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Abstract

We study an online version of active learning for linear function fitting. Given a stream of data
points, the goal is to maintain an accurate linear regression solution while querying as few
responses as possible online – i.e., without the possibility to revisit points after they appear
in the stream. Building on techniques from randomized numerical linear algebra, we propose
and analyze a practical procedure that samples responses with probability proportional to
each data point’s leverage score. The procedure gives a guaranteed approximation to the
full-sample regression solution, notably, without any assumptions on the data distribution.
Although extensive experiments reveal that the procedure does not perform uniformly well
across real datasets, we propose two variants that show stronger empirical performance.

Keywords: active learning, linear regression, leverage scores, online learning

1. Introduction

We study the following question – given a stream of feature vectors arriving one at a time,
how can we approximate the least squares linear regression solution for the entire stream
by only querying responses for a subset of the feature vectors? In many applications, the
full dataset is not available prior to analysis and arrives in an online manner. Moreover,
querying responses corresponding to the features might be costly, thus, prompting the data
analyst to limit the number of queries. As an example, consider a stream of patients visiting
a hospital with certain symptoms (features). The health status (response) is only observed
by conducting expensive tests. How can we reduce the number of responses queried while
maintaining a pre-determined level of error for the trained predictor?

Formally, we consider the active regression problem in an online setting. Figure 1
summarizes the setting. Suppose we receive rows from a design matrix A ∈ Rn×d in a stream
a1, a2, ..., an where ai ∈ Rd is the ith row. For each ai, we can sample its response bi ∈ R
from the response vector b ∈ Rn. Note that we are allowed to observe and store the rows of
A but only selectively sample elements of b. Our goal is to find a vector x ∈ Rd using the
collected samples that approximates the minimum achievable squared error minx‖Ax− b‖22.

We refer the reader to Chen et al. (2021) for a summary of active learning settings
considered in prior work. We depart from existing work on the active linear regression
problem in two ways. First, we are interested in approximation error at any given time point
in the stream. Most work in online learning, either in the classification (Atlas et al., 1989;
Cesa-Bianchi et al., 2009; Dekel et al., 2012) or regression settings (Vovk, 1997; Azoury
and Warmuth, 2000), measures performance in terms of cumulative error, i.e. sum of
approximation errors over time steps. Applications such as the healthcare example described
earlier typically separate the data collection period from deployment. The model is put
into practice only after the data collection period. Hence, the error at the end of the data
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Figure 1: Overview. In online active
regression, we observe a stream of fea-
ture vectors (1) and use them to decide
whether to sample the current response
(2). Objective is to find a linear regres-
sion solution from the sampled features
and responses that achieves error close to
the one found if we could observe the full
stream (3).

collection period is of interest rather than the cumulative error throughout the period. A
‘single time’ performance measure for active linear regression has been considered in prior
work (e.g. in (Drineas et al., 2006; Derezinski et al., 2018; Sabato and Munos, 2014; Chen and
Price, 2019)) but prior work does not consider a streaming setting – instead, all data points
are assumed to be available when the responses are queried actively. The streaming setting
in Calandriello et al. (2017) also differs from ours since it assumes that both the responses
and the data points are provided at each time point. Their goal is to lower the computation
cost by keeping fewer data points, as opposed to reducing the number of responses queried.

Secondly, existing work typically makes assumptions on the data distribution for analyzing
error rates of the algorithms (Riquelme et al., 2017; Cavallanti et al., 2008; Cesa-Bianchi et al.,
2009). The closest work to ours is Riquelme et al. (2017) which has the same online active
linear regression setting but assumes that the data points are sampled independently from
some distribution and the response follows an additive Gaussian noise model. Our problem
setting and the performance measure is framed in an adversarial setting and accordingly the
analysis does not require making distributional assumptions.

Our approach to the problem is based on importance sampling, that is, we subsample
features and responses with some probability, and subsequently reweight them while solving
the least squares problem (Drineas et al., 2006). We show that a simple sampling-and-
reweighting method based on leverage scores adapts to the online setting and guarantees
an approximate solution. In addition to the analysis, we add to the sparse literature
on experimentally evaluating leverage scores for regression problems on multiple realistic
datasets (Ma et al., 2015, 2020; Orhan and Tastan, 2018).

2. Methodology

Consider a sequence of probabilities p1, p2, ..., pn which we will use to sample elements
of b. Say, S ∈ Rn×n is a diagonal sampling matrix where each diagonal element Sii is
1/
√
pi if we sample at step i, otherwise Sii is 0. Then, at the end of the stream we obtain

x̃ = argminx‖SAx−Sb‖22. Our goal will be to ensure that, with high probability, the squared
error of x̃ for the original least squares objective ‖Ax̃− b‖22 is at most a multiplicative factor
worse than the optimal objective value minx‖Ax− b‖22. To construct the sampling matrix,
we will use online leverage scores devised by Cohen et al. (2016) for obtaining a spectral
approximation of a matrix.
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Online Leverage Scores Let Ai denotes the matrix observed till step i of the stream. The
online leverage score for row ai is defined as `i = min(aTi (ATi Ai)

−1ai, 1). In theory, we add
an identity matrix with a small constant to avoid non-invertible matrices aTi (ATi Ai+λI)−1ai,
known as λ-ridge leverage scores. In practice, we use the pseudo-inverse (ATi Ai)

+. We
sample the response with probability pi = min(c`i, 1) where c is a positive constant that
controls the sampling rate. We reweight by 1/

√
pi to maintain unbiased expectation of the

test error. Finally, we solve the least squares problem on the sampled data. Algorithm 1
outlines the procedure. The key observation made by Cohen et al. (2016), which is sufficient
for our main result, is that online leverage scores overestimate the true leverage scores (that
is, leverage scores computed for the full matrix A as in the offline setting).

Set c = k log(d)/ε2 for a fixed constant k.
Initialize Ã0 ← [ ], b̃0 ← [ ].
for i = 1, . . . , n rows do

Observe ai.
Compute online leverage score `i = aTi (ATi Ai)

+ai.
Compute sampling probability pi = min(c li, 1).

Set Ãi, b̃i ←


[
Ãi−1

ai/
√
pi

]
,

[
b̃i−1

bi/
√
pi

]
with probability pi,

Ãi−1, b̃i−1, otherwise.

end

Result: x̃∗ = argminx‖Ãx− b̃‖22.
Algorithm 1: x̃∗ = LEVERAGE(A, b, ε, δ), where A is the n× d data matrix, b is n× 1
response vector, ε, δ ∈ (0, 1), and a tuning parameter k.

2.1 Our Main Result

We state an upper bound for the number of samples needed for an ε-multiplicative error
approximation in the online setting. We contrast it to the offline setting where we have access
to A and b beforehand. Here, the condition number of A is denoted by κ(A) := ‖A‖2‖A−1‖2.

Theorem 1 (Online Least Squares Guarantee) Suppose we design the sampling ma-
trix S with online λmin-ridge leverage score sampling, where λmin := λmin(ATA) is the mini-
mum eigenvalue of ATA. Let x̃∗ = argminx‖SAx − Sb‖22. Then with
O
(
d log d log(1+κ2(A)) + d

δε log(1+κ2(A))
)

samples, the following holds with probability at
least (1− δ),

‖Ax̃∗ − b‖22 ≤ (1 + ε)‖Ax∗ − b‖22, (1)

where x∗ = argminx‖Ax− b‖22.

For the offline setting, results by Drineas et al. (2006) and subsequent improvements
guarantee that leverage score sampling with O

(
d log d+ d

δε

)
samples is sufficient for ap-

proximate least squares regression. Thus, online leverage score sampling at most adds a
multiplicative factor log(1 + κ2(A)) to the sampling cost which depends on the given A. We
prove the main result in Section B that involves showing that online leverage scores ensure
spectral approximation (Section A.1) and approximate matrix multiplication (Section A.2).
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2.2 Another Method - Online Root Leverage Score Sampling

For the offline active regression problem, Ma et al. (2020) propose to sample by square root
of the true leverage scores. Their work motivates this sampling method through an analysis
of the statistical properties of the resulting estimators in a linear model with zero-mean
noise. Root leverage score sampling achieves the best asymptotic mean squared error among
unbiased estimators in the sample-then-reweight category of estimators. We adapt this
method to the online setting by computing online root leverage scores from the rows seen
till any step i as `i = min((aTi (ATi Ai)

−1ai)
1/2, 1). We sample by these probabilities keeping

other steps in the Algorithm 1 the same. We also implement a biased variant of leverage score
sampling that follows the same sampling procedure but fits an unweighted least squares on
the sampled points. That is, the step of reweighting by 1/

√
pi in the Algorithm 1 is skipped.

The intuition for unweighted regression is that we may reduce the high variance that results
from sampling points with small probabilities (making 1/

√
pi high) while incurring, possibly,

small bias in the regression error because of no reweighting.

3. Experiments

The goal of the experiments is to check how the error rate of the two proposed sampling
methods compare to the two baselines. Uniform random sampling samples each data point
with a fixed probability determined before observing any data. Past work across different
active learning settings remarks the effectiveness of uniform sampling on real datasets (Orhan
and Tastan, 2018). Leverage threshold is a method introduced in (Riquelme et al., 2017)
which queries a data point if its online leverage score exceeds an adaptively set threshold. We
use the same dynamic thresholding Algorithm 1b in Riquelme et al. (2017) with Gaussian
thresholds and ξi=1 as used in their experiments.

Practical implementation Our method requires a ridge parameter to prevent the non-
invertability of ATi Ai in the calculating the online leverage scores. We addressed this in
theory by adding a small λmin · I matrix where λmin := λmin(ATA). However, λmin is only
known after seeing the whole stream A. As an alternative, we use the leverage scores
defined with a pseudo-inverse which also prevents non-invertability. We compute leverage
scores as ˜̀

i = aTi (ATi Ai)
+ai, which is well-defined for any i. Further, we note that ˜̀

i are
overestimates of true λmin-ridge leverage scores. So, using the pseudo-inverse also guarantees
online spectral approximation and matrix multiplication by Lemmas 2 and 4, and thus, the
least squares approximation by Theorem 1 – the only possible disadvantage of using the
pseudo-inverse is that we might collect more responses than guaranteed by Theorem 1.

Datasets In total we use 33 datasets. Following the setting T1 in Ma et al. (2015), 3 are
synthetically generated so that A has highly non-uniform leverage scores. The 30 real datasets
are taken from OpenML using the query https://www.openml.org/search?q=tags.tag%

3Astudy_130%2520qualities.NumberOfMissingValues%3A0&type=data. We include those
that have greater than 500 examples, non-symbolic features, and less than 70 features. Links
to individual datasets are in Table 1 and summary statistics are in Table 2 in Appendix C.

Evaluation setup For each dataset, we leave aside 30% of data points for testing. We
traverse the training data points in their original order, thus, simulating a stream. The
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number of sampled outcomes depend on the hyperparameter ε (including k) which has to be
tuned for the methods separately. As an alternative, we run the methods with various values
of ε and compare them at the same number of sampled points. We repeatedly run each
value of ε for 10 times. At any given point in the stream, we report root mean squared error
(RMSE) achieved by the least squares solution on the left out 30% test dataset. Note that
test error is a different measure than the error on the full matrix A considered in Theorem 1.

(a) Synth-StudentT d = 10 (b) Synth-StudentT d = 20 (c) Synth-StudentT d = 40

(d) Protein (e) Space ga (f) Wind

(g) Diabetes (h) Balloon (i) Strikes

Figure 2: RMSE (in log scale) vs number of samples for different variants of leverage score
sampling. We observe that online root leverage score sampling (leverage root, in cyan)
requires less samples for the same error, thus, outperforming other methods substantially.
Methods named ‘leverage threshold’ (Riquelme et al., 2017) and ‘uniform’ are baselines.

3.1 Results

Proposed method outperforms existing ones in sample complexity in synthetic
and real world datasets Figures 2 shows the RMSE for the methods as they sample
more rows. Figures 2a, 2b, and 2c report results for the synthetic setting with increasing
number of features d ∈ {10, 20, 40}. Leverage score based methods consistently outperform
uniform sampling (Uniform) since synthetic data has a few ‘outlier’ rows with high leverage
scores that are important to sample to get low error. However in the real datasets, Uniform
outperforms online leverage score sampling in some cases. On the other hand, online root
leverage does better in most cases. Figures 2g, 2h, and 2i are some where the threshold-based
baseline does better. Figure 3a summarizes the results across datasets by plotting the error
relative to the best error at 3 · d sampled data points, as achieved by any of the 5 methods.
So, the best value is 1.0 and higher is worse. We observe that the relative error for leverage
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root is around 1.0 (median) and is better than the baselines. We will study the reasons for
the variation in performance across datasets as part of further work.

(a) Original data order (b) Adversarial data order

Figure 3: Aggregate results from 30 datasets. Box plot for each method’s error relative
to the best performing method after sampling 3 · d points. Value for the best method will be
1.0. Methods named ‘leverage threshold’ (Riquelme et al., 2017) and ‘uniform’ are baselines.
(a) Data points in the stream are presented in the original order of the points. (b) Data
points are sorted in decreasing order of true leverage scores (aggr. on 29 datasets). In both
(a) and (b), we observe that online root leverage score sampling (leverage root) achieves the
best error (close to 1.0) relative to other leverage score variants and uniform sampling.

Improvements decrease as number of dimensions increase Results for the synthetic
settings in Figures 2a, 2b, and 2c show that the gap in performance between Uniform and the
rest of the methods gets smaller as d increases. This illustrates the sample size dependence
seen in Theorem 1. Analysis of dependence on n, d for leverage root requires further work.

Methods are robust to adversarial ordering of data streams We test reliance on
distributional assumptions on the stream. Figure 3b plots error vs number of samples when
the data points in the stream are presented in the decreasing order of their true leverage
scores. This ordering of the stream is adversarial to the assumptions of the thresholding-based
baseline since it sets the threshold by assuming that the points are sampled independently
from some distribution. Consequently, we see that leverage threshold does worse. Relative
performance of the rest of the methods is the same as in the original data ordering.

4. Conclusion and Discussion

We studied online leverage score sampling for approximately solving least squares regression
when rows of the design matrix and response arrive in a stream. This work extends the
analysis of leverage scores from the randomized numerical algebra literature (Drineas et al.,
2006; Cohen et al., 2016, 2015) to online linear regression. Using the observation from
this literature that online leverage scores overestimate the true leverage scores, we prove
that sampling by these scores guarantee a relative error approximation without needing
assumptions on the data distribution. We show that solving least squares in the online setting
adds at most a multiplicative factor (log of matrix’s condition number) to the sampling cost
of leverage score sampling in the offline setting. Further work should try to understand
the strong performance of root leverage scores in the asymptotic or finite sample regimes.
Another interesting direction is to consider the relation of root leverage score sampling to
linear UCB methods (Auer et al., 2002) which also, in part, use the same scores.
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Appendix A. Intermediate Results

A.1 Online Leverage Score Sampling for Spectral Approximation

The key observation made by Cohen et al. (2016) (see Theorem 2.1) is that the online
leverage scores overestimate the standard leverage scores defined as aTi (ATA)−1ai. Further,
sampling with overestimates of leverage scores suffices to guarantee spectral approximation.
Consider the following known result.

Lemma 2 (Lemma 4 in (Cohen et al., 2015)) Given A ∈ Rn×d and overestimates of
leverage scores oi ≥ aTi (ATA)−1ai for all i = 1, 2, ..., n and the desired error parameter
ε > 0. Let constant c = ε−2 log d. For i = 1, . . . , n, let the sampling probability for row ai
is pi = min(coi, 1). Define the diagonal sampling matrix S ∈ Rn×n with Sii = 1/

√
pi if the

row is sampled and 0 otherwise. Then, with O(c (
∑n

i=1 oi)) samples, the following holds with
high probability,

(1− ε)ATA � ATSTSA � (1 + ε)ATA. (2)

Suppose we set λ to be the minimum eigenvalue of ATA, λ = λmin(ATA), then observe
that the online λ-ridge leverage scores, adjusted by a constant, are overestimates i.e. `i =
aTi (ATi Ai + λmin(ATA)I)−1ai ≥ 1

2a
T
i (ATA)−1ai. Since ATi Ai � ATA, it follows that ATi Ai +

λmin(ATA)I � ATA + λmin(ATA)I � 2ATA. Thereby, implying the above overestimate.
We can adjust the factor of 1/2 in the constant ε when determining the sampling probability
pi. Thus, Lemma 2 implies that the number of samples required for spectral approximation
are of the order O(ε−2 log d (

∑n
i=1 `i)).

Next, we restate a known bound on the sum of online leverage scores
∑n

i=1 `i.

Lemma 3 (Sum of Online Leverage Scores, Theorem 2.2 in (Cohen et al., 2016))
Given a matrix A ∈ Rn×d, let Ai denote the first i rows of A. Let the online λ-ridge lever-
age score for row ai is `i = min(aTi (ATi−1Ai−1 + λI)−1ai, 1). Then

∑n
i=1 `i = O(d log(1 +

‖A‖22/λ)).

Setting λ = λmin(ATA) = 1/‖A−1‖22, the sum is O(d log(1 + (‖A‖22‖A−1‖22))) = O(d log(1 +
κ2(A))) for the condition number κ(A) := ‖A‖2‖A−1‖2. Combining this with Lemma 2, we
have that O(ε−2d log d log(1 +κ2(A))) samples guarantee spectral approximation. The result
also holds for online leverage scores computed after including the ith point, that is, using
ATi Ai in place of ATi−1Ai−1 in `i as done in Algorithm 1.

A.2 Online Leverage Score Sampling for Matrix Multiplication

Next, we derive a new result for approximate matrix multiplication with online leverage
scores. Consider two matrices W ∈ Rn×d and Z ∈ Rn×m which we want to multiply. Let wi
denote the ith row of W .

Lemma 4 (Online Matrix Multiplication) Given a matrix W ∈ Rn×d and a sequence
of scores oi defined such that oi ≥ ‖wi‖22/‖W‖2F for all i = 1, 2, ..., n and the desired error
parameter ε > 0. Let constants δ > 0 and c = ε−2/δ. For i = 1, . . . , n, let the sampling
probability for row wi is pi = min(coi, 1). Define the diagonal sampling matrix S ∈ Rn×n
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with Sii = 1/
√
pi if the row is sampled and 0 otherwise. If we sample O(c

∑n
i=1 oi), then

with probability (1− δ),

‖W TSTSZ −W TZ‖F ≤ ε‖W‖F ‖Z‖F .

Proof We will first show that the random matrix W TSTSZ is an unbiased estimator of
W TZ. Then, we will use the Markov’s inequality to show the required result. The arguments
follow the proof for the offline case given in (Drineas and Mahoney, 2018) (see Theorem 22).

If we assume E[W TSTSZ] = W TZ for now, then Markov’s inequality implies,

Pr
[
‖W TSTSZ −W TZ‖F > ε‖W‖F ‖Z‖F

]
<

E‖W TSTSZ −W TZ‖2F
ε2‖W‖2F ‖Z‖2F

. (3)

Thus, we first prove unbiasedness and then bound E‖W TSTSZ −W TZ‖2F . We will
rewrite each element (W TSTSZ)i,j for some fixed i, j as a sum of rank-one matrices. For
t = 1, ..., n, define Xt = st

pt
(wtz

T
t )i,j where wt and zt are tth rows of W and Z respectively.

The row wt is sampled with probability pt and st is the binary indicator which is 1 when we
sample and is 0 otherwise. Observe that (W TSTSZ)i,j =

∑n
t=1Xt. Then,

E[(W TSTSZ)i,j ] = E

[∑
t

Xt

]
=
∑
t

E[Xt] =
∑
t

pt

(
1

pt
(wtz

T
t )i,j

)
= (W TZ)i,j

Thus, E[W TSTSZ] = W TZ.
Note that here we assumed that there is no randomness associated with W and Z, i.e.

the matrices are fixed before the stream is started. Thus, sampling decision st is the only
random variable in Xt. Moreover s1, ..., sn are independent as the sampling probabilities
depend on fixed matrices W0, ...,Wn−1. It follows that X1, ..., Xn are independent random
variables. Consider the variance of (W TSTSZ)i,j which can be written as follows

Var[(W TSTSZ)i,j ] = Var

[∑
t

Xt

]
=
∑
t

Var[Xt] ≤
∑
t

E
[
X2
t

]
=
∑
t

1

pt
(w2

t,iz
2
t,j) (4)

Next, we use this to bound E‖W TSTSZ −W TZ‖2F . Since E[W TSTSZ] = W TZ, we have
that

E‖W TSTSZ −W TZ‖2F =
∑
i,j

E(W TSTSZ −W TZ)2i,j =
∑
i,j

Var[(W TSTSZ)i,j ]

From (4), we get that

E‖W TSTSZ −W TZ‖2F ≤
∑
i,j

∑
t

1

pt
(w2

t,iz
2
t,j) =

∑
t

1

pt
‖wt‖22‖zt‖22 (5)

First, we assume that all pi = c · oi < 1 and return to the case when some pi can be 1 later.
By our assumption that oi ≥ ‖wt‖2/‖W‖2F , we get,∑

t

1

pt
‖wt‖22‖zt‖22 ≤

∑
t

1

c‖wt‖2/‖W‖2F
‖wt‖22‖zt‖22 =

1

c
‖W‖2F

∑
t

‖zt‖22 =
1

c
‖W‖2F ‖Z‖2F

8



Then, substituting in (5), we have

E‖W TSTSZ −W TZ‖2F ≤
1

c
‖W‖2F ‖Z‖2F (6)

Putting this back in (3), we rewrite the failure probability as

Pr
[
‖W TSTSZ −W TZ‖F > ε‖W‖F ‖Z‖F

]
<
‖W‖2F ‖Z‖2F
cε2‖W‖2F ‖Z‖2F

=
1

cε2
.

Now we come to general case when some pi = 1. We observe that the rows sampled
with probability 1 cancel out in the difference W TSTSZ −W TZ that we are interested in.
Suppose we take all the rows sampled with probability 1 and put them in a matrix W ′. Let
the matrix Z ′ has the corresponding rows from Z. Define W ′′ = W \W ′ and Z ′′ = Z \ Z ′
as matrices with the rest of the rows. Similarly split the sampling matrix into S′, which
has all entries equal to 1 as corresponding pi = 1, and S′′ = S \ S′. Then, by definition,
W TZ = W ′TZ ′ +W ′′TZ ′′ and

W TSTSZ−W TZ = W ′TZ ′+W ′′TS′′TS′′Z ′′−(W ′TZ ′+W ′′TZ ′′) = W ′′TS′′TS′′Z ′′−W ′′TZ ′′.

We get the same form as the expression in (5). Proceeding as earlier we recover the result in
(6) since

E‖W TSTSZ−W TZ‖2F = E‖W ′′TS′′TS′′Z ′′−W ′′TZ ′′‖2F ≤
1

c
‖W ′′‖2F ‖Z ′′‖2F ≤

1

c
‖W‖2F ‖Z‖2F

Therefore, we get the same failure probability in the general case pi ≤ 1,

Pr
[
‖W TSTSZ −W TZ‖F > ε‖W‖F ‖Z‖F

]
<

1

cε2
.

Thus, we set δ = 1
cε2

. Finally, the number of samples
∑

t st is given by a Chernoff bound as∑
t pt with high probability. From the definition of pt, we know that

∑
t pt ≤

∑
t cot. Thus

the number of samples O(c (
∑n

t=1 ot))).

In the proof of Theorem 1, we apply Lemma 3 again to bound
∑

i oi in the above result
where oi are online λmin-ridge leverage scores.

Appendix B. Main Result for Online Least Squares Approximation

Now, we will prove Theorem 1 using the preceding results. Note that the following proof
largely follows the proof for the offline setting.

Theorem 1 (Online Least Squares Guarantee) Suppose we design the sampling ma-
trix S with online λmin-ridge leverage score sampling, where λmin := λmin(ATA) is the mini-
mum eigenvalue of ATA. Let x̃∗ = argminx‖SAx − Sb‖22. Then with
O
(
d log d log(1+κ2(A)) + d

δε log(1+κ2(A))
)

samples, the following holds with probability at
least (1− δ),

‖Ax̃∗ − b‖22 ≤ (1 + ε)‖Ax∗ − b‖22,

where x∗ = argminx‖Ax− b‖22.
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Proof The arguments are based on the proof by Woodruff (2014) (see Theorem 2.16)
modified for online leverage score sampling.

Note that (Ax∗− b) is orthogonal to any vector in the column space of A. Since x∗ is the
minimizer, thus, the gradient ∇(‖Ax∗− b‖22) = 2AT (Ax∗− b) is equal to ~0 at x∗. Specifically,
(Ax∗ − b) is orthogonal to Ax̃∗ −Ax∗. By Pythagorean theorem, we have

‖Ax̃∗ − b‖22 = ‖Ax∗ − b‖22 + ‖Ax̃∗ −Ax∗‖22 (7)

Next, we reparameterize A in terms of an orthogonal matrix. Let U ∈ Rn×d be a matrix
with orthonormal columns which spans column space of A. Therefore, Ax̃∗ = Uỹ∗ for some
ỹ∗ and Ax∗ = Uy∗ for some y∗. By this transformation, we have that (7) is equivalent to

‖Uỹ∗ − b‖22 = ‖Uy∗ − b‖22 + ‖Uỹ∗ − Uy∗‖22. (8)

As orthogonal matrices preserve norms, thus, ‖Uỹ∗ − Uy∗‖22 = ‖ỹ∗ − y∗‖22. Therefore to
bound the squared error, we will show that

‖ỹ∗ − y∗‖22 ≤ ε‖Uy∗ − b‖22. (9)

Since we sample A with online λmin-ridge leverage scores, we have from Lemma 3 that
1
2A

TA � ATSTSA � (1 + 1
2)ATA as long as we sample O(d log d log(1 + κ2(A))) rows.

Since for any x, we can find a y such that Ax = Uy, it follows that 1
2U

TU � UTSTSU �
(1 + 1

2)UTU . But UTU = I, so this implies ‖UTSTSU − I‖2 ≤ 1
2 . Then,

‖ỹ∗ − y∗‖2 ≤ ‖UTSTSU(ỹ∗ − y∗)‖2 + ‖UTSTSU(ỹ∗ − y∗)− (ỹ∗ − y∗)‖2
≤ ‖UTSTSU(ỹ∗ − y∗)‖2 + ‖UTSTSU − I‖2‖(ỹ∗ − y∗)‖2

≤ ‖UTSTSU(ỹ∗ − y∗)‖2 +
1

2
‖ỹ∗ − y∗‖2. (10)

where the second inequality follows from sub-multiplicativity of the spectral norm. It follows
from (10) that ‖ỹ∗− y∗‖2 ≤ 2‖UTSTSU(ỹ∗− y∗)‖2. We now focus on ‖UTSTSU(ỹ∗− y∗)‖2
to prove (9).

Since ỹ∗ = argminy‖SUy − Sb‖22, SUỹ∗ − Sb must be orthogonal to any vector in the
column space of SU . It follows that

‖UTSTSU(ỹ∗ − y∗)‖2 = ‖UTST (SUỹ∗ − Sb+ Sb− SUy∗)‖2 = ‖UTSTS(b− Uy∗)‖2
Now we can apply Lemma 4. To do so we note that online λmin-ridge leverage scores
of A are (up to a constant) overestimates of leverage scores of A which are equal to the
ones for the orthogonal matrix U . To see this, `i = aTi (ATi−1Ai−1 + λmin(ATA)I)−1ai ≥
1/2aTi (ATAI)−1ai = 1/2‖ui‖22. Since ‖U‖2F = d, we have that the scores `i ≥ d/2‖ui‖22/‖U‖2F
satisfy the condition required by Lemma 4. After adjusting the factor d/2 and replacing
c = ε−2/δ, the number of samples needed is equivalent to O(ε−2/δ log(1 + κ2(A))).

So if we sample O( dδε log(1 + κ2(A))) rows by online leverage score sampling then

‖UTSTS(b− Uy∗)‖2 ≤
√
ε√
d
‖U‖F ‖Uy∗ − b‖2.

with probability (1 − δ). But ‖U‖F =
√
d, therefore, we get ‖UTSTSU(ỹ∗ − y)‖22 ≤

ε‖Uy∗ − b‖22.
Substituting in (10) gives ‖ỹ∗ − y∗‖22 ≤ 4ε‖Uy∗ − b‖22, which proves (9) after adjusting ε

by a constant factor.
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Appendix C. Dataset details

Table 1 lists the website links with details on how to access the datasets. Table 2 show some
summary statistics of the dataset.

Name URL

Synth-StudentT Setting T1 in Ma et al. (2015)
Diabetes https://scikit-learn.org/stable/datasets/toy_

dataset.html#diabetes-dataset

Magic04 http://manikvarma.org/code/LDKL/download.html

Mpg https://www.csie.ntu.edu.tw/~cjlin/

libsvmtools/datasets/regression.html

CPUsmall https://www.csie.ntu.edu.tw/~cjlin/

libsvmtools/datasets/regression.html

Abalone https://www.csie.ntu.edu.tw/~cjlin/

libsvmtools/datasets/regression.html

California-Housing https://scikit-learn.org/stable/datasets/

real_world.html#california-housing-dataset

Cod-RNA https://www.csie.ntu.edu.tw/~cjlin/

libsvmtools/datasets/binary.html

Communities-and-Crime https://github.com/slundberg/shap/tree/

master/data

Cover-Type https://archive.ics.uci.edu/ml/datasets/

covertype

Protein https://archive.ics.uci.edu/ml/datasets/

Physicochemical+Properties+of+Protein+

Tertiary+Structure

BikeSharing https://archive.ics.uci.edu/ml/datasets/bike+

sharing+dataset

Concrete http://archive.ics.uci.edu/ml/datasets/

concrete+compressive+strength

PM10 http://lib.stat.cmu.edu/datasets/

Mg-scale https://www.csie.ntu.edu.tw/~cjlin/

libsvmtools/datasets/regression.html

2dplanes,elevators,bank32nh,
house 16H,wind,space ga,houses,
no2,strikes,balloon,puma32H,
wine quality,quake,stock,kin8nm,fried

https://www.openml.org/search?q=

tags.tag%3Astudy_130%2520qualities.

NumberOfMissingValues%3A0&type=data

Table 1: Details for accessing datasets.

Appendix D. Related Work

We discuss closely related work from two domains.
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dataset n d r2 log cond max lev
median lev

Synth-StudentT d10 3500 11 1.000 5.660 3285.863
Synth-StudentT d20 3500 21 1.000 7.533 3174.324
Synth-StudentT d40 3500 41 1.000 6.579 1990.298
california housing 5000 9 0.596 8.475 961.609
house 16H 5000 17 0.269 16.311 443.197
protein 5000 10 0.272 17.027 441.642
abalone 2924 9 0.551 4.413 291.491
cpusmall 5000 13 0.719 12.983 103.798
wine quality 4548 12 0.300 11.265 91.637
houses 5000 9 0.635 8.385 63.319
covtype 3500 55 0.311 83.902 61.996
balloon 1401 2 0.674 1.765 57.846
magic 5000 11 0.319 2.663 37.454
communitiesandcrime 1396 102 0.688 43.795 17.476
elevators 5000 19 0.811 56.219 16.440
space ga 2175 7 0.386 18.694 12.012
quake 1525 4 0.002 4.769 11.451
cod 3500 9 0.646 9.689 9.590
wind 4602 15 0.758 2.657 8.599
mpg 275 8 0.823 7.465 8.573
diabetes 310 11 0.512 5.534 7.353
strikes 438 7 0.085 3.854 6.973
concrete 721 9 0.604 4.741 6.409
bikesharing 5000 13 0.419 36.590 5.602
no2 350 8 0.513 5.596 4.826
pm10 350 8 0.157 5.652 3.892
bank32nh 5000 33 0.524 2.716 3.681
stock 665 10 0.970 3.176 3.306
kin8nm 5000 9 0.434 0.125 2.013
fried 5000 11 0.719 1.278 1.974
mg scale 970 7 0.576 1.371 1.974
puma32H 5000 33 0.218 4.258 1.624
2dplanes 5000 11 0.712 0.243 1.486

Table 2: Properties of datasets. Total number of data points n, features d, R2 coefficient
from full-sample linear regression r2, logarithm of the condition number of the feature matrix
log cond are reported for each dataset. We sort the datasets in decreasing order of the ratio
of maximum to median leverage scores max lev

median lev that measures skewness of the leverage
scores. For synthetic datasets, results agree with the observation made in (Ma et al., 2015)
that leverage score sampling may outperform uniform sampling when dataset has highly
skewed leverage scores. Order of the real datasets where leverage root does not perform well
does not conform to this observation.

12



Randomized numerical linear algebra The methods from the field of randomized
numerical linear algebra (Mahoney et al., 2011) has enabled solving numerical problems
like linear least squares, low-rank approximation, and matrix multiplication for large data
matrices. A central idea is to sketch the large matrices either by sampling or embedding
them and perform computations on the resulting smaller matrices. A particular sampling-
based approach named leverage score sampling (explained later) has yielded principled
approximation methods. For the least squares problem in the offline setting where we
observe A and b beforehand, sampling each row with probability proportional to their
leverage scores provides a good approximation of the squared error (Drineas et al., 2006).
These sampling methods provide 1+ ε approximation guarantee for the relative squared error
with sample size O(d log d/ε2). In the online setting described above, Cohen et al. (2016)
propose a variant of the leverage-score based sampling method with spectral approximation
guarantees. For the more general problem of kernel regression, Calandriello et al. (2017)
analyze approximation error for an online leverage score sampling method but they assume
that only the design matrix is sub-sampled and notably all responses are sampled. Whereas
in our setting responses have to be subsampled due to cost of acquiring them. In summary,
we analyze leverage score sampling for the online least squares problem for the first time.

Active and online learning Our problem is an instance of the so-called stream-based
active learning (e.g. (Dasgupta et al., 2009; Sabato and Hess, 2018)). However, the methods
in this literature rely on properties of the data distribution and the model e.g. uniformly
distributed data or linear separability (Dasgupta et al., 2009). Our analysis does not make
such assumptions. As long as one is interested in the linear least squares solution, leverage
score sampling method ensures good approximation error compared to that solution without
relying on distributional assumptions. The related problem of online selective sampling (e.g.
(Hanneke and Yang, 2021)) differs in the respect that one has to predict labels for each data
point in the stream and algorithms are evaluated based on number of mistakes made and
number of points sampled.
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