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Abstract

Training CNNs on dense pixel-level prediction tasks such as semantic segmentation
requires huge amounts of pixel wise annotated data, which is typically costly and time
consuming to obtain. To reduce the annotated data requirement, recent works on active
learning for semantic segmentation have introduced region level sampling where only the
most uncertain regions in the image are annotated. However, picking regions only based on
probabilistic uncertainty reduces the diversity of the training set. To alleviate this issue,
we propose RADIAL: RAnDom Sampling from Intelligent pool for Active Learning. In this
work, we describe how RADIAL addresses the exploration-exploitation tradeoff in active
learning by randomly sampling from an intelligently curated subset of data. We show
promising results on Cityscapes, Camvid and Weed segmentation datasets.
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1. Introduction

Semantic segmentation is one of the cornerstone tasks in computer vision. While deep neural
networks have achieved state of the art performance in semantic segmentation, training such
networks requires huge amounts of pixel-wise annotated data, which is time consuming and
expensive to obtain. Active learning(AL) has emerged as one of the promising approaches
for reducing the annotated data required for training machine learning models (Settles
(2009)). Active Learning aims to iteratively correct the decision boundary using minimum
number of samples by querying labels for only the uncertain samples i.e., samples which
are deemed close to the model’s current decision boundary. These uncertain samples are
added to the training set and the model is retrained on the updated training set. This
select-label-train cycle is repeated until either the desired model performance is achieved or
the annotation budget is exhausted.

Active learning has been heavily studied for the task of image classification (Sener and
Savarese (2017); Gal et al. (2017); Yoo and Kweon (2019); Sinha et al. (2019)). Contrary
to image classification which requires image-level labels, semantic segmentation requires
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Figure 1: Output of the RADIAL method: RADIAL first intelligently obtains a subset of
pixels (represented as white pixels in the second image) from an image using a
measure of uncertainty. Then, a subset of pixels (shown in pink) are randomly
sampled from those white pixels.

pixel-level labels for training. By assuming that not all pixel labels are equally valuable
for training, recent works on active learning for semantic segmentation have attempted
to identify and label only the most valuable regions in an image, further reducing the
annotation requirement. This region-level active learning has been studied at three levels
of granularity: 1) grid rectangles, 2) superpixels and 3) pixels. We focus on the lowest level
of granularity i.e., identifying and labeling only the most valuable pixels for training.

In the pixel level active learning space, Kasarla et al. (2019) show that region level
annotations for grid rectangles, superpixels and pixels can be used for obtaining 93.8% of
the fully supervised performance while using only 10% of the pixels in the training set.
Similarly, Shin et al. (2021) report that picking small number of pixels from more number
of images is better than picking more pixels from less images. However, existing works on
region based AL for semantic segmentation have two limitations: 1) The active learning
methods only focus on uncertainty and not on diversity and 2) Shin et al. (2021) assumes
that the entire unlabeled dataset is available before starting the active learning process. We
address both these limitations in our work.

Most AL methods query labels for samples having the highest probabilistic uncertainty,
which is a function of the model’s output softmax vector. However, labeling only highly
uncertain samples can introduce redundancy in the training set. To put this in the context
of the well known exploration-exploitation trade-off, most AL methods favor exploitation of
the search space of samples and ignore exploration. To promote exploration and introduce
diversity in the labeled set, Sener and Savarese (2017) sample core-sets, which are highly
diverse subsets of the dataset. However, sampling core-sets is NP-Hard and even the greedy
approximation takes O(N2) time, where N is the size of the dataset. In our work, we
aim to obtain diverse samples by a much simpler albeit faster method - random sampling.
Since random sampling is a strong baseline for active learning methods, we combine the
effectiveness of highly uncertain samples for their informativeness and randomly chosen
samples for their diversity, we propose RADIAL - Random Sampling from Intelligent Pool
for Active Learning. Instead of directly selecting a highly uncertain subset from the dataset,
RADIAL samples a larger subset of samples based on uncertainty and then further selects
a bunch of samples from this larger subset using random sampling. By combining both
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Algorithm 1 Pixel based Active Learning Pipeline

Input: Training set T , Size of initial image pool ki, AL batch size k, Number of labeled
pixels per image p, Number of AL cycles N

1: Randomly split T → {U,L} where |L| = ki.
2: Obtain labels ∀x ∈ L.
3: M ← Train(L). {Until convergence}
4: for i = 1...N do
5: Select image set using acquisition function Bi = Qi(M,U) such that |Bi| = k.
6: Select pixel set using acquisition function Bp = Qp(M,Bi) such that |Bp| = p.
7: Obtain labels for Bp from the oracle.
8: L← L ∪Bi

9: U ← U \Bi

10: M ← Train(L) {Until convergence}
11: end for
12: return M
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Figure 2: Active Learning performance for the Camvid, Cityscapes and the Weed dataset

informativeness and diversity, RADIAL aims to achieve a balance between exploration and
exploitation.

2. RADIAL

2.1 Pixel based Active Learning for Semantic segmentation Pipeline

We consider the pool based active learning setting where we have a pool of images and the
objective is to train a machine learning model with minimum labeling budget. We consider
a training set T , which is a union of the labeled set of images L and an unlabeled set of
images U . We start with a labeled initial pool, train a model on the initial pool, sample
using the trained model and finally select samples based on the trained model. The entire
pipeline is described in Algorithm 1.
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2.1.1 Acquisition Functions
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Figure 3: Effect of size of intelligent subset for
the Camvid and Cityscapes dataset

We go on to describe the different image
level and pixel level acquisition functions for
active learning. Given the pixel level acqui-
sition function S(i,j), the image level acqui-
sition function SI can be computed as given
below

SI =
1

|H ∗W |
∑

i≤H,j≤W

S(i,j) (1)

Random image sampling and pixel sam-
pling randomly picks images and pixels from
the available set of unlabeled points respec-
tively.

Entropy computes uncertainty score by
considering the entire output probability
distribution. Pixel entropy can be computed using Equation 2.

S(i,j) = −
∑

c∈{1...C}

pc log pc (2)

Here pc represents the output class probability of class c and C is the total number of classes
in the dataset.

Margin computes uncertainty score by considering the top two highest conditional prob-
abilities from the output probability distribution. Pixel entropy can be computed using
Equation 2.

S(i,j) = −(p1 − p2) (3)

Here p1 represents the probability of the class which has the highest probability and p2 is
the class which has the second highest probability.

2.2 Pixel Sampling

Images contain a large number of pixels and the model could be confused over a specific class
and selecting the most uncertain samples would not account for the diversity in the pixels.
In order to account for the diversity in the highly uncertain samples, we randomly select
from the intelligently sampled uncertain subset. The intelligent sampled subset accounts for
the exploration aspect whereas the random sampling accounts for the exploitation aspect.
Ensuring the diversity aspect among the selected samples can be computationally expensive
thus random sampling provides us with a constant time approach to select diverse samples.

3. Experiments

3.1 Datasets

Camvid dataset Brostow et al. (2009) is an autonomous driving segmentation dataset
which contains images of size 360x480 with 11 classes.
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Cityscapes dataset Cordts et al. (2016) is another standard autonomous driving segmen-
tation dataset which contains images of size 1024x2048 with 19 classes.

Weed segmentation dataset Haug and Ostermann (2014) is a real world agricultural dataset.
The weed dataset contains images of size 384x512 with 4 classes.

3.2 Parameter Settings

Following Xie et al. (2020), we use Deeplabv3+ as our segmentation model with a Mo-
bileNetv2 backbone and we train it for 50 epochs. We use an AL batch size of 50 for
Camvid, 400 for Cityscapes and 100 for the Weed dataset. For every image we sample 50
pixels to be labeled by the oracle. For all our results we report the mean of the IoU for 5
runs.

3.3 Results

Figure 2 shows the results of our experiments. Upper bound refers to the maximum per-
formance which can be obtained with a specific number of images. For the camvid dataset,
we observe that entropy sampling achieves a performance of 39.92% which is worse than
the performance achieved using randomly sampled pixels which is 50.82%. We also observe
that randomly sampling from an intelligent subset achieves a performance of 53.77% which
is better than both random and entropy sampling. We observe the same trend for the
Cityscapes dataset where the number of images is much greater than the Camvid dataset.
Random sampling achieves a performance of 52.29% and entropy sampling achieves a per-
formance of 38.18% but randomly sampling from the intelligent subset chosen using entropy
achieves a performance of 55.08% which is better than both the baseline methods. We also
show results on a real world agricultural weed segmentation dataset since weed detection is
a very important task for agriculture. We observe that random sampling achieves a perfor-
mance of 58.35% and entropy sampling achieves a performance of 58.84%. For this dataset
also, we observe that the random sampling from an intelligent pool achieves a mIoU of
65.08% which is better than both the other sampling techniques.

We observe that pixel selection based on uncertainty lacks diversity and leads to worse
performance than random sampling. Random sampling from an intelligently chosen subset
outperforms random sampling and entropy sampling since it contains diverse samples which
have high uncertainty. The uncertainty sampling can be viewed as exploitation of the
knowledge which the model processes. On the other hand, random sampling helps us to
explore data points which the model may be uncertain on and introduce diversity. Figure
3 shows the exploration exploitation trade off associated with random sampling from an
intelligent subset. It shows the mIoU with respect to the percentage of the total number
of pixels which are chosen as the intelligent subset. The maximum performance gain is
obtained in the first episode so we plot the mIoU after the first episode by varying the size
of the intelligently sampled subset. When the size of the intelligent subset is small then in
that case, the method performs similar to entropy sampling and the performance is low.
As the size of the intelligent subset increases, diversity among samples is introduced and
the performance of the model increases. The trade off is optimized at approximately 35%
for our datasets at hand. The performance of the model starts to decrease after that point
and drops to that of random sampling.
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Figure 4: Qualitative results for our experiments on the Camvid, Cityscapes and the Weed
datasets.

Figure 4 shows the qualitative results for our experiments. We can observe that the
predictions made using our method capture a lot of detail and are also visually better than
Kasarla et al. (2019) which are obtained without using an intelligent subset.

4. Conclusion

In this paper, we propose RADIAL: Random Sampling from Intelligent Pool for Active
Learning. Our experiments have shown that RADIAL can effectively perform pixel level
active learning on the semantic segmentation task, achieving 90% of full supervision perfor-
mance with 0.04% of labeled data. Results on Camvid, Cityscapes and Weed datasets show
that RADIAL outperforms both random sampling and entropy sampling. In addition, we
have studied the exploration-exploitation tradeoff in the context of active learning by vary-
ing the size of intelligent pool from which random sampling is done. These results strongly
suggest that random sampling from an intelligent labeled pool can help pick a subset of
samples which are both informative and diverse, thus improving the model performance
faster when compared to active learning methods which only pick informative samples.
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