of Nt × 10,000 sets of
treatments = 120,000 experiments in total. At the beginning of each experiment, we began
with an uninformative Beta(1, 1) prior for each of θ1, θ2 and θ3.

5

Loss measures. For each experiment, we analyze its performance with respect to several
loss measures, each of which corresponds to a potential experimental goal. Table 1 summa-
rizes the three classes of loss measures we consider: measures of regret, estimation precision
and statistical power.

Regret-based measures rely on the regret ∆Dk
associated with a particular treatment

Dk. Regret measures the amount of welfare lost compared to what would have been lost if
all receivers were assigned to Dk∗ . Formally, it is defined as

∆Dk
≡ θ∗k∗ − θ∗k

where θ∗k indicates the true (in practice, unknowable) effect of treatment Dk.

4. In our simulations, we set γ = .2.
5. Replication code available at https://github.com/sami-horn/adaptive-experimentation.
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Precision-based measures rely on the root mean-squared error (RMSEk) of the posterior
distribution of the average potential outcome associated with a particular Dk:

RMSEk ≡

√∫
θk

(θ∗k − θk)2 p(θk) dθk

Our power-based measure determines whether the study was able to identify the correct
ordering of arms based on their true average potential outcomes. It measures the ability of
a series of statistical tests with controlled Type-I error to recover the true rank order of θ∗1,
θ∗2 and θ∗3.

6

Hybrid loss measures are pairwise combinations of the “base” loss measures described
above. For example, a hybrid of Rsample and PRECavg (denoted by Rsample/PRECavg)
would represent the dual goal of both maximizing social welfare in the participant sample
and the precision of the estimated average potential outcomes. Because the regret- and
precision-based measures are computed on the same scale (each corresponds to the mag-
nitude of a difference between two average potential outcomes7 and is lower-bounded by 0
and upper-bounded by 1), for hybrid loss measures that are made up of combinations of
a regret and precision loss measure we simply take the average of the two measures. For
hybrid loss measures that combine a regret- or precision-based measure L with SP , we take
the maximum value of the two measures. This equals the value of L in case the correct
ordering is identified (SP = 0); otherwise, the maximum loss of 1 is incurred. This can
be interpreted similarly to a constrained objective, in which the “constraint” is that the
correct ordering is identified.

4. Results

Base loss measures. Panels A and B of Figure 1 show performance on the two regret-
based measures. Rsample is minimized by Thompson sampling regardless of the number of
experimental waves. Rpolicy is generally imprecisely measured and very low, suggesting that
all methods usually identify the best treatment arm.

Panels C and D show how each method performs on the two precision-based measures.
Thompson sampling results in higher PRECavg than other methods, and the PRECavg

values associated with Thompson sampling increase dramatically with the number of ex-
perimental waves. The pattern of results for PRECbest is similar to Rsample.

Finally, Panel E plots performance for SP . This resembles the patterns shown in Panel
C, which reflects that both PRECavg and SP require precise estimation of the average
potential outcomes associated with all three treatments. However, Exploration sampling
consistently outperforms RA on SP .

Overall, Tempered Thompson sampling performs similarly to or better than Thompson
sampling, without exhibiting large variation in performance by the number of experimental
waves.

6. In our empirical results, we fix the Type-I error for each pairwise hypothesis test to .05, and use Monte
Carlo draws from each p(θk) to generate empirical p-values.

7. In the case of the precision measures, this is the expectation of a difference with respect to the posterior
distribution of the average potential outcome.
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Figure 1: Average performance on loss measures as a function of number of experimental waves.
See Section 4.1 for details on loss measures. Error bars represent 95% confidence intervals.

Hybrid loss measures. Figure 2 shows the loss-minimizing assignment mechanism for
each possible hybrid measure. To identify the “loss-minimizing” mechanism, we computed
the hybrid loss achieved by each assignment mechanism on each experiment, and identified
the mechanism which achieved the lowest loss on the greatest number of trials.8

When the number of experimental waves is small, Thompson sampling most often min-
imizes loss according to almost every measure, outperformed by RA on only PRECavg,
PRECavg/PRECbest, PRECavg/Rpolicy and PRECavg/SP — all of which require accu-
rate estimation of the average potential outcomes of all treatment arms.

However, this seemingly near-universal benefit of Thompson sampling does not persist
in the case of large numbers of experimental waves. In these cases, Thompson sampling per-
forms well for pairwise combinations of Rsample, PRECbest and Rpolicy. In a complementary
pattern, Exploration sampling and RA perform well for pairwise combinations of Rpolicy,
PRECavg and SP . Further inspection showed that, with the exception of SP/Rpolicy and

8. We ran a similar analysis treating the loss-minimizer as the mechanism achieving the lowest average
loss across experiments. Those results differ from those shown here in two notable ways: 1) Panel A
resembles Panels B and C, i.e., Thompson sampling’s advantages when there are few experimental waves
are not apparent, and 2) Thompson sampling is never selected as the loss-minimizer for Rpolicy (as shown
in Panel B of Figure 1, on this measure, Thompson sampling is outperformed at all levels of Nt).
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Figure 2: The assignment mechanism that most often minimizes each of the hybrid loss measures (the
diagonal indicates the loss-minimizing assignment mechanism for each base loss measure). Numbers
indicate the proportion of simulations on which the indicated assignment mechanism had the lowest
corresponding loss.

SP 9, Exploration sampling and RA perform similarly on all of these measures, highlighting
the ability of both to accurately estimate the average potential outcomes of all treatments.

Our results suggest that Tempered Thompson sampling is best when the objective re-
quires both over-sampling from the best treatment (Rsample and PRECbest) and precise
estimates for all treatment arms (SP and PRECavg). Notably, Tempered Thompson sam-
pling does not excel at minimizing any base measure in isolation; its comparative advantage
stems from its ability to distribute losses across dual experimental aims. This reflects the
fact that Thompson sampling is constructed as a blend of two other assignment mecha-
nisms, Thompson sampling and RA, with the explicit aim of striking a balance between the
benefits of both (see section 2).

5. Discussion

We evaluated three methods for adaptive experimentation with respect to a set of base and
hybrid loss measures. We found that 1) the relative performance of Thompson sampling
depends on how participants are distributed across experimental waves, 2) Exploration
sampling maximizes statistical power to discriminate between treatment arms (Kasy and
Sautmann, 2021), and 3) Tempered Thompson sampling balances overall statistical power
with an understanding of the apparently best treatment (Caria et al., 2020).

While our hybrid loss measures represent one way of constructing a quantitative trade-off
between dual experimental aims, more practically useful measures would attribute weight
to different aims in a way that more closely reflects the objectives of a particular researcher
or problem domain. Construction of such application-specific measures is an important
next step for future work.

9. We discuss Exploration sampling’s persistent advantage with respect to SP above; since the values of
Rpolicy are so small, SP/Rpolicy is usually dominated by SP .
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