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Abstract

How can we collect the most useful labels to learn a model selection policy, when presented
with arbitrary heterogeneous data streams? In this paper, we formulate this task as a
contextual active model selection problem, where at each round the learner receives an
unlabeled data point along with a context. The goal is to output the best model for any
given context without obtaining an excessive amount of labels. In particular, we focus on
the task of selecting pre-trained classifiers, and propose a contextual active model selection
algorithm (CAMS), which relies on a novel uncertainty sampling query criterion defined on
a given policy class for adaptive model selection. In comparison to prior art, our algorithm
does not assume a globally optimal model. We provide rigorous theoretical analysis for the
regret and query complexity under both adversarial and stochastic settings. Our experiments
on several benchmark classification datasets demonstrate the algorithm’s effectiveness in
terms of both regret and query complexity. Notably, to achieve the same accuracy, CAMS
incurs less than 10% of the label cost when compared to the best online model selection
baselines on CIFAR10.

1. Introduction

With the rise of pre-trained models in many real-world machine learning tasks (e.g., BERT
(Devlin et al., 2018), GPT-3 (Brown et al., 2020)), there is a growing demand for label-efficient
approaches for model selection, especially when facing varying data distributions and contexts
at run time. Often times, no single pre-trained model achieves the best performance for every
context, and a proper approach is to identify an optimal policy for selecting data-adaptive
models (Luo et al., 2020) for specific contexts (e.g. in airline ancillary pricing (Shukla et al.,
2019), ecology (Cade, 2015), etc.). In many of these applications, collecting labels (e.g.,
querying the optimal pricing model for online pricing, evaluating conservation strategies in
ecology) is expensive. Furthermore, one may not gain access to the pool of data instances all
at once, but rather receive a stream of data points—possibly in an arbitrary order—as the
learning and model selection process unfolds. This calls for cost-effective and robust online
algorithms that can identify the best model selection policy under limited labeling resources.
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Motivated by the above challenges, we focus on a novel contextual active model selection
problem, where a learner adaptively selects among a collection pre-trained models when
presented with a stream of unlabeled data points. Specifically, at each round, the learner
receives a data point with a context (e.g., geographical location, user profile, environment
conditions, etc) and decides whether to query its label. The goal is to output the best
data-adaptive model without obtaining an excessive amount of labels. In contrast to existing
work in active learning (Dagan and Engelson, 1995; Tosh and Dasgupta, 2018; Beygelzimer
et al., 2009, 2011a), contextua bandit (Auer et al., 2002b; Beygelzimer et al., 2011b; Neu,
2015), online learning with full information (Freund and Schapire, 1997; Cesa-Bianchi and
Lugosi, 2006; Shalev-Shwartz et al., 2011), and model selection (Foster et al., 2019; Zhang
et al., 2020; Cutkosky et al., 2021), our work takes a unique stand by capturing the key
challenges from these relevant domains in a unified framework (see Appendix A.1 for a
detailed comparison). Our key contributions are highlighted below.

• We proposed CAMS—a novel contextual active online model selection framework—by
leveraging the context of data to adaptively select the best models when presented
with an arbitrary data steam. Inspired by Karimi et al. (2021) which aim to actively
select a single best model under the context-free setting, our algorithm comprises two
key novel technical components: (1) a contextual online model selection policy and (2)
a novel active uncertainty sampling strategy.

• We provide rigorous theoretical analysis on the regret and query complexity of the
proposed algorithm, and provide upper bounds on each term for both stochastic (§4)
and adversarial (Appendix E) data streams.

• Empirically, we demonstrate the effectiveness of our approach on a variety of online
model selection tasks spanning different application domains, task scales, data modali-
ties and labels types. Our experiments show remarkable performance of CAMS: For
the tasks evaluated, CAMS outperforms all competing baselines by a significant margin
(to achieve the same level of prediction accuracy, CAMS incurs less than 10% of the
label cost of the best competing baselines on CIFAR10 (10K examples), and 68% the
cost on VERTEBRAL); furthermore, with our query strategy, we observe an improved
query complexity when evaluated against prior art (Karimi et al., 2021) under the
special case of context-free setting (see §5, Fig. 2).

2. Problem Statement
Notations. Let X be the input domain and Y := {0, . . . , c− 1} be the set of c possible
class labels for each input instance. Let F = {f1, . . . , fk} be a set of k pre-trained classifiers
over X × Y. A model selection policy π : X → ∆k−1 maps any input instance x ∈ X to a
distribution over the pre-trained classifiers F , specifying the probability π (x) of selecting
each classifier under input x. Here, ∆k−1 denotes the k-dimensional probability simplex. One
can interpret a policy π as an “expert” that suggests which model to select for a given context
x. Let Π be a collection of model selection policies, and Π∗ := Π∪

{
πconst
1 , . . . , πconst

k

}
(where

πconst
j (·) := ej)1 be the extended policy set including constant policies always suggest a fixed

model. Unless otherwise specified, we assume Π is finite with |Π| = n, and |Π∗| ≤ n+ k.

1. ej ∈ ∆k−1 denotes the canonical basis vector with ej = 1.
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The contextual active model selection protocol. Assume that the learner knows
the set of classifiers F as well as the set of model selection policies Π. At round t, the
learner receives a data instance xt ∈ X as the context for the current round, and computes
the predicted label ŷt,j = fj (xt) for each pre-trained classifier indexed by j ∈ [k]. Denote
the vector of predicted labels by all k models by ŷt := [ŷt,1, . . . , ŷt,k]

⊤. Based on previous
observations, the learner identifies a model /classifier fjt and makes a prediction ŷt,jt for
the instance xt. Meanwhile, the learner can obtain the true label yt only if it decides to
query xt. Upon observing yt, the learner incurs a query cost, and receives a (full) loss vector
ℓℓℓt = I{ŷt ̸=yt}, where the jth entry ℓt,j := I{ŷt,j ̸=yt} corresponds to the 0-1 loss for model
j ∈ [k] at round t. The learner can then use the queried labels to adjust its model selection
criterion for future rounds.

Performance metric. Note that if xt is misclassified by the model jt selected by learner
at round t, i.e. ŷt,jt ≠ yt, it will be counted towards the cumulative loss of the learner,
regardless of the learner making a query. Otherwise, no loss will be incurred for that round.
For a learning algorithm A, its cumulative loss over T rounds is defined as LA

T :=
∑T

t=1 ℓt,jt .
For stochastic data streams, we assume that each policy i recommends the most probable

model2 w.r.t. πi(xt) for context xt. We use maxind(w) := argmaxj:wj∈w wj to denote
the index of the maximal-value entry3 of w. Since (x, y) are drawn i.i.d., we define µi =
1
T

∑T
t=1 Ext,yt

[
ℓt,maxind(πi(xt))

]
. This leads to the pseudo-regret for the stochastic setting over

T rounds, defined as
RT (A) = E[LA

T ]− T min
i∈[|Π∗|]

µi. (1)

In an adversarial setting, since the data stream (and hence the loss vector) is determined
by an adversary, we consider the reference best policy to be the one that minimizes the loss
on the adversarial data stream, and the expected regret is defined as RT (A) = E[LA

T ] −
mini∈[|Π∗|]

∑T
t=1 ℓ̃t,i (2), where ℓ̃t,i := ⟨πi (xt) , ℓℓℓt⟩ denotes the expected loss if the learner

commits to policy πi, randomizes and selects jt ∼ πi (xt) (and receives loss ℓt,jt) at round t.

3. Contextual Active Model Selection with Expert Advice

Contextual model selection. Our key insight underlying the contextual model selection
strategy extends from the online learning with expert advice framework (Freund and Schapire,
1997; Burtini et al., 2015). Pseudocode relevant to the model selection steps is provided
in Line 4-8 in Fig. 1. At each round, CAMS maintains a probability distribution over the
(extended) policy set Π∗, and updates those according to the observed loss for each policy.
We use qt := (qt,i)i∈|Π∗| to denote the probability distribution over Π∗ at t. Specifically,
the probability qt,i is computed based on the exponentially weighted cumulative loss, i.e.
qt,i ∝ exp

(
−ηtL̃t−1,i

)
where L̃t,i :=

∑t
τ=1 ℓ̃τ,i denotes the cumulative loss of policy i.

Under the stochastic setting, CAMS adopts a weighted majority strategy (Littlestone
and Warmuth, 1994) when selecting models. The vector of weighted votes each model receives
from the policies are computed as wt =

∑
i∈|Π∗| qt,iπi(xt), which can be interpreted as a

distribution induced by the weighted policy. Then, the most probable model jt = maxind(wt)

2. Our choice of the most probable selection strategy is based on superior empirical performance (see §5).
3. Assume ties are broken randomly.
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1: Input: Models F , policies Π∗, #rounds T , budget b
2: Initialize loss L̃0 ← 0; query cost C0 ← 0
3: for t = 1, 2, ..., T do
4: Receive xt
5: ηt ← SetRate(t, xt, |Π∗|)
6: Set qt,i ∝ exp

(
−ηtL̃t−1,i

)
∀i ∈ |Π∗|

7: jt ← Recommend(xt, qt)
8: Output ŷt,jt ∼ ft,jt as the prediction for xt
9: Compute zt in Eq. (4)

10: Sample Ut ∼ Ber (zt)
11: if Ut = 1 and Ct ≤ b then
12: Query the label yt
13: Ct ← Ct−1 + 1
14: Compute ℓℓℓt: ℓt,j = I {ŷt,j ̸= yt} ,∀j ∈ [|F|]
15: Estimate model loss: ℓ̂t,j =

ℓt,j
zt

, ∀j ∈ [|F|]
16: Update ℓ̃ℓℓt: ℓ̃t,i ← ⟨πi(xt), ℓ̂t,j⟩, ∀i ∈ [|Π∗|]
17: L̃t = L̃t−1 + ℓ̃ℓℓt
18: else
19: L̃t = L̃t−1

20: Ct ← Ct−1

21: procedure SetRate(t, xt,m)
22: if stochastic then
23: ηt =

√
lnm
t

24: if adversarial then
25: Set ρt as in §E.1
26: ηt =

√
1√
t
+ ρt

c2 ln c
·
√

lnm
T

27: return ηt

29: procedure Recommend(xt, qt)
30: if stochastic then
31: wt =

∑
i∈|Π∗| qt,iπi(xt)

32: jt ← maxind(wt)

33: if adversarial then
34: it ∼ qt
35: jt ∼ πit (xt)
36: return jt

Figure 1: The CAMS Algorithm

is recommended as the target model at round t. This amounts to a deterministic model
selection strategy as is commonly used in stochastic online optimization (Hazan, 2019). For
adversarial data streams, it is natural for both the online learner and the model selection
policies to randomize their actions to avoid linear regret (Hazan, 2019). Following this insight,
CAMS randomly samples a policy it ∼ qt, and—based on the current context xt—samples a
classifier jt ∼ πit (xt) to recommend at round t.

Active queries. We intend to query the labels of those instances that exhibit significant
disagreement among the pre-trained models F . Given context xt, model predictions ŷt and
model distribution wt, we denote by ℓ̄yt := ⟨wt, I {ŷt ̸= y}⟩ as the expected loss if the true label
is y. We characterize the model disagreement as E (ŷt,wt) :=

1
c

∑
y∈Y,ℓ̄yt∈(0,1)

ℓ̄yt logc
1
ℓ̄yt

(3).
Intuitively, when ℓ̄yt is close to 0 or 1, there is little disagreement among the models in
labeling xt as y, otherwise there is significant disagreement. Note that E takes a similar
algebraic form to the entropy function, although it does not inherit the information-theoretic
interpretation. We consider an adaptive query probability4

zt = max
{
δt0,E (ŷt,wt)

}
, (4)

where δt0 = 1√
t
∈ (0, 1] is an adaptive lower bound on the query probability to encourage

exploration at an early stage. The query strategy is summarized in Line 9-13 in Fig. 1.

Model updates. Now define Ut ∼ Ber (zt) as a binary query indicator that is sampled
from a Bernoulli distribution parametrized by zt. Upon querying the label yt, one can
calculate the loss for each model fj ∈ F as ℓt,j = I {ŷt,j ̸= yt}. Since CAMS does not query
all the i.i.d. examples, we introduce an unbiased loss estimator for the models, defined as
ℓ̂t,j =

ℓt,j
zt

Ut. The unbiased loss of policy πi ∈ Π∗ can then be computed as ℓ̃t,i = ⟨πi(xt), ℓ̂t,j⟩.
In the end, CAMS computes the (unbiased) cumulative loss of policy πi as L̃T,i =

∑T
t=1 ℓ̃t,i.

Pseudocode for the model update steps is summarized in Line 14-20 in Fig. 1.

4. For convenience of discussion, we assume that those rounds where all policies in Π∗ select the same
models or all models F make the same predictions are removed as a precondition.
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4. Theoretical Analysis

We now present the theoretical bounds on the regret and the query complexity of CAMS.
Here, we focus on the stochastic setting, and defer the discussion of the adversarial setting
to the Appendix E. Let i∗ = argmini∈[|Π∗|] µi be the index of the best policy (µi denotes the
expected loss of policy i, as defined in §2. Define ∆ := mini ̸=i∗(µi − µi∗) as the minimal
sub-optimality gap5 in terms of the expected loss against the best policy i∗. Furthermore, let
wt

i∗ := πi∗ (xt) be probability distribution over F induced by policy i∗ at round t. We define
γ := minxt{maxwj∈wt

i∗
wj −maxwj∈wt

i∗ ,j ̸=maxind(wt
i∗ )

wj} (5) as the minimal probability gap
between the most probable model and the rest (assuming no ties) induced by the best policy
i∗. We bound the expected regret as follows.

Theorem 4.1. (Regret) Consider the stochastic setting. With probability at least 1 − δ,

CAMS achieves expected pseudo regret (Eq. (1)) RT (CAMS) ≤

(
ln

|Π∗|
γ

+
√

ln |Π∗|·2 ln 2
δ√

ln |Π∗|∆

)2

.

The proof for Theorem 4.1 is deferred to Appendix D.1. The following theorem (proved
in Appendix D.2) provides an upper bound on the query complexity in the stochastic setting.

Theorem 4.2. (Query Complexity, informal)6. For c-class classification problems, w.h.p. the

expected number of queries made by CAMS over T rounds is lnT
c ln c

((
ln |Π∗|

γ /
(√
|Π∗|∆

))2
+ Tµi∗

)
.

5. Experiments

Datasets, policies and pre-trained models. We consider 4 datasets: {CIFAR10
(Krizhevsky et al., 2009), DRIFT (Vergara et al., 2012), VERTEBRAL (Asuncion and
Newman, 2007), HIV (Wu et al., 2018)}. We train a set of models on different subsamples
from each dataset. Then we construct policies mixed with malicious, normal, random, and
biased policy types for each dataset based on different models and features. In total, we
create 80, 10, 6, 4 classifiers and 85, 11, 17, 20 policies for data-sets in list above respectively
(see Appendix B for details).
Baselines. We use 4 non-contextual baselines: (1) Random Query (RS) queries the instance
label with a fixed probability b

T ; (2) Model Picker (MP) (Karimi et al., 2021) uses variance-
based active sampling with coin-flip query probability; (3) Query by Committee (QBC) is
committee-based sampling (Dagan and Engelson, 1995) with vote-entropy query probability;
(4) Importance Weighted Active Learning (IWAL) (Beygelzimer et al., 2009) uses query
probability calculated based on labeling disagreements of surviving classifiers. In addition,
we consider 3 contextual baselines. Since no such algorithm is available yet, we create
the contextual versions of QBC, IWAL as (5) CQBC, (6) CIWAL. Both extensions adopt
their respective original query strategy but use an exponential-weight algorithm for model
selection. For model selection, CAMS, MP, CQBC, and CIWAL recommend the classifier
with the highest probability. The rest of the baselines use Follow-the-Leader, which greedily
recommends the model with the minimum cumulative loss for past queried instances. Finally,
we add (7) Oracle as the best policy with the same query strategy as CAMS.
5. w.l.o.g. assume there is a single best policy, and thus ∆ > 0.
6. Assume Tµi∗ is a constant value given by oracle, then the query-complexity bound is in sub-linear.

5



N
um

be
r

of
qu

er
ie

s

0 2000 4000 6000 8000 10000
Round

0

200

400

600

800

1000

1200

0 500 1000 1500 2000 2500 3000
Round

0

250

500

750

1000

1250

1500

1750

2000

0 10 20 30 40 50 60 70 80
Round

0

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000 3500 4000
Round

0

250

500

750

1000

1250

1500

1750

2000

C
um

ul
at

iv
e

lo
ss

0 200 400 600 800 1000 1200
Query cost

2500

3000

3500

4000

4500

5000

5500

(a) CIFAR10

0 250 500 750 1000 1250 1500 1750 2000
Query cost

700

800

900

1000

1100

(b) DRIFT

0 10 20 30 40 50 60 70 80
Query cost

10

15

20

25

30

35

(c) VERTEBRAL

0 250 500 750 1000 1250 1500 1750 2000
Query cost

100

150

200

250

300

350

(d) HIV

Figure 2: (Top) #queries vs #rounds. (Bottom) cumulative loss vs #queries, for a fixed number
of rounds T (where T = 10000, 3000, 80, 4000 from left to right) with maximal query cost B (where
B = 1200, 2000, 80, 2000 from left to right). Shades correspond to 90% confident interval.

Experimental results. Query complexity: A sub-linear and low increase in query cost
indicate that the learner is actively (not passive or greedily) querying. Notably, by comparing
to variance-based strategy (Karimi et al., 2021) and evaluating based on the same model
selection strategy, Appendix C.2 indicates that CAMS’s query strategy requests 6%, 14%,
and 71% fewer queries for VERTEBRAL, DRIFT, and CIFAR10 datasets, respectively, while
achieving even less cumulative loss. Fig. 2 (Top) demonstrate the compelling effectiveness
of CAMS’s query strategy outperforming all baselines (excluding Oracle) in terms of query
cost in VERTEBRAL, DRIFT, and CIFAR10 benchmarks, which is consistent with our
theoretical result in Theorem 4.2. Cost effectiveness: Fig. 2 (Bottom) illustrates the cost
effectiveness (as the rate of change in cumulative loss compared to query cost changes) of
each algorithm. CAMS outperforms all baselines (other than Oracle) across all datasets by
querying fewer labels. CAMS not only achieves the lowest cumulative loss but also has the
sharpest cumulative loss decreasing rate to converge to the optimal status by only increasing
a few query cost on all benchmarks. Moreover, it takes CAMS fewer than 10 and 20 queries,
respectively, to outperform Oracle on VERTEBRAL and HIV benchmarks. In particular, on
the VERTEBRAL benchmark, CAMS has a 20% margin over the best baseline in query
cost, and it achieves this despite 11 of the 17 experts giving malicious or random advice.

6. Conclusion

We introduced CAMS, a contextual active online model selection framework based on a
novel model selection and active query strategy. We have provided rigorous theoretical
guarantees on the regret and query complexity for both stochastic and adversarial settings,
as well as extensive empirical study on several online model selection tasks. Our results show
remarkable performance of CAMS on a diverse range of datasets.
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Appendix A. Comparison against Related Work

A.1 Summary of related work

Contextual bandits. Classical bandit algorithms—such as EXP3 (Auer et al., 2002b)
or UCB (Auer et al., 2002a)— aim to find the best action(s) achieving the minimal regret
through a sequence of actions. When side information (e.g. user profile for recommender
systems or environmental context for experimental design) is available at each round, many
bandit algorithms can be lifted to the contextual setting: For example, EXP4 and its variants
(Auer et al., 2002b; Beygelzimer et al., 2011b; Neu, 2015) consider the bandit setting with
expert advice: At each round, experts announce their predictions of which actions are the
most promising for the given context, and the goal is to construct a expect selection policy
that competes with the best expert from hindsight. Note that in bandit problems, the learner
only gets to observe the reward for each action taken. In contrast, for the online model
selection problem considered in this work—where an action corresponds to choosing a model
to make prediction on an incoming data point—we get to see the loss/reward of all models
on the labeled data point. In this regard, our work aligns more closely with online learning
with full information setting, where the learner has access to the loss of all the arms at each
round (e.g. as considered by the Hedge algorithm (Freund and Schapire, 1997; Burtini et al.,
2015; Cesa-Bianchi and Lugosi, 2006; Hoi et al., 2021)).

Online learning with full information. A clear distinction between our work and online
learning is that we assume the labels of the online data stream are not readily available but
can be acquired at each round with a cost. In addition, the learner only observes the loss
incurred by all models on a data point when it decides to query its label. In contrast, in the
canonical online learning setting, labels arrive with the data and one gets to observe the loss
of all candidate models at each round. Similar setting also applies to other online learning
problems, such as online boosting or bagging7 (Oza and Russell, 2001; Hu et al., 2017). A
related work to ours is online learning with label-efficient prediction (Cesa-Bianchi et al.,
2005), which proposes an online learning algorithm with matching upper and lower bounds
on the regret. However, they consider a fixed query probability that leads to a linear query
complexity. Our algorithm, inspired by uncertainty sampling in active learning, achieves an
improved query complexity with the adaptive query strategy while maintaining a comparable
regret.

Active learning. The goal of active learning is to achieve a target learning performance
with fewer training examples (Settles, 2009). In the context of active model selection, we
aim to collect the most useful labels to differentiate the candidate models while maintaining
a low query cost. The active learning framework closest to our setting is query-by-committee
(QBC) (Seung et al., 1992), in particular under the stream-based setting (Loy et al., 2012; Ho
and Wechsler, 2008). QBC maintains a committee of hypotheses; each committee member
votes on the label of an instance, and the instances with the maximal disagreement among
the committee are considered the most informative labels. Note that existing stream-based
QBC algorithms are designed and analyzed assuming i.i.d. data streams. In comparison,

7. Additionally, these online ensemble learning problems also differ from online (contextual) model selection
in that they aim to build a composite model by aggregating the strength of different models (Shen and
Huang, 2006), rather than selecting the best model (for a given context).
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our work uses a different query strategy as well as a novel model recommendation strategy,
which also applies to the adversarial setting.

Active model selection. Active model selection captures a broad class of problems where
model evaluations are expensive, either due to (1) the cost of evaluating (or “probing”) a
model, or (2) the cost of annotating a training example. Existing works under the former
setting (Madani et al., 2012; Cutkosky et al., 2021; Shukla et al., 2019; Santana et al., 2020)
often ignore context information and data annotation cost, and only consider partial feedback
on the models being evaluated/ probed on i.i.d. data. The goal is to identify the best model
with as few model probes as possible. For example, Cutkosky et al. (2021) propose a model
selection framework, which balances the regret among a set of well-specified active learners,
and Shukla et al. (2019) propose a (context-free) Thompson-sampling-based adaptive model
selection framework for selecting the next model(s) to evaluate. This is quite different from
our problem setting which considers the full information setting as well as non-negligible data
annotation cost. For the later, most existing works assume a pool-based setting where the
learner can choose among the pool of unlabeled data (Sugiyama and Rubens, 2008; Madani
et al., 2012; Sawade et al., 2012, 2010; Ali et al., 2014; Gardner et al., 2015; Zhang and
Chaudhuri, 2014; Leite and Brazdil, 2010), and the goal is to identify the best model with a
minimal set of labels. Recently, Karimi et al. (2021) investigate active model selection under
the stream-based setting, which aims to select a single best model for arbitrary data steams.
This is closely related to our work; the key difference being the prior work does not model
context information which could be vital for heterogeneous data streams.
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A.2 Comparison against related work: Problem setup

For better positioning of this work, we compare our setting against a few related works in
this domain, and highlight the key differences in the problem setup in Table 1.

Algorithm Online bagging Hedge EXP3 EXP4 QBC ModelPicker CAMS
(Oza and Russell, 2001) (Freund and Schapire, 1997) (Auer et al., 2002b) (Auer et al., 2002b) (Seung et al., 1992) (Karimi et al., 2021) (ours)

criterion combination selection selection selection combination selection selection
full-information yes yes no no yes yes yes
active no no no no yes yes yes
contextual no no no yes no no yes

Table 1: Algorithm comparison: problem setup

A.3 Comparison against related work: Theoretical guarantees

We summarize our key theoretical contributions of regret and query complexity bound 8

together with the bounds of other related algorithms in the table of this section.

Algorithm Regret Query Complexity

Exp3
(Lattimore and Szepesvári, 2020) 2

√
Tk log k –

Exp3.p
(Bubeck et al., 2012) 5.15

√
nT log n

δ –

Exp4
(Lattimore and Szepesvári, 2020)

√
2Tk log n –

Exp4.p
(Beygelzimer et al., 2011b) 6

√
kT ln n

δ –

Model Pickerstochastic
(Karimi et al., 2021)

62maxi∆ik/
(
λ2 log k

)
λ = minj∈[k]\{i∗}∆

2
j/θj

√
2T log k(1 + 4 c

∆)

Model Pickeradversarial
(Karimi et al., 2021) 2

√
2T log k 5

√
T log k + 2LT,∗

CAMSstochastic
(§D.1, §D.2)

((
ln |Π∗|

γ +
√

ln |Π∗| · 2 ln 2
δ

)
/
(√

ln |Π∗|∆
))2

O

(
lnT
c ln c

(
lnT
∆2 +

(
ln

|Π∗|
γ√

ln |Π∗|∆

)2

+ Tµi∗

))
CAMSadversarial
(§E.2, §E.3) 2c

√
ln c/ρT ·

√
T log |Π∗| O

(
lnT
c ln c

(√
T log (|Π∗|)

ρT
+ L̃T,∗

))

Table 2: Regret and query complexity bound

8. Let us assume Tµi∗ , L̃T,∗ is a constant value given by oracle in stochastic and adversarial setting
respectively, then we consider query-complexity bound is sub-linear.
i∗ is the model with the highest expected accuracy.
θj = P [ℓ.,j ̸= ℓ.,i∗ ] to be the probability that exactly one of j and i∗ correctly classify a sample.
γ is defined in (5).
ρT is defined in (11).
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Appendix B. Supplemental Materials on Experimental Setup

B.1 Details on datasets

CIFAR10: The CIFAR10 dataset contains 60,000 32x32 color images in 10 different classes.
Each class has 6000 images. We randomly split the dataset into three subsets: the training
set contains 45000 images, the validation set contains 5000 images, and we keep 10000 images
for the online testing set.

DRIFT: The DRIFT dataset measures gas using data from chemical sensors exposed to
different gases at various concentration levels. DRIFT contains 13910 measurements from
6 types of gases and 16 chemical sensors, forming a 128-dimensional feature vector. We
randomly split the dataset into a training, validation, and test set with 9737, 1113 and 3060
records, respectively.

VERTEBRAL: The VERTEBRAL dataset is a biomedical dataset that classifies patients
into three categories: Normal (100 patients), Spondylolisthesis (150 patients), or Disk Hernia
(60 patients). Each patient is represented by six biomechanical attributes: pelvic incidence,
pelvic tilt, lumbar lordosis angle, sacral slope, pelvic radius, and spondylolisthesis grade.
VERTEBRAL contains 310 instances. We randomly selected 155 instances as the training
set, 25 as validation sets, and 130 as testing sets.

HIV: The HIV dataset measures the ability to inhibit HIV replication for over 40,000
compounds with binary labels (active and inactive). We randomly draw 32901 records as the
training set, 4113 records as a validation set, and 4113 records as the test set.

B.2 Details on policies and classifiers

Policy: At each round, the malicious policy gives opposite advice; the random policy gives
random advice; the biased policy gives biased advice through training on a biased distribution
over classifying specific classes. The normal policy gives reasonable advice by training under
a standard process of the training set.

CIFAR10: We have constructed 80 diversified classifiers based on VGG (Simonyan and
Zisserman, 2014), ResNet (He et al., 2016), DenseNet (Huang et al., 2017), GoogLeNet
(Szegedy et al., 2015). We have also used EfficientNet (Tan and Le, 2019), MobileNets
(Howard et al., 2017), RegNet (Schneider et al., 2017), and ResNet to construct 85 diversified
policies.

DRIFT: We have constructed ten classifiers using Decision Tree (Quinlan, 1986), SVM
(Cortes and Vapnik, 1995), AdaBoost (Freund et al., 1999), Logistic Regression (Cramer,
2002), KNN (Cover and Hart, 1967) models. We have also created 8 diversified policies with
multilayer perceptron (MLP) models of different layer configurations: (128, 30, 10); (128, 60,
30, 10); (128, 120, 30, 10); (128, 240, 120, 30, 10).

VERTEBRAL: We have built six classifiers using Random Forest (Breiman, 2001),
Gaussian Process (Rasmussen, 2003), linear discriminant analysis (Fisher, 1938), Naive Bayes
(Hand and Yu, 2001) algorithms. We have constructed policies by using standard scikit-learn
built-in models including Random Forest Classifier, Extra Trees Classifier (Geurts et al.,
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2006), Decision Tree Classifier, Radius Neighbors Classifier (Musavi et al., 1992), Ridge
Classifier (Rifkin and Lippert, 2007) and K-Nearest-Neighbor classifiers.

HIV: We have used graph convolutional networks (GCN) (Kipf and Welling, 2016), Graph
Attention Networks (GAT) (Veličković et al., 2017), AttentiveFP (Xiong et al., 2019), and
Random Forest to construct 4 classifiers. We have also used various feature representations
of molecules such as MACCS key (Durant et al., 2002), ECFP2, ECFP4, and ECFP6 (Rogers
and Hahn, 2010) molecular fingerprints to build 6 MLP-based policies, respectively.

B.3 Implementation details

For the experiments, we build our contextual online active learning platform on top of prior
non-contextual work (Karimi et al., 2021) around the four benchmark datasets. The context
xt is the raw context of the data (e.g., the 32x32 image for CIFAR10). The predictions ŷt
contain the predicted label vector of all the classifiers’ predictions according to the online
context xt. The oracle file contains the true label yt of xt. The advice matrix file contains
the matrix data and each row represents a matrix of all policies’ probability distribution λ
over all the classifiers on context xt. To adapt to an online setting, we sequentially draw
random T i.i.d. instances from the testing pool set and define it as a realization. For a
fair comparison, all algorithms receive data instances in the same order within the same
realization.

B.4 Regularized policy

Algorithm 1 Regularized policy π (xt)
1: Input: context xt, Models F , policy π ∈

Π∗

2: γ =
∑|F|

j=1

(
[π (xt)]j −

1
|F|

)2
3: return πi(xt)+γ

1+|F|·γ

As discussed in §E.1, we wish to ensure that
the probability a policy selecting any model
is bounded away from 0 so that the regret
bound in Theorem E.1 is non vacuous. In
our experiments, we achieve this goal by
applying a regularized policy π as shown in
Algorithm 1.

B.5 Summary of datasets and models

We summarize the attributes of datasets, the models, and the model selection policies as
follows.

dataset classification total instances test set stream size classifier policy

CIFAR10 10 60000 10000 10000 80 85
DRIFT 6 13910 3060 3000 10 11
VERTEBRAL 3 310 127 80 6 17
HIV 2 40000 4113 4000 4 20

Table 3: Attributes of benchmark datasets
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B.6 Details on baseline algorithms

Model Picker (MP) Model Picker (Karimi et al., 2021) is a context-free online active
model selection method inspired by EXP3. Model Picker aims to find the best classifier in
hindsight while making a small number of queries. For query strategy, it uses a variance-based
active learning sampling method to select the most informative label to query to differentiate
a pool of models, where the variance is defined as v (ŷt,wt) = maxy∈Y ℓ̄yt

(
1− ℓ̄yt

)
. The coin-

flip query probability is defined as max {v (ŷt,wt) , ηt} when v (ŷt,wt) ̸= 0, or 0 otherwise.
For model recommendation, it uses an exponential weight algorithm to recommend the model
with minimal exponential cumulative loss based on the past queried labels at each round.

Query by Committee (QBC) For query strategy, we have adapted the method of
(Dagan and Engelson, 1995) as a disagreement-based selective sampling query strategy for
online streaming data. We treat each classifier as a committee member and compute the
query probability by measuring disagreement between models for each instance. The query
function is coin-flip by vote entropy probability − 1

logmin (k,|C|)
∑

c
V (c,x)

k log V (c,x)
k , where

V (c, x) stands for the number of committee members assigning a class c for input context x
and k is the number of committee. For the model recommendation part, we use the method
of Follow-the-Leader (FTL) (Lattimore and Szepesvári, 2020), which greedily recommends
the model with the minimum cumulative loss for past queried instances.

Importance Weighted Active Learning (IWAL) We have implemented (Beygelzimer
et al., 2009) as the IWAL baseline. For the query strategy part, IWAL computes an
adaptive rejection threshold for each instance and assigns an importance weight to each
classifier in the hypothesis space Ht. IWAL retains the classifiers in the hypothesis space
according to their weighted error versus the current best classifier’s weighted error at round
t. The query probability is calculated based on labeling disagreements of surviving classifiers
through function maxi,j∈Ht,y∈[c] ℓ

(y)
t,i − ℓ

(y)
t,j . For model recommendation, we also adopt the

Follow-the-Leader (FTL) strategy.

Random Query Strategy (RS) The RS method queries the label of incoming instances
by the coin-flip fixed probability b

T . It also uses the FTL strategy based on queried instances
for model recommendation.

Contextual Query by Committee (CQBC) We have created a contextual variant
of QBC termed CQBC, which has the same entropy query strategy as the original QBC.
For model recommendation, we combine two model selection strategies. The first strategy
calculates the cumulative reward of each classifier based on past queries and normalizes it
as a probability simplex vector. We also adopt Exp4’s arm recommending vector to use
contextual information. Finally, we compute the element-wise product of the two vectors
and normalize it to be CQBC’s model recommendation vector. At each round, CQBC would
recommend the top model based on the classifiers’ historical performance on queried instances
and the online advice matrix for streaming data.

Contextual Importance Weighted Active Learning (CIWAL) We have created a
variant version of importance-weighted active learning. Similar to CQBC, CIWAL adopts
the query strategy from IWAL and converts the model selection strategy to be contextual.
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For model selection, we incorporate Exp4’s arm recommendation strategy based on the side-
information advice matrix and each classifier’s historical performance according to queried
instances. We compute the element-wise product of the two vectors as the model selection
vector of CIWAL and normalize it as a weighted vector. Finally, CIWAL recommends the
classifier with the highest weight.

Oracle: Among all the given policies, oracle represents the best single policy that achieves
the minimum cumulative loss, and it has the same query strategy as CAMS.

B.7 Hyperparameters

We performed our experiments on a Linux server with 80 Intel(R) Xeon(R) Gold 6148 CPU
@ 2.40GHz and total 528 Gigabyte memory.

By considering the resource of server, We set 100 realizations and 3000 stream-size for
DRIFT, 20 realizations and 10000 stream-size for CIFAR10, 200 realizations and 4000 stream
size for HIV, 300 realization and 80 stream-size for VERTEBRAL. In each realization, we
randomly selected steam-size aligned data from testing-set and make it as online streaming
data which is the input of each algorithm. Thus, we got independent result for each realization.

A small realization number would increase the variance of the results due to the random-
ness of stream order. A large realization number would make the result be more stable but
at the cost of increasing computational cost (time, memory, etc.). We chose the realization
number by balancing both aspects.

Appendix C. Additional Experiments

In addition to the main results reported in Fig. 2, our empirical results demonstrate the
remarkable performance of CAMS as follows:

(1) In a mixture of experts environment, CAMS converge to the best policy and outperform
all others (Appendix C.3).

(2) In a complete malicious experts environment, CAMS can efficiently recover from
malicious advice and approach the performance of the best classifier (Appendix C.5). CAMS
has its guarantee to outperform any algorithms chasing a global optimal classifier (model)
(Appendix C.1).

(3) In a non-contextual (no experts) environment, CAMS has approximately equal
performance as Model Picker to reach the best classifier effectively (Appendix C.4).

(4) CAMS achieves the notable performances while making limited queries and maintains
its robustness on the low-data benchmark (Appendix C.1, Fig. 2).

(5) CAMS has low variance for all benchmarks, which is desirable in sequential decision
making (Appendix C.1, Fig. 2).

(6) In a complete sub-optimal expert environment, a variant of the CAMS algorithm,
namely CAMS-MAX, which deterministically picks the most probable policy and selects
the most probable model, outperforms CAMS-Random-Policy, which randomly samples
a policy and selects the most probable model (Appendix C.7 & Appendix C.8). However,
CAMS-MAX at most approaches the performance of the best policy. In contrast, perhaps
surprisingly, CAMS is able to outperform the best policy in both VERTEBRAL and HIV
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benchmarks (Appendix C.6).

C.1 Relative cumulative loss

To demonstrate that CAMS could outperform any algorithms chasing a global optimal
classifier (model), we use the relative cumulative loss to compare the algorithm’s cumulative
loss with the best classifier. At round t, RCL is defined as Lt,ji − Lt,j∗ , where Lt,j∗ stands
for the cumulative loss (CL) of the policy always selecting the best classifier, and Lt,ji stands
for the CL of any policy i. The RCL under the same query cost for all baselines is shown in
Fig. 3. The loss trajectory demonstrates that CAMS efficiently adapts to the best policy
after only a few rounds and outperforms all baselines (excluding the Oracle performance
on CIFAR10 and DRIFT) in all experiments. The result also demonstrates that CAMS
can achieve negative RCL on all benchmarks, which means it outperforms any algorithms
that chase the best classifier. This empirical result aligns with our Theorem 4.1 that, in the
worst scenario, if the best classifier is the best policy, CAMS will achieve its performance.
Otherwise, CAMS will outperform and reach a better policy under the no regret guarantee.
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Figure 3: Comparing CAMS with 7 model selection baselines on 4 diverse benchmarks in
terms of loss trajectory. CAMS outperforms all baselines (excluding Oracle). Performance
measured by relative cumulative loss (i.e. loss against the best classifier) under a fixed
query cost B (where B = 200, 400, 30, 400 from left to right). Algorithms: 4 contextual
{Oracle, CQBC, CIWAL, CAMS} and 4 non-contextual baselines {RS, QBC, IWAL, MP}
are included (see Section ). 90% confident interval are indicated in shades.

C.2 Query strategies ablation comparison

Using the same CAMS model recommendation section, we compare three query strategies:
the adaptive model-disagreement-based query strategy in Line 9-13 of Fig. 1 (referred to
as entropy in the following), the variance-based query strategy from Model Picker (Karimi
et al., 2021) (referred to as variance), and a random query strategy. Fig. 4 shows that
CAMS’s adaptive query strategy has the sharpest converge rate on cumulative loss, which
demonstrates the effectiveness of the queried labels. Moreover, entropy achieves the minimum
cumulative loss for CIFAR10, DRIFT, and VERTEBRAL under the same query cost. For
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the HIV dataset, there is no clear winner between entropy and variance since the mean of
their performance lie within the error bar of each other for the most part.
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Figure 4: Ablation study of three query strategies (entropy, variance, random) for 4 diverse
benchmarks based on the same model recommendation strategy. Under the same query
cost constraint, CAMS’s query strategy (entropy) exceeds the performance of the other
two strategies on non-binary benchmarks in terms of query cost and cumulative lost. 90%
confident intervals are indicated in shades.

C.3 Comparing CAMS with each individual expert

We evaluate CAMS by comparing it with all the policies available in various benchmarks.
The policies in each benchmark are summarized in Appendix B.2 and Table B.5. The
empirical results in Fig. 5 demonstrate that CAMS could efficiently outperform all policies
and converge to the performance of the best policy with only slight increase in query cost
in all benchmarks. In particular, on the VERTEBRAL and HIV benchmarks, CAMS even
outperforms the best policy.
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Figure 5: Comparing CAMS with every single policy (only plotted top performance policies
in Figure). CAMS could approach the best expert and exceed all others with limited queries.
In particular, on VERTEBRAL and HIV Benchmarks, CAMS outperforms the best expert.
90% confident intervals are indicated in shades.

C.4 Comparing CAMS and Model Picker in a context-free environment

CAMS with its own active query strategy component outperforms Model Picker in Fig. 2.
When no policy (context) is available and if CAMS’s query strategy component uses the same
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variance-based query strategy as in Model Picker (Karimi et al., 2021), CAMS degenerates
to the Model Picker algorithm in a context-free environment. In a context-free environment,
Π = {∅}, so Π∗ :=

{
πconst
1 , . . . , πconst

k

}
, where πconst

j (·) := ej represents a policy that only
recommends a fixed model. In this case, selecting the best policy to CAMS equals selecting
the best single model. Fig. 6 demonstrates that the mean of CAMS and Model Picker lies
in the shades of each other, which means CAMS has approximately the same performance
as model picker considering the randomness on all benchmarks.
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Figure 6: Comparing the model selection strategy of CAMS and Model Picker baseline
based on the same variance-based query strategy in a context-free environment. CAMS has
approximately the same performance as Model Picker on all the benchmarks. 90% confident
intervals are indicated in shades.

C.5 Robustness against malicious experts in adversarial environments

When given only malicious and random advice policies, the conventional contextual online
learning from experts advice framework will be trapped in the malicious or random advice.
In contrast, CAMS could efficiently identify these policies and avoid taking advice from
them. Meanwhile, it also successfully identifies the best classifier to learn to reach its best
performance.

The novelty in CAMS that enables this robustness is that we add the constant policies{
πconst
1 , . . . , πconst

k

}
into the policy set Π to form the new set as Π∗. To illustrate the

performance difference, we have created a variant of CAMS by adapting to the conventional
approach (named CAMS-conventional). Fig. 7 demonstrates that CAMS could outperform
all the malicious and random policies and converge to the performance of the best classifier.
CAMS-conventional: We create the CAMS-conventional algorithm as the CAMS using
policy set Π, not Π∗.

C.6 Outperformance over the best policy/expert

We also observe that CAMS does not stop at approaching the best policy or classifier
performance. Sometimes, it even outperforms all the policies and classifiers, and Fig. 8
demonstrates such a case. To demonstrate the advantage of CAMS, we create two variant
versions of CAMS: (1) CAMS-MAX (Appendix C.7), (2) CAMS-Random-Policy (Ap-
pendix C.8). CAMS-MAX and CAMS-Random-Policy use the same algorithm as CAMS in
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Figure 7: Evaluating the robustness of CAMS compared to the conventional learning
from experts’ advice (CAMS-conventional) in a complete malicious and random policies
environment. When no good policy is available, CAMS could recover from malicious advice
and successfully approach the performance of the best classifier. In contrast, the conventional
approach will be trapped in malicious advice. 90% confident intervals are indicated in shades.

adversarial settings but have different model selection strategies for ablation study in the
stochastic settings.

We evaluate the three algorithms on VERTEBRAL and HIV benchmarks in terms of (a)
normal policies (Fig. 8 Left), (b) classifiers (Fig. 8 Middle), and (c) malicious and random
policies (Fig. 8 Right). In the normal policies column, we only compare the policies with
regular policies giving helpful advice. In the classifier column, we compare them with the
performance of classifiers only. In the malicious and random policies column, we compare
them with unreasonable policies only.

Fig. 8 demonstrates that all three algorithms could outperform the malicious/random
policies. However, CAMS-Random-Policy does not outperform the best classifier while
both CAMS and CAMS-MAX can on both benchmarks. CAMS-MAX approaches the
performance of the best policy but does not outperform the best policy on both bench-
marks. Finally, perhaps surprisingly, CAMS outperforms the best policy (Oracle) on both
benchmarks and continues to approach the hypothetical, optimal policy (with 0 cumulative
loss).

This surprising factor is contributed by the adaptive weighted policy of CAMS, which
adaptively creates a better policy by combining the advantage of each sub-optimal policy
and classifier to reach the performance of the hypothetical, optimal policy (defined as∑T

t=1mini∈[|Π∗|] ℓ̃t,i). The second reason could be that the benchmark we created, or any real-
world cases, will not be strictly in a stochastic setting (in which a single policy outperforms
all others or has lower µ in every round). The weight policy strategy can make a better
combination of advice for this case.

C.7 The CAMS-MAX algorithm

CAMS-MAX is a variant of CAMS. In an adversarial setting, they share the same algorithm.
However, in a stochastic setting, CAMS-MAX gets the index i∗ of max value in the
probability distribution of policy q, and selects the model with the max value in πi∗ (xt) to
recommendation. The difference is marked in blue in Fig. 9.
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Figure 8: Comparing CAMS, CAMS-MAX and CAMS-Random-Policy with top policies
and classifiers in the VERTEBRA and HIV benchmarks. They outperform all the mali-
cious/random policies. Moreover, CAMS and CAMS-MAX outperform the best classifier.
Finally, only CAMS outperforms the best policy (Oracle) in both benchmarks and continues
approaching the hypothetical, optimal policy (0 cumulative loss). 90% confident intervals
are indicated in shades.

1: Input: Models F , policies Π∗, #rounds T , budget b
2: Initialize loss L̃0 ← 0; query cost C0 ← 0
3: for t = 1, 2, ..., T do
4: Receive xt
5: ηt ← SetRate(t, xt, |Π∗|)
6: Set qt,i ∝ exp

(
−ηtL̃t−1,i

)
∀i ∈ |Π∗|

7: jt ← Recommend(xt, qt)
8: Output ŷt,jt ∼ ft,jt as the prediction for xt
9: Compute zt in Eq. (4)

10: Sample Ut ∼ Ber (zt)
11: if Ut = 1 and Ct ≤ b then
12: Query the label yt
13: Ct ← Ct−1 + 1
14: Compute ℓℓℓt: ℓt,j = I {ŷt,j ̸= yt} ,∀j ∈ [|F|]
15: Estimate model loss: ℓ̂t,j =

ℓt,j
zt

,∀j ∈ [|F|]
16: ℓ̃ℓℓt: ℓ̃t,i ← ⟨πi(xt), ℓ̂t,j⟩, ∀i ∈ [|Π∗|]
17: L̃t = L̃t−1 + ℓ̃ℓℓt
18: else
19: L̃t = L̃t−1

20: Ct ← Ct−1

21: procedure SetRate(t, xt,m)
22: if stochastic then
23: ηt =

√
lnm
t

24: if adversarial then
25: Set ρt as in §E.1
26: ηt =

√
1√
t
+ ρt

c2 ln c
·
√

lnm
T

27: return ηt

29: procedure Recommend(xt, qt)
30: if stochastic then
31: it ← maxind(qt)
32: jt ← maxind(πit (xt))
33: if adversarial then
34: it ∼ qt
35: jt ∼ πit (xt)
36: return jt

Figure 9: The CAMS-MAX Algorithm
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C.8 The CAMS-Random-Policy algorithm

CAMS-Random-Policy is a variant of CAMS. It shares the same framework with CAMS
in an adversarial environment. However, it uses a random sampling policy method in a
stochastic setting. It randomly samples the policy from the probability distribution of policy
q, and selects the model with max value in πi∗ (xt) to recommendation. The difference is
marked in blue in Fig. 10.

1: Input: Models F , policies Π∗, #rounds T , budget b
2: Initialize loss L̃0 ← 0; query cost C0 ← 0
3: for t = 1, 2, ..., T do
4: Receive xt
5: ηt ← SetRate(t, xt, |Π∗|)
6: Set qt,i ∝ exp

(
−ηtL̃t−1,i

)
∀i ∈ |Π∗|

7: jt ← Recommend(xt, qt)
8: Output ŷt,jt ∼ ft,jt as the prediction for xt
9: Compute zt in Eq. (4)

10: Sample Ut ∼ Ber (zt)
11: if Ut = 1 and Ct ≤ b then
12: Query the label yt
13: Ct ← Ct−1 + 1
14: Compute ℓℓℓt: ℓt,j = I {ŷt,j ̸= yt} ,∀j ∈ [|F|]
15: Estimate model loss: ℓ̂t,j =

ℓt,j
zt

,∀j ∈ [|F|]
16: ℓ̃ℓℓt: ℓ̃t,i ← ⟨πi(xt), ℓ̂t,j⟩, ∀i ∈ [|Π∗|]
17: L̃t = L̃t−1 + ℓ̃ℓℓt
18: else
19: L̃t = L̃t−1

20: Ct ← Ct−1

21: procedure SetRate(t, xt,m)
22: if stochastic then
23: ηt =

√
lnm
t

24: if adversarial then
25: Set ρt as in §E.1
26: ηt =

√
1√
t
+ ρt

c2 ln c
·
√

lnm
T

27: return ηt

29: procedure Recommend(xt, qt)
30: if stochastic then
31: it ∼ qt
32: jt ← maxind(πit (xt))
33: if adversarial then
34: it ∼ qt
35: jt ∼ πit (xt)
36: return jt

Figure 10: The CAMS-Random-Policy Algorithm

C.9 Maximal queries from experiments

Table 4 in this section summarizes the maximum query cost under a fixed number of
realizations with its associated cumulative loss for all baselines (exclude oracle) on all
benchmarks in §5. The result in table is slightly different from the query complexity curves
of Fig. 2 (Top). The curve in Fig. 2 (Top) takes the average value, while the table takes the
maximal value from a fixed number of simulations. CAMS wins all baselines (other than
oracle) in terms of query cost on CIFAR10, DRIFT, and VERTEBRAL benchmarks. CAMS
outperforms all baselines in terms of cumulative loss on DRIFT, VERTEBRAL, and HIV
benchmarks. In particular, CAMS outperforms both cumulative loss and query cost on the
DRIFT and VERTEBRAL benchmarks.

25



Algorithm CIFAR10 DRIFT VERTEBRAL HIV

Max queries, Cumulative loss 1200, 10000 2000, 3000 80, 80 2000, 4000
RS 1200, 2916 2000, 766 80, 19 2000, 143
QBC 1200, 2857 1904, 771 72, 20 2000, 139
IWAL 1200, 2854 2000, 760 80, 19 690, 140
MP 1200, 2885 493, 803 33, 25 153, 148
CQBC 1200, 2284 1900, 744 68, 13 2000, 124
CIWAL 1200, 2316 2000, 746 80, 12 690, 124
CAMS 348, 2348 251, 710 32, 11 782, 112

Table 4: Maximal queries from experiments
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Appendix D. Proofs for the Stochastic Setting

In this section, we focus on the stochastic setting. We first prove the regret bound presented in
Theorem 4.1 and then prove the query complexity presented in Theorem 4.2 for Algorithm 1.

For Theorem 4.1, note that in the stochastic setting, a lower bound of Ω
(
log Π∗

∆

)
was

shown in (Mourtada and Gaïffas, 2019) for online learning problems with expert advice
under the full information setting (i.e. assuming labels are given for all data points in the
stochastic stream). Our regret upper bounds in stochastic setting match (up to constant
factors) the existing lower bounds for online learning problems with expert advice under the
full information setting.

To establish the proof of Theorem 4.1, we consider a novel procedure to connect the
weighted policy by CAMS to the best policy πi∗ . Conceptually, we would like to show that,
after a constant number of rounds τconst, with high probability, the model selected by CAMS
(Line 32) will be the same as the one selected by the best policy i∗. In that way, the expected
pseudo regret will be dominated by the maximal cumulative loss up to τconst. Toward this
goal, we first bound the weight of the best policy wt,i∗ as a function of t, by choosing a
proper learning rate ηt (CAMS, Line 23). Then, we identify a constant threshold τconst,
beyond which CAMS exhibits the same behavior as πi∗ with high probability. Finally, we
obtain the regret bound by inspecting the regret at the two stages separately. The formal
statement of Theorem 4.1 and the detailed proof are deferred to Appendix D.1.

D.1 Proof of Theorem 4.1

Before providing the proof of Theorem 4.1, we first introduce the following lemma.

Lemma 1. Fix τ ∈ (0, 1). Let qt,i∗ be the probability of the optimal policy i∗ maintained by

Algorithm 1 at t. When t ≥

(
ln

|Π∗|τ
1−τ√

ln |Π∗|
(
∆−

√
2
t
ln 2

δ

)
)2

, with probability at least 1− δ, it holds

that qt,i∗ ≥ τ .

Proof of Lemma 1. W.l.o.g, we assume µ1 ≤ µ2 ≤ . . . µn+k. Since we define ∆ = mini ̸=i∗ ∆i =

µ2 − µ1 =
E[L̃t,2−L̃t,1]

t , we also have qt,i∗ = qt,1 =
exp(−ηtL̃t−1,1)∑|Π∗|

i=1 exp(−ηtL̃t−1,i)
as the weight of optimal
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expert at round t. Therefore

qt,i∗ = qt,1 =
exp

(
−ηtL̃t−1,1

)
∑|Π∗|

i=1 exp
(
−ηtL̃t−1,i

)
(a)
=

exp
(
−ηtL̃t−1,1 + ηtL̃t−1,2

)
∑|Π∗|

i=1 exp
(
−ηtL̃t−1,i + ηtL̃t−1,2

)
(b)
=

exp
(
ηt
∑t

s=1 δs
)

exp
(
ηt
∑t

s=1 δs
)
+ 1 +

∑|Π∗|
i=3 exp

(
−ηtL̃t−1,i + ηtL̃t−1,2

)
≥

exp
(
ηt
∑t

s=1 δs
)

exp
(
ηt
∑t

s=1 δs
)
+ |Π∗|

(6)

where step (a) is by dividing the cumulative loss of sub-optimal policy π2 and step (b) is
by defining δt ≜ ℓ̃t−1,2 − ℓ̃t−1,1.

Let τ ∈ (0, 1), such that qt,i∗ ≥
exp(ηt

∑t
s=1 δs)

exp(ηt
∑t

s=1 δs)+|Π∗| ≥ τ . Plugging in ηt =

√
ln |Π∗|

t and

define δt =
1
t

∑t
s=1 δs, we get

exp
(√

ln |Π∗|
√
t · δt

)
exp

(√
ln |Π∗|

√
t · δt

)
+ |Π∗|

≥ τ

Therefore, we obtain exp
(√

ln |Π∗|
√
t · δt

)
≥ |Π∗|τ

1−τ . Rearranging the terms, we get

t ≥

(
ln |Π∗|τ

1−τ√
ln |Π∗| · δt

)2

Now by Hoeffding’s inequality, we know P
[
|δt −∆| ≥ ϵ

]
≤ 2e−

tϵ2

2 . Let 2e−
tϵ2

2 = δ. Therefore,

when t ≥
(

ln
|Π∗|τ
1−τ√

ln |Π∗|(∆−ϵ)

)2

=

(
ln

|Π∗|τ
1−τ√

ln |Π∗|
(
∆−

√
2
t
ln 2

δ

)
)2

, it holds that qt,i∗ ≥ τ with probability

at least 1− δ.

Lemma 2. At round t, when t ≥

(
ln

|Π∗|
γ

+
√

ln |Π∗|·2 ln 2
δ√

ln |Π∗|∆

)2

, it holds that the arm chosen by

the best policy i∗ will be the arm chosen by Algorithm 1 with probability at least 1− δ. That
is, argmax

{∑
i∈[|Π∗|] qt,iπi(xt)

}
= argmax {πi∗(xt)}.
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Proof of Lemma 2. At round t, for Algorithm 1, we have loss

k∑
j=1

I

j = argmax

 ∑
i∈[|Π∗|]

qt,iπi(xt)


 ℓ̂t,j .

Let qt,i∗ ≥ τ . At round t, the best policy i∗’s top weight arm jt,i∗ ’s probability max {πi∗(xt)}
is at least 1

k . The second rank probability of πi∗(xt) is maxj [πi∗ (xt)]j ̸=maxind(πi∗ (xt)). Let us
define

γ := min
xt

{
max

wj∈wt
i∗
wj − max

wj∈wt
i∗ ,j ̸=maxind(wt

i∗ )
wj

}
(7)

= max {πi∗ (xt)} −max
j

{
[πi∗ (xt)]j ̸=maxind(πi∗ (xt))

}
as minimal gap in model distribution space of best policy. The arm recommended by the

best policy i∗ of CAMS will dominate CAMS’s selection, when we have

qt,i∗ ·max {πi∗(xt)} ≥ (1− qt,i∗) + qt,i∗

(
max

j
[πi∗ (xt)]j ̸=maxind(πi∗ (xt))

)

Rearranging the terms, and by

qt,i∗ · γ
Eq. (7)
= qt,i∗

(
max {πi∗(xt)} −max

j
[πi∗ (xt)]j ̸=maxind(πi∗ (xt))

)
≥ (1− qt,i∗)

Therefore, we get τ · γ ≥ (1− τ), and thus τ ≥ 1
γ+1 .

Set τ ≥ 1
γ+1 . By Lemma 1, we get

t ≥

(
ln |Π∗|τ

1−τ√
ln |Π∗| (∆− ϵ)

)2

≥

 ln
(
|Π∗|
γ

)
√
ln |Π∗| (∆− ϵ)

2

(c)

≥

 ln |Π∗|
γ√

ln |Π∗|∆−
√
ln |Π∗| · 2t ln

2
δ

2
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where the last step is by applying 2e−
tϵ2

2 = δ, thus, ϵ =
√

2
t ln

2
δ . Dividing both sides by t,

1
(d)

≥

 ln |Π∗|
γ√

ln |Π∗| · t∆−
√
ln |Π∗| · 2 ln 2

δ

2

ln
|Π∗|
γ
≤
√
t
√

ln (|Π∗|)∆−
√
ln (|Π∗|) · 2 ln 2

δ

t ≥

 ln |Π∗|
γ +

√
ln |Π∗| · 2 ln 2

δ√
ln |Π∗|∆

2

.

So, when t ≥

(
ln

|Π∗|
γ

+
√

ln |Π∗|·2 ln 2
δ√

ln |Π∗|∆

)2

, it holds that

argmax

 ∑
i∈[|Π∗|]

qt,iπi(xt)

 = argmax {πi∗(xt)}.

Proof of Theorem 4.1. Therefore, with probability at least 1 − δ, we get constant regret(
ln

|Π∗|
γ

+
√

ln |Π∗|·2 ln 2
δ√

ln |Π∗|∆

)2

.

Furthermore, with probability at most δ, the regret is upper bounded by T . Thus, we
have

R (T ) ≤ (1− δ)

 ln |Π∗|
γ +

√
ln |Π∗| · 2 ln 2

δ√
ln |Π∗|∆

2

+ δT

(a)

≤
(
1− 1

T

) ln |Π∗|
γ +

√
ln |Π∗| · (2 lnT + 2 ln 2)√

ln |Π∗|∆

2

+ 1

= O

 lnT

∆2
+

 ln |Π∗|
γ√

ln |Π∗|∆

2 ,

where step (a) by set δ = 1
T , and where γ in Eq. (7) is the min gap.

D.2 Proof of Theorem 4.2

In this section, we analyze the query complexity of CAMS in the stochastic setting. Our
main idea is to derive from query indicator Ut and query probability zt. We first used
Lemma 3 to bound the expected number of queries

∑T
t=1 Ut by the sum of query probability

as
∑T

t=1 δ
t
0 +

∑T
t=1 E (ŷt,wt). Then we used Lemma 4 to bound the first item (which
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corresponds to the lower bound of query probability over T rounds) and applied Lemma 5 to
bound the second term (which characterizes the model disagreement). Finally, we combined
the upper bounds on the two parts to reach the desired result.

Lemma 3. The query complexity of Algorithm 1 is upper bounded by

E

[
T∑
t=1

(
1√
t
+

∑
y∈Y⟨wt, ℓℓℓ

y
t ⟩ log|Y|

1
⟨wt,ℓℓℓ

y
t ⟩

|Y|

)]
. (8)

Proof. Now we have model disagreement defined in Eq. (3), the query probability defined in
Eq. (4), and the query indicator U. Let us assume, at each round, we have query probability
zt > 0, which indicates we will not process the instance that all the models’ prediction are
the same.

At round t, from query probability Eq. (4), we have

zt = max
{
δt0,E (ŷt,wt)

}
≤δt0 + E (ŷt,wt) ,

where the inequality is by applying that ∀A,B ≥ 0,max{A,B} ≤ A+B.
Thus, in total round T , we could get the following equation as the cumulative query cost,

E

[
T∑
t=1

Ut

]
≤E

[
T∑
t=1

(
1√
t
+

∑
c∈Y⟨wt, ℓℓℓ

y
t ⟩ log|Y|

1
⟨wt,ℓℓℓ

y
t ⟩

|Y|

)]
, (9)

where the inequality is by inputting δt0 =
1√
t

and Eq. (3).

Lemma 4.
∑T

t=1
1√
t
≤ 2
√
T .

Proof. We can bound the LHS as follows:

T∑
t=1

1√
t
=

⌊
√
T ⌋∑

t=1

1√
t
+

T∑
t=⌊

√
T ⌋+1

1√
t

≤
√
T +

T∑
t=⌊

√
T ⌋+1

1√
T

=
√
T +

(
T −
√
T
) 1√

T

≤ 2
√
T .

Lemma 5. Denote the true label at round t by yt, and define pt,y :=
∑

j∈[k] I {ŷt,j = y}wj.
Further define Rt :=

∑
t 1− pt,yt as the expected cumulative loss of Algorithm 1 at t . Then

T∑
t=1

∑
y∈Y⟨wt, ℓℓℓ

y
t ⟩ log|Y|

1
⟨wt,ℓℓℓ

y
t ⟩

|Y|
≤

RT ·
(
log|Y|

T 2(|Y|−1)
R2

)
|Y|

.
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Proof of Lemma 5. Suppose at round t, the true label is yt.
∑

y ̸=yt
pt,y = 1 − pt,yt =

1−
〈∑

i∈|Π∗| qt,iπi(xt), ℓℓℓt
〉
= rt,

∑
y∈Y⟨wt, ℓℓℓ

y
t ⟩ log|Y|

1
⟨wt,ℓℓℓ

y
t ⟩

|Y|
=

(1− pt,yt) log|Y|
1

1−pt,yt

|Y|
+

∑
y ̸=yt

(1− pt,y) log|Y|
1

1−pt,y

|Y|

(a)

≤
(1− pt,yt) log|Y|

1
1−pt,yt

|Y|
+ (|Y| − 1)

(1−pt,yt)
|Y|−1 log|Y|

|Y|−1
1−pt,yt

|Y|

≤
(1− pt,yt) log|Y|

1
1−pt,yt

|Y|
+

(1− pt,yt) log|Y|
|Y|−1
1−pt,yt

|Y|

=

(1− pt,yt) log|Y|
|Y|−1

(1−pt,yt)
2

|Y|

(b)

≤
rt log|Y|

|Y|−1
r2t

|Y|
,

where step (a) is by applying Jensen’s inequality and using 1− pt,y =
1−pt,yt
|Y|−1 , and step (b) is

by replacing 1− pt,yt by rt.

Since when rt ∈ [0, 1],
rt log|Y|

|Y|−1

r2t
|Y| is concave, let RT =

∑T
t=1 rt =

∑
rt , we get

T∑
t=1

∑
y∈Y⟨wt, ℓℓℓ

y
t ⟩ log|Y|

1
⟨wt,ℓℓℓ

y
t ⟩

|Y|
≤

T
(∑

rt
T

)(
log|Y|

|Y|−1∑
rt

T

∑
rt

T

)
|Y|

=
R
(
log|Y|

T 2(|Y|−1)
R2

)
|Y|

. (10)

Since R is the cumulative loss up to round T , T ’s incremental rate is no less than R’s
incremental rate. Thus, R ≤ T and Tt

Rt
≤ Tt+1

Rt+1
. So we get Eq. (10).

Now we are ready to prove Theorem 4.2.

Proof of Theorem 4.2. From Lemma 3, we get the following equation as the cumulative query
cost

E

[
T∑
t=1

Ut

]
≤ E

[
T∑
t=1

(
1√
t
+

∑
y∈Y⟨wt, ℓℓℓ

y
t ⟩ log|Y|

1
⟨wt,ℓℓℓ

y
t ⟩

|Y|

)]
.

Let us assume the expected total loss of best policy is Tµi∗ , thus from Theorem 4.1, we
get

E [R] = E

[
T∑
t=1

rt

]
≤ O

 lnT

∆2
+

 ln |Π∗|
γ√

ln |Π∗|∆

2+ Tµi∗ .

We get our regret bound RT (CAMS) proved in Theorem 4.1 and plug theorem bound
into the query complexity bound given by Lemma 4 and Lemma 5, we have
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E

[
T∑
t=1

Ut

]
≤ 2
√
T +

(
O

(
lnT
∆2 +

(
ln

|Π∗|
γ√

ln |Π∗|∆

)2
)

+ Tµi∗

)
|Y|

·

log|Y|
T 2 (|Y| − 1)(

O

(
lnT
∆2 +

(
ln

|Π∗|
γ√

ln |Π∗|∆

)2
)

+ Tµi∗

)2



≤

(
O

(
lnT
∆2 +

(
ln

|Π∗|
γ√

ln |Π∗|∆

)2
)

+ Tµi∗

)(
log|Y| (T |Y|)

)
|Y|

= O


(

lnT
∆2 +

(
ln

|Π∗|
γ√

ln |Π∗|∆

)2

+ Tµi∗

)
(ln (T ))

|Y| ln |Y|

 ,

where γ is defined as Eq. (7).
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Appendix E. Proofs for the Adversarial Setting

E.1 Adversarial setting

Under the adversarial setting, we assume that the loss is chosen by an adversary (i.e. by
determining what xt the leaner should receive) before each round. To avoid a linear regret,
CAMS randomizes its choice of model selection policies according to the policy distribution
qt it maintains at round t.

Let L̃T,∗ := mini∈[|Π∗|]
∑T

t=1 ℓ̃t,i be the cumulative loss of the best policy. The expected
regret (Eq. (2)) for CAMS equals to RT (CAMS) = E

[∑T
t=1⟨qt, ℓ̃ℓℓt⟩

]
− L̃T,∗. We show that

under the adversarial setting, CAMS achieves sub-linear regret in T without accessing all
labels.

Theorem E.1. (Regret) Let c be the number of classes and ρt be specified as Line 25-26
in the SetRate procedure. Under the adversarial setting, the expected regret of CAMS is
bounded by 2c

√
ln c/ρT ·

√
T log |Π∗|.

The proof is provided in Appendix E.2. Assuming ρt as constant, our regret upper
bound in Theorem E.1 matches (up to constants) the lower bound of Ω

(√
T ln |Π∗|

)
for

online learning problems with expert advice under the full information setting (Cesa-Bianchi
et al., 1997; Seldin and Lugosi, 2016) (i.e. assuming labels are given for all data points).
Hereby, the decaying learning rate ηt as specified in Line 26 is based on two parameters,
where 1/

√
t corresponds to the lower bound δt0 on the query probability (see §3), and

ρt ≜ 1 −maxτ∈[t]⟨wt, I {ŷt = y}⟩ (11) is a (data-dependent) term that is chosen to reduce
the impact of the randomized query strategy on the regret bound (especially when t is large).
Intuitively, ρt relates to the skewness of the policy where the max term corresponds to the
maximal probability of most probable mispredicted label over t rounds. Note that in theory
ρt can be small (e.g. CAMS may choose a constant policy πconst

i ∈ Π∗ that mispredict the
label for xt, which leads to ρt = 0); therefore, for practical applications, we consider to
“regularize” the policies (Appendix B.4) to ensure that probability a policy selecting any
model is bounded away from 0.

Finally, the following theorem, as proved in Appendix E.3, establishes a bound on the
query complexity of CAMS.

Theorem E.2. (Query Complexity, informal). Under the adversarial setting, the expected

query complexity over T rounds is O

(
lnT
c ln c

(√
T log (|Π∗|)

ρT
+ L̃T,∗

))
.

In this section, we first prove the regret bound presented in Theorem E.1 and then prove
the query complexity bound presented in Theorem E.2 for Algorithm 1 in the adversarial
setting. Lemma 6 builds upon the proof of the hedge algorithm (Freund and Schapire, 1997),
but with an adaptive learning rate.

E.2 Proof of Theorem E.1

Lemma 6. Consider the setting of Algorithm 1, Let us define ht,i = exp
(
−ηtL̃t−1,i

)
∀i ∈ |Π∗|

as exponential cumulative loss of policy i, ηt is the adaptive learning rate and qt is the
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probability distribution of policies, then

log

∑
i∈[|Π∗|] hT+1,i∑
i∈[|Π∗|] h1,i

≤ −
T∑
t=1

ηt

|Π∗|∑
i=1

qt,iℓ̃t,i +

T∑
t=1

η2t
2

|Π∗|∑
i=1

qt,i

(
ℓ̃t,i

)2
.

Proof. We first bound the following term∑
i∈[|Π∗|] ht+1,i∑
i∈[|Π∗|] ht,i

=

|Π∗|∑
i=1

ht+1,i∑
i∈[|Π∗|] ht,i

=

|Π∗|∑
i=1

qt,i exp
(
−ηtℓ̃t,i

)

≤
|Π∗|∑
i=1

qt,i

1− ηtℓ̃t,i +
η2t

(
ℓ̃t,i

)2
2


= 1− ηt

|Π∗|∑
i=1

qt,iℓ̃t,i +
η2t
2

|Π∗|∑
i=1

qt,i

(
ℓ̃t,i

)2
,

where the inequality is by applying that for x ≤ 0, we have ex ≤ 1 + x+ x2

2 .
By taking log on both side, we get

log

∑
i∈[|Π∗|] ht+1,i∑
i∈[|Π∗|] ht,i

≤ log

1− ηt

|Π∗|∑
i=1

qt,iℓ̃t,i +
η2t
2

|Π∗|∑
i=1

qt,i

(
ℓ̃t,i

)2
(a)

≤ −ηt
|Π∗|∑
i=1

qt,iℓ̃t,i +
η2t
2

|Π∗|∑
i=1

qt,i

(
ℓ̃t,i

)2
,

where step (a) is by applying that log (1 + x) ≤ x, when x ≥ −1.
Now summing over t = 1 : T yields:

log

∑
i∈[|Π∗|] hT+1,i∑
i∈[|Π∗|] h1,i

=

T∑
t=1

log

∑
i∈[|Π∗|] ht+1,i∑
i∈[|Π∗|] ht,i

≤ −
T∑
t=1

ηt

|Π∗|∑
i=1

qt,iℓ̃t,i +
T∑
t=1

η2t
2

|Π∗|∑
i=1

qt,i

(
ℓ̃t,i

)2
.

Lemma 7. Consider the setting of Algorithm 1, zt is query probability defined as max {δt0,E (ŷt,wt)},
where δt0 =

1√
t

and E (ŷt,wt) is defined in Eq. (3), pt,y :=
∑

j∈[k] I {ŷt,j = y}wj, then

zt ≥
1

|Y| ln |Y|
(pt,yt (1− pt,yt) + pt,y (1− pt,y)) , ∀c ̸= yt.
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Proof. We first bound the query probability term

zt = max {δt0,E (ŷt,wt)}

= max{δt0,
1

|Y|
∑
y∈Y
⟨wt, ℓℓℓ

y
t ⟩ log|Y|

1

⟨wt, ℓℓℓ
y
t ⟩
}

= max{δt0,
1

|Y|
∑
y∈Y

(1− pt,y) · ln
1

1− pt,y

1

ln |Y|
}

(a)

≥ max{δt0,
1

|Y|
∑
y∈Y

(1− pt,y) · pt,y ·
1

ln |Y|
}

= max{δt0,
1

|Y| ln |Y|
∑
y∈Y

(1− pt,y) · pt,y}

(b)

≥ 1

|Y| ln |Y|
(pt,yt (1− pt,yt) + pt,y (1− pt,y)) ,∀y ̸= yt,

where step (a) is by applying ln (1 + x) ≥ x
1+x for x > −1,

ln
1

1− pt,y
= ln

(
1 +

pt,y
1− pt,y

)
≥

pt,y
1−pt,y

1
1−pt,y

= pt,y,

and step (b) is by applying ∀a, b ∈ R,max {a, b} ≥ a.

Proof of Theorem E.1. By applying Lemma 6, we got

log

∑
i∈[|Π∗|] hT+1,i∑
i∈[|Π∗|] h1,i

≤ −
T∑
t=1

ηt

|Π∗|∑
i=1

qt,iℓ̃t,i +

T∑
t=1

η2t
2

|Π∗|∑
i=1

qt,i

(
ℓ̃t,i

)2
.

For any policy s, we have a lower bound

log

∑
i∈[|Π∗|] hT+1,i∑
i∈[|Π∗|] h1,i

≥ log
hT+1,s∑
i∈[|Π∗|] h1,i

(a)
= log

hT+1,s

|Π∗|

= − log (n+ k)−ηT
T∑
t=1

ℓ̃t,s, (12)

where step (a) in Eq. (12) is by initializing L̃0 = 0, e0 = 1, and
∑

i∈[|Π∗|] h1 = e(−ηtL̃0) = |Π∗|.
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Thus, we have

−
T∑
t=1

ηt

|Π∗|∑
i=1

qt,iℓ̃t,i +

T∑
t=1

η2t
2

|Π∗|∑
i=1

qt,i

(
ℓ̃t,i

)2
≥ − log (n+ k)−ηT

T∑
t=1

ℓ̃t,s

T∑
t=1

ηt

|Π∗|∑
i=1

qt,iℓ̃t,i−ηT
T∑
t=1

ℓ̃t,s ≤ log (n+ k) +

T∑
t=1

η2t
2

|Π∗|∑
i=1

qt,i

(
ℓ̃t,i

)2
ηT

T∑
t=1

|Π∗|∑
i=1

qt,iℓ̃t,i−ηT
T∑
t=1

ℓ̃t,s
(b)

≤ log (n+ k) +

T∑
t=1

η2t
2

|Π∗|∑
i=1

qt,i

(
ℓ̃t,i

)2
T∑
t=1

|Π∗|∑
i=1

qt,iℓ̃t,i −
T∑
t=1

ℓ̃t,s
(c)

≤ log |Π∗|
ηT

+
1

ηT

T∑
t=1

η2t
2

|Π∗|∑
i=1

qt,i

(
ℓ̃t,i

)2
,

where step (b) is by applying

ηT

T∑
t=1

|Π∗|∑
i=1

qt,iℓ̃t,i−ηT
T∑
t=1

ℓ̃t,s ≤
T∑
t=1

ηt

|Π∗|∑
i=1

qt,iℓ̃t,i−ηT
T∑
t=1

ℓ̃t,s,

and step (c) is by dividing ηT on both side.
Because we have

ET

[
qt,i

(
ℓ̃t,i

)2]
= qt,iET

[(
πi (xt) · ℓ̂ℓℓt

)2]
= qt,i

(
P (Ut = 1)

(
πi (xt) ·

ℓℓℓt
zt

)2

+ P (Ut = 0) · 0

)

= qt,i

(
zt

(
πi (xt) ·

ℓℓℓt
zt

)2
)

=
qt,i
zt

(πi (xt) · ℓℓℓt)2

≤ qt,i
zt

πi (xt) · ℓℓℓt

=
qt,i
zt
⟨πi (xt) , ℓℓℓt⟩,

it leads to

T∑
t=1

|Π∗|∑
i=1

qt,iℓ̃t,i −
T∑
t=1

ℓ̃t,s ≤
log |Π∗|

ηT
+

1

ηT

T∑
t=1

η2t
2

|Π∗|∑
i=1

qt,i
zt
⟨πi (xt) , ℓℓℓt⟩

(d)

≤ log |Π∗|
ηT

+
1

ηT

T∑
t=1

η2t
2

⟨wt, ℓℓℓt⟩
zt

,
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where step (d) is by applying
∑|Π∗|

i=1 qt,i⟨πi (xt) , ℓℓℓt⟩ = ⟨wt, ℓℓℓt⟩.

So we have,

T∑
t=1

|Π∗|∑
i=1

qt,iℓ̃t,i −
T∑
t=1

ℓ̃t,s ≤
log |Π∗|

ηT
+

1

ηT

T∑
t=1

η2t
2

⟨wt, ℓℓℓt⟩
zt

(e)

≤ log |Π∗|
ηT

+
1

ηT

T∑
t=1

η2t
2

1− pt,yt
zt

(f)

≤ log |Π∗|
ηT

+
1

ηT

T∑
t=1

η2t
2

1− pt,yt
Y0 ((1− pt,yt) pt,yt + (1− pt,y) pt,y)

≤ log |Π∗|
ηT

+
1

ηT

T∑
t=1

η2t
2

1

Y0
(
pt,yt +

1−pt,y
1−pt,yt

pt,y

) ,

where step (e) is by using ⟨wt, ℓℓℓt⟩ = 1 − pt,yt and step (f) by using Lemma 7 and get
lower bound of zt as 1

|Y| ln |Y| (pt,yt (1− pt,yt) + pt,y (1− pt,y)) and applying 1
|Y| ln |Y| = Y0.

If pt,yt ≥ 1
|Y| ,

pt,yt +
1− pt,y
1− pt,yt

pt,y ≥
1

|Y|
.

If pt,yt <
1
|Y| , ∃y, pt,y → 1, δt1 = 1−maxy,τ∈[t] pτ,y. Let pt,ŷ = maxy pt,y. Thus, we have

wŷ > 1
|Y| and

pt,yt +
1− pt,y
1− pt,yt

pt,y ≥ pt,yt + wŷ
δt1

1− pt,yt
≥ 0 +

1

|Y|
δt1
1

=
δt1
|Y|

.

Therefore

max{pt,yt + pt,y
1− pt,y
1− pt,yt

} =

{
1
|Y| if pt,yt ≥ 1

|Y| ,
δt1
|Y| if pt,yt <

1
|Y| .

38



So we have

T∑
t=1

|Π∗|∑
i=1

qt,iℓ̃t,i −
T∑
t=1

ℓ̃t,s ≤
log |Π∗|

ηT
+

1

ηT

T∑
t=1

η2t
2

1

Y0
(
pt,yt +

1−wy

1−pt,yt
pt,y

)
(g)

≤ log |Π∗|
ηT

+
1

ηT

T∑
t=1

η2t
2

1

max{Y0
δt1
|Y| , δ

t
0}

=
log |Π∗|

ηT
+

1

ηT

T∑
t=1

η2t
2

|Y|2 ln |Y|
max{δt1, δt0|Y|2 ln |Y|}

(h)

≤ log |Π∗|
ηT

+
1

ηT

T∑
t=1

η2t
2
· |Y|

2 ln |Y|
δt1+δt0|Y|2 ln |Y|

2

=
log |Π∗|

ηT
+

1

ηT

T∑
t=1

η2t
1

δt1 + δt0|Y|2 ln |Y|
· |Y|2 ln |Y|,

where step (g) is by getting the lower bound of zt as δt1
|Y| ≤

1
|Y| , δ

t
0 ≤

δt0
1−pt,yt

and step (h)

is by applying max{A,B} ≥ A+B
2 .

Let us define ρt ≜ minτ∈[t] δ
τ
1 = 1−maxc,τ∈[t] p

τ
t,y. We get

ET [RT ] ≤
log |Π∗|

ηT
+

1

ηT

T∑
t=1

log |Π∗| · 1
T
≤ 2 log |Π∗|

ηT

Let ηt =
√

ρt+δt0|Y|2 ln |Y|
|Y|2 ln |Y| ·

√
log |Π∗|

T , we obtain

ET [RT ] ≤
2
√
log |Π∗| ·

√
T ·
√
|Y|2 ln |Y|√

ρT + δT0 |Y|2 ln |Y|

≤ 2|Y|

√
T ln |Y| log |Π∗|

ρT

E.3 Proof of Theorem E.2

Proof of Theorem E.2. From Lemma 3, we get the following equation as the cumulative
query cost

E

[
T∑
t=1

Ut

]
≤ E

[
T∑
t=1

(
1√
t
+

∑
y∈Y⟨wt, ℓℓℓ

y
t ⟩ log|Y|

1
⟨wt,ℓℓℓ

y
t ⟩

|Y|

)]
.

Let us assume the expected total loss of best policy is L̃T,∗. Thus, from Theorem E.1,
we get
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E [R] = E

[
T∑
t=1

rt

]
≤ 2|Y|

√
T ln |Y| log |Π∗|

ρT
+ L̃T,∗.

We get our regret bound R proved in Theorem E.1 and plug the regret bound into the
query complexity bound given by Lemma 5, we have

T∑
t=1

∑
y∈Y⟨wt, ℓℓℓ

y
t ⟩ log|Y|

1
⟨wt,ℓℓℓ

y
t ⟩

|Y|
≤

(
2|Y|

√
T ln |Y| log |Π∗|

ρT
+ L̃T,∗

)log|Y|
T 2(|Y|−1)(

2|Y|
√

T ln |Y| log |Π∗|
ρT

+L̃T,∗

)2


|Y|

≤

(
2|Y|

√
T ln |Y| log |Π∗|

ρT
+ L̃T,∗

)(
log|Y| T |Y|

)
|Y|

=

(
2|Y|

√
T ln |Y| log |Π∗|

ρT
+ L̃T,∗

)(
log|Y| T + 1

)
|Y|

.

Finally, by applying query complexity upper bound of Lemma 4, we get

E

[
T∑
t=1

Ut

]
≤ 2
√
T +

(
2|Y|

√
T ln |Y| log |Π∗|

ρT
+ L̃T,∗

)(
log|Y| T + 1

)
|Y|

.

Since the second term on the RHS dominates the upper bound, we have

O

(
E

[
T∑
t=1

Ut

])
= O


(√

T log |Π∗|
ρT

+ L̃T,∗

)
(lnT )

|Y| ln (|Y|)

 .
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