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Abstract
High-dimensional black-box optimization problems are of critical importance in many areas
of science and engineering. Bayesian optimisation (BO) has emerged as one of the most
successful techniques for optimising expensive black-box objectives. However, efficient scal-
ing of BO to high dimensional settings has proven to be extremely challenging. Strategies
based on projecting high dimensional input data to a lower-dimensional manifold, such
as variational autoencoders (VAEs) have recently grown in popularity, but there remains
much scope to improve performance by structuring the VAE latent space in a manner that
makes it amenable to BO. In this work, we improve the quality of the VAE latent space
through the use of invariant augmentations learned using the marginal likelihood objective
of a Gaussian process (GP). As an ablative feature, we show that our method improves the
performance of a popular VAE-BO architecture.
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1. Introduction

Black-box optimization problems are characterized by the absence of the analytic form and
gradients of the function to be optimized and arise in many areas of science and engineering
including drug discovery (Gómez-Bombarelli et al., 2018), chemical reaction optimisation
(Shields et al., 2021) and artificial intelligence (Chen et al., 2018). In recent years, Bayesian
optimization (BO) has emerged as one of the most powerful solution methods for black-box
optimization (Turner et al., 2021). Efficient scaling of BO to high dimensional settings
however, has proven to be challenging due to the poor scalability of Gaussian processes (GPs)
(Rasmussen and Williams, 2006) which are a core component in the majority of effective BO
algorithms. A recent approach to high-dimensional BO leverages the power of variational
autoencoders (VAEs) (Kingma and Welling, 2014; Gómez-Bombarelli et al., 2018; Griffiths
and Hernández-Lobato, 2020; Lu et al., 2018; Eissman et al., 2018; Moriconi et al., 2020;
Siivola et al., 2020; Antonova et al., 2020) to project high dimensional input data to a
lower dimensional manifold on which BO is subsequently performed, a methodology termed
VAE-BO (Grosnit et al., 2021). Two key performance issues in VAE-BO however are:

1. The data acquired during BO execution is not used to re-train the VAE and update
the structure of the latent space.
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2. The unsupervised training of the VAE means the latent space cannot be structured
according to the function values of the encoded latent points. As such, it becomes
challenging to fit a surrogate model such as a GP and BO performance suffers.

In Tripp et al. (2020) the first issue is addressed through a weighted retraining mechanism
which assigns more influence in subsequent retraining of the VAE to regions of the latent
space with favourable black-box function values. Building on Tripp et al. (2020), Grosnit et al.
(2021) additionally address the second issue through the application of metric learning (Xing
et al., 2002), an approach which requires far fewer labelled data i.e. is more sample efficient,
compared to previous approaches. The performance of metric learning-based approaches are
known to be heavily dependent on the incorporation of known invariances and informed data
augmentations (Ko and Gu, 2020; Chen et al., 2020) and it is from this fact that we take
our inspiration to propose a general method to improve sample efficiency across all current
VAE-BO architectures.

Our solution method aims to learn black-box specific data augmentations with minimal
supervision. In our problem setting, the useful invariant augmentations relevant for the
optimization of the black box function are unknown which is in contrast to self-supervised
learning methods where the useful invariant augmentations are typically specified upfront
using domain knowledge (Von Kügelgen et al., 2021). Our research presents a surprisingly
simple yet effective methodology to identify useful augmentations by learning invariances
through the GP marginal likelihood (van der Wilk et al., 2018). We specify the set of possible
invariant augmentations for our tasks upfront (notably some of these invariant augmentations
are damaging to task performance) and learn the most favourable augmentations for VAE-BO
through the marginal likelihood. We then use the selected augmentations in addition to the
points queried by BO to enhance the training set of the VAE. The approach yields marked
performance gains when affixed to baseline VAE-BO architectures on the MNIST-Norm and
classification tasks.

2. Background

We consider the global maximization problem

x⋆ = argmax
x∈X

f(x), (1)

where x⋆ is the global optimizer of a black box function f(·) : X → R over a high dimensional
and structured input domain X . The analytic form and derivatives of f are unavailable and
f is expensive to evaluate.

Bayesian Optimization (BO): BO is an algorithm for solving Equation 1 (Shahriari
et al., 2016; Frazier, 2018). BO operates in two stages: (1) A probabilistic surrogate model,
typically a GP, is used to infer the black-box function, maintaining uncertainty estimates; (2)
An acquisition function is maximised to acquire new points x, trading off exploration and
exploitation using the uncertainty estimates of the surrogate. The surrogate and acquisition
operate in an iterative fashion, wherby the surrogate is retrained with acquired points ad
libitum until a solution to the optimization problem is found.
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VAE-BO: In VAE-BO (also termed latent space optimization (LSO) (Tripp et al., 2020)),
the VAE maps a high dimensional input X to a low dimensional latent space Z ⊆ Rd. BO is
performed in the latent space of the VAE outputting, z∗ ∈ Z. The resultant z∗ is projected
back to the original input space x by the VAE decoder to evaluate the black-box f .

VAE-BO with weighted retraining: In VAE-BO the VAE is learned upfront without
the possibility to update the latent space using newly acquired points. As such, the VAE
struggles to decode points found in regions of the data space that it has not seen in training
(Griffiths and Hernández-Lobato, 2020). To address this challenge, Tripp et al. (2020) propose
weighted retraining of the VAE. The VAE is retrained on acquired points with a weight
biasing the VAE towards regions with favourable black-box function values. There remains
however, much room for improvement on weighted retraining VAE-BO through orthogonal
methods to improve the structure of the latent space. Our contribution is to introduce one
such method, which we discuss next.

3. Methodology

We enhance the sample efficiency of VAE-BO with weighted retraining by learning uncertainty-
aware, black-box specific data augmentations. In standard settings, data augmentation refers
to creating additional training examples by transforming the input data such that the ground
truth labels remain unchanged i.e. are invariant to the transformation (Mikołajczyk and
Grochowski, 2018). In black-box problems, we do not have prior knowledge about which
invariances apply in the task. Hence, generating relevant data augmentations becomes
nontrivial, meaning we must attempt to learn invariances from the limited available data.
Given that we are in the small data regime we adopt the method of (van der Wilk et al.,
2018) as opposed to more data-hungry methods for learning invariances (Benton et al., 2020).

In our method, referred to as GP_LCB, we specify the set of possible invariant augmen-
tations upfront. In the tasks we examine, our inputs are high dimensional images and so
our augmentation set A, contains translations T (x), rotations R(x) and smoothing S(x),
where x ∈ Rd is a high dimensional image. In our task setting, invariance for certain
augmentations cannot be assumed as we are unaware of the difference in the ground truth
labels, |f(x)−f(a(x))|, where a ∈ A. We leverage the posterior predictive distribution of the
trained GP surrogate to understand the effect of different augmentations on task performance

Y = f(x), Z = q(x), Zaug = q(a(x)), (2)
P(f∗|Z, Y, Zaug) = N (E[f∗|Z, Y, Zaug],Var[f∗|Z, Y, Zaug), (3)

E[f∗|Z, Y, Zaug] = m(Zaug) + k(Zaug, Z)(K + σ2
nI)

−1(Y −m(Z)), (4)

Var[f∗|Z, Y, Zaug] = k(Zaug, Zaug)− k(Zaug, Z)(K + σ2
nI)

−1k(Z,Zaug), (5)

where E[f∗|Z, Y, Zaug] represents the predictive mean over the latent representation of the
augmented images Zaug and Var[f∗|Z, Y, Zaug] represents the predictive uncertainty.

We evaluate our entire augmentation set A under the GP posterior and implement a
selection strategy to enhance the dataset for weighted retraining of the VAE. Tripp et al.
(2020) demonstrate that improved BO performance is obtained by placing more probability
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Algorithm 1 VAE-BO with weighted retraining and uncertainty-aware augmentations

1: Input: D = {xi, f(xi)}Ni=1, query budget M , objective function f(x), surrogate model
GP(z), decoder g(z), encoder q(x), retrain frequency r, weighting function w(x)

2: Candidate Augmentations: Daug = T (x) ∪R(x) ∪ S(x); DV AE = DGP = D
3: for 1, . . . ,M/r do
4: Train VAE model with encoder g, decoder q on dataset DV AE weighted by W =

{w(x)} x∈DV AE

5: for 1, . . . , r do
6: Compute latent variables for dataset DGP ; Z = {z = q(x)} x∈D
7: Compute latent variables for augmentations Daug; Zaug = {z = q(x)}x∈Daug

8: Fit surrogate GP to Z and D, and optimize to obtain new latent query point z∗

9: Predictive mean and variance from GP for augmentations, based on uncertainty
select z∗aug

10: Obtain corresponding input x∗ = g(z∗), x∗
aug = g(z∗aug)

11: Evaluate f(x∗) and augment dataset DGP

12: Evaluate f(x∗
aug) and augment dataset DV AE

13: end for
14: end for
15: Output: Augmented dataset Dgp

mass on high-scoring points. Hence, we sample the augmentations with higher value of the
posterior expectation as shown in Equation 4 for the optimization problem. Our selection
strategy also penalizes higher GP posterior variance, as we want to include the augmentation-
label pairs which exhibit higher confidence within the augmentation set, A together with
high objective values.

To achieve this, we incorporate a simple strategy similar to the Lower Confidence Bound
(LCB) acquisition function by computing the value of E[f∗|Z, Y, Zaug]−Var[f∗|Z, Y, Zaug] for
Zaug = q(a(x)) which ensures the selection of augmentations a(x), a ∈ A that maximize the
objective subject to minimizing the variance. This turns out to be a significant component
in enhancing the performance of the VAE-BO with weighted retraining method. The full
algorithm for our approach is given in Algorithm 1.

4. Experiments

We consider two tasks, both on the MNIST dataset (Deng, 2012) with four baselines.

MNIST-Norm: In this setting, we consider global minimization of the black box objective
function defined as

x⋆ = argmin
x∈X

|x− xref | (6)

where xref is the chosen reference image. This task corresponds to generating the digits with
a minimum norm objective with respect to the reference image and the data consists of the
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(a) MNIST-Norm. (b) MNIST-Classifier.

Figure 1: BO performance on the MNIST tasks.

normalized images from the MNIST dataset.

MNIST-Classifier: We use an image classifier to obtain the probability distribution over
the labels. A scoring function, modeled as a squared exponential centered at the digit “3”,
returns a score for each digit. The objective function is the expected score based on the
image classifier and scoring function.

We compare our proposed approach with the following baselines:

Naive Augment: A direct extension of self-supervised augmentation methods for our
black-box optimization setting. Here all augmentations are considered. Notably, translational
augmentations are detrimental to performance because the norm objective value is sensitive
to translations. Our method learns not to append translational augmentations to the VAE
training set and as such, achieves improved performance.
Translate: Consider only translational augmentations T (x).

Rotate: Consider only rotational augmentations R(x).

Baseline: VAE-BO with weighted retraining as described in (Tripp et al., 2020).

To evaluate the efficacy of our proposed method, we used 4 random splits for the initial
dataset and further, ran all experiments for 3 different seeds. The results are given in Figure
1. For the MNIST-Norm task, GP_LCB method clearly outperforms other approaches
considered for high dimensional BO. Notably, in the MNIST-Classifier task, Naive Augment
method performs comparably as image classification is invariant to all transformations in the
set A.

5. Discussion

For the MNIST-Norm task, we plot a visualization in Figure 2 to understand the effectiveness
of learning augmentations. We are interested in minimizing equation 6. Thus, high-scoring
points will result in low objective function output. The visualization indicates:
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Figure 2: Density plot for showing that the GP learns to suggest better augmentations as
optimization proceeds.

1. The methodology learns to identify high-scoring augmentations: We plot the
learned augmentation objective function values for the high-scoring and the low-scoring
image augmentations. As BO progresses, our method successfully discriminates between the
high and low-scoring image augmentations.

2. Inspecting high-scoring augmentations: We plot the top-scoring augmentation from
our method for three iterations in Figure 3 of Appendix A at the start, middle and the end
of optimization. We note that our method augments the VAE training set with high-scoring
augmentations as the optimization progresses. This causes the feasible region to extend to
high-scoring points, enabling the optimization to find better points as optimization proceeds.

6. Conclusion

Tackling high dimensional black-box optimization problems with VAE-BO has proven chal-
lenging due to the absence of a latent space structured to facilitate BO. We propose a
simple method to tackle this problem using black-box specific augmentations, leveraging the
marginal likelihood to learn invariant augmentations and enhance the sample-efficiency of
the VAE-BO with weighted retraining method. We achieve superior performance to naive
augmentation strategies on the MNIST-norm task. The experimental results indicate that
incorporating invariances without understanding their effect can hurt BO performance.

Our work also highlights the importance of uncertainty estimation when performing
informed data augmentation. In future work, we plan to incorporate VAE uncertainty (Notin
et al., 2021) and metric learning VAE-BO (Grosnit et al., 2021) to improve the quality
of augmentations, as well as consider a broader range of VAE-BO architectures (Maus
et al., 2022). We would also like to extend our method to further real-world tasks with
non image-based inputs, namely chemical (Jin et al., 2018; Moss and Griffiths, 2020) and
materials design (Griffiths et al., 2021).
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Appendix A.

(a) Reference Image

(b) GP Augmentation : Start

(c) GP Augmentation : Mid

(d) GP Augmentation : End

Figure 3: Top scoring image augmentations from GP predictions
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Figure 4: Performance of BO on CelebA-Norm task (Liu et al., 2015). CelebA-Norm task
is invariant to the rotation and translation baselines. However, we can observe that our
proposed approach learns the augmentations suitable for the task and outperforms the
baselines.
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