
ICML2022 Workshop on Adaptive Experimental Design and Active Learning in the Real World

Random Actions vs Random Policies: Bootstrapping
Model-Based Direct Policy Search

Elias Hanna h.elias@hotmail.fr
Sorbonne Université, CNRS,
Institut des Systèmes Intelligents et de Robotique, ISIR,
F-75005 Paris, France

Alex Coninx coninx@isir.upmc.fr
Sorbonne Université, CNRS,
Institut des Systèmes Intelligents et de Robotique, ISIR,
F-75005 Paris, France

Stéphane Doncieux doncieux@isir.upmc.fr

Sorbonne Université, CNRS,

Institut des Systèmes Intelligents et de Robotique, ISIR,

F-75005 Paris, France

Abstract

This paper studies the impact of the initial data gathering method on the subsequent learning
of a dynamics model. Dynamics models approximate the true transition function of a given
task, in order to perform policy search directly on the model rather than on the costly real
system. This study aims to determine how to bootstrap a model as efficiently as possible,
by comparing initialization methods employed in two different policy search frameworks
in the literature. The study focuses on the model performance under the episode-based
framework of Evolutionary methods using probabilistic ensembles. Experimental results
show that various task-dependant factors can be detrimental to each method, suggesting to
explore hybrid approaches.

Keywords: Initialization, Dynamics Model, Behavior Space

1. Introduction

Sparse reward tasks are frequent in robotics and call for data-greedy learning algorithms
with strong exploration capabilities (Lehman and Stanley, 2011a; Pugh et al., 2016; Cully
and Demiris, 2017; Kim and Doncieux, 2017). They have recently shown promising results
on notoriously difficult tasks like grasping as they have discovered grasping movements
without the need of demonstrations or gripper specific constraints (Morel et al., 2022).
Such learning algorithms are based on direct policy search (Sigaud and Stulp, 2019) and
cannot be used directly on the real robot as they need up to millions of policy evaluations.
They thus heavily rely on simulations, but simulations are not perfect representations of the
real robotic setup. It may create issues when such discrepancies are exploited by the learning
algorithm, leading to issues either called reality gap (Jakobi et al., 1995) or simulation bias
(An et al., 1988; Atkeson and Schaal, 1997).

1



To alleviate this problem, several techniques do exist. Some ignore the badly modeled
parts of the simulator, potentially missing the most rewarding behaviours (Koos et al.,
2012). Sim-to-real approaches, like domain randomization (Tobin et al., 2017) or domain
adaptation (Jiang, 2008), are only efficient when the source domain (usually a simulator)
dynamics are not too different from the real system dynamics. Model-based approaches
do not suffer from those issues (Polydoros and Nalpantidis, 2017), as they directly learn a
model of the system from data gathered on the target domain. The robot behaviour is then
trained using the model in different fashions.

Policy search consists in defining a parameterized policy and in directly optimizing its
parameters while it is controlling a robot (Sigaud and Stulp, 2019). Model-based policy
search is a long standing research field made of very diverse methods ranging from methods
inspired by model predictive control (MPC) (Camacho and Alba, 2013) to model-based rein-
forcement learning (RL) (Polydoros and Nalpantidis, 2017). On one side there is step-based
policy search methods, mainly resulting from the reinforcement learning framework (Sut-
ton and Barto, 2018), and on the other side, there is episode-based policy search methods,
mainly resulting from Bayesian Optimization (Snoek et al., 2012) and from Evolutionary
methods (Stanley et al., 2019). The interest of using a model in the RL framework is not
new, and first promising results were obtained in PILCO by Deisenroth and Rasmussen
(2011). Model-based techniques started by using Gaussian Processes (Deisenroth and Ras-
mussen, 2011; Gaier et al., 2018), but as problems arose (Huang et al., 2015), more methods
started turning to Neural Networks architectures for dynamics modeling (Gal et al., 2016;
Nagabandi et al., 2018; Chua et al., 2018; Sharma et al., 2019; Lim et al., 2021).

Model-based policy search is thus promising (Gaier et al., 2018; Keller et al., 2020; Lim
et al., 2021, 2022), but it requires to learn a model that is accurate enough to predict the
behavior of the policy over a complete rollout, i.e. with model predictions that are used
in closed loop over a given horizon. In this case, error accumulates and makes predictions
rapidly diverge from the ground truth, thus misleading any learning algorithm that would
rely on it. The bootstrap phase in which data is acquired to train a first model is thus
critical. As experiments on the real robot are to be minimized, it is important to define
the most efficient approach to randomly gather initial data. Two different approaches have
been used, either random actions (Nagabandi et al., 2018; Hafner et al., 2019; Sekar et al.,
2020) or random policies (Lim et al., 2021, 2022). We compare their impact on the generated
data distribution and on the obtained model quality, so that an active model-based learning
approach is bootstrapped as efficiently as possible.

2. Method

We place ourselves in the Reinforcement Learning framework (Sutton and Barto, 2018). In
this context, we define the tuple < S,A, f, π >, where S is the state-space in which the
agent can take states s and that contains all the needed information to determine the agent
and environment dynamics, A is the action-space in which the action can draw actions
from. f is the transition function that describes how the agent actions influence the state
of the system such that f : A× S → S, and finally π is a function that maps an action to
a specific state s ∈ S such that π : S → A.

2



The transition function f is supposed to be deterministic: st+1 = f(st, at). Learning
the dynamics model is the same as learning explicitly the system’s transition function f ,
by approximating it with a function f̂θ parameterized by a vector θ. The idea behind
model based policy search is thus to fit a model f̂θ given limited measurements of the
true transition function f in the form of N data samples D = {(sn, an), sn+1}Nn=1. The

approximated function f̂ is then used recursively to predict a policy behaviour without
interacting with the costly real system. Policies are then rolled out on the model on a given
horizon H. We call episode a complete policy rollout on the learnt model. In this paper,
the model that learns the dynamics of the task is represented by ensembles of probabilistic
models (Chua et al., 2018; Hafner et al., 2019; Sekar et al., 2020). We refer the reader to
Chua et al. (2018) for more details on ensembling for dynamics modeling.

(a) Ball In Cup Environment

(b) Redundant Arm with walls environ-
ment

Figure 1: Benchmark environments

As we want to study the influence of the model
initial data gathering when coupled with evolution-
ary methods, we further detail the variables of in-
terest we will be looking into for our experiments.
Indeed, evolutionary methods, like Novelty Search
(Lehman and Stanley, 2011a) or Quality-Diversity
approaches (Lehman and Stanley, 2011b; Pugh et al.,
2016), make use of what is called a behavior space,
denoted B, and of an observer function oB which as-
sociates a behavior descriptor b ∈ B to a trajectory
of states τ = {s0, s1, ..., sT } of length T such that
oB : ST → B. This behavior descriptor b thus char-
acterizes the agent’s behavior in a way that is task-
aligned and more compact than the whole trajectory
τ . When using dynamics models, the part of most in-
terest for evolutionary methods is thus the ability for
the dynamics model to predict the agent’s behavior
b, as the agent’s behavior is directly derived from the
agent trajectory in the state-space during a rollout.

Model-based approaches are iterative and alter-
nate between exploration on the real system and ex-
ploration in the model. The focus here is on the
initial data gathering that bootstraps the process. Two initialization methods will be com-
pared:

• Random policies: randomly parameterized policies, represented as a fully connected
neural network with two hidden layers of size 10, rolled out on the task horizon H
and taking as input the system current state st. An episode consists of rolling out
such a policy on a newly reinitialized environment.

• Random actions: B uniformly drawn actions a ∈ A, each applied for R step sequen-
tially on the task horizon H such that B = H

R . An episode thus consists of rolling out
B different actions, for R step each, on a newly reinitialized environment.

3



We also consider an hybrid approach that splits its budget evenly between the two
aforementioned methods, which will be called Random Action Random Policies Hybrid
(RARPH).

The only parameter we can influence to collect data is the way the agent acts in its
environment. Ideally, we would need independent and identically distributed data to train
the dynamics model. Indeed, this is a requirement so that the model is able to generalize
well once it is used on unseen parts of the real-system state-action space. The issue is that
i.i.d. actions do not guarantee i.i.d. states as the mapping between the two is a complex
function. Random policies have been used to generate initial training data with convincing
results although inducing a strong bias as all H samples collected during an episode come
from a single trajectory and are thus not independent. In contrast, random actions should
provide data closer to i.i.d. data, as the collected data samples are only dependant by
subsets of size R and should be uniformly distributed in the whole action space A.

The goal of this study is thus to determine if such an induced bias is detrimental or
profitable to learning a dynamics model of the task, and to what extent it is task-dependant.
We hypothesize that random policies might be advantageous in environments with sparse
interactions, as they tend to explore a broader part of the state-space, while random ac-
tions should provide a safe initialization method, whatever the environment is. The naive
hybrid approach proposed is expected to bring better performance than random actions in
environments with sparse interactions, while remaining competitive in others as well.

3. Experiments

3.1 Experimental setups

Figure 2: Histogram of training data
distribution on test environments for actions

The first environment considered is the
Ball-In-Cup environment (Figure 1a). It
consists of a ball hanging below a cup by a
string. The cup is controlled in position in
the 3D space. The task consists of putting
the ball inside the cup. This problem is in-
teresting as it involves sparse interactions,
as giving the ball an upward velocity re-
quires to swing the ball. The state-space
consists of the 3D relative position and ve-
locity of the ball to the cup, and the con-
sidered outcome space is the relative position of the ball to the cup.

The second environment is the Redundant Arm environment (Figure 1b). It consists
of a 20-DOF robotic arm controlled in an environment with or without obstacles (walls).
Each articulation of the robotic arm is torque-controlled. The tasks consist in reaching
certain parts of the space with the robot end-effector. The problem is hard to gather data
from as hitting a wall or self-colliding stops the episode. Having the two scenarios, with
and without walls helps us to distinguish the effect of early stopping on the data gathering
of the initialization method. The state-space consists in the position of each of the twenty
joints and of the x-y position of the end-effector. The considered outcome space is the
end-effector position.

4



(a) Ball In Cup (b) RA No Walls (c) Redundant Arm

Figure 3: Histograms of training data distribution on test environments for RARPH

3.2 Data distribution analysis

As stated before, the key interest on the model learning aspect when coupling a learnt model
with an evolutionary method is the capacity the model has to predict correctly the agent
behavior in its outcome space. Focusing our analysis on the outcome space dimensions of
the state-space is thus relevant for this study, as this will highlight which method explores
best the state-space dimensions of interest and theoretically lead to less prediction error
when using gathered data to train a dynamics model. In order to do so we estimate the
discrepancies between the data distributions using histograms of the data distribution on
the dimensions of the outcome space for each initialization method.

Ball In Cup

Initialization episodes Prediction horizon Random policies Random actions RARPH

5
1 0.022 ± 0.049 0.054 ± 0.126 0.035 ± 0.061
20 0.349 ± 0.685 0.601 ± 1.178 0.634 ± 1.052
300 4.140 ± 2.413 26.56 ± 57.86 7.149 ± 2.591

10
1 0.018 ± 0.043 0.043 ± 0.093 0.030 ± 0.053
20 0.293 ± 0.554 0.600 ± 1.175 0.521 ± 0.807
300 3.981 ± 2.210 7.110 ± 12.36 7.003 ± 2.217

15
1 0.018 ± 0.042 0.037 ± 0.076 0.026 ± 0.050
20 0.284 ± 0.569 0.547 ± 1.043 0.444 ± 0.755
300 2.880 ± 1.668 4.395 ± 11.75 3.796 ± 1.603

20
1 0.017 ± 0.042 0.033 ± 0.070 0.024 ± 0.047
20 0.266 ± 0.537 0.520 ± 1.044 0.404 ± 0.668
300 4.463 ± 3.080 5.467 ± 4.736 4.500 ± 3.984

Table 1: Mean prediction error on Ball In Cup

All the results are
gathered on each envi-
ronment with 20 episodes
of each method, repeated
10 times. Only one di-
mension of the outcome
space is shown each time,
as it is representative of
the other outcome space
dimensions. As observed
on figure 3a, the data dis-

tribution of random policies on Ball In Cup is broader, as the agent observes transitions in
a wider portion of the outcome space. On contrary, on the Redundant Arm environment
we observe on figure 3c that the random actions data distribution is broader and has many
more samples due to early stopping. This is explained by the fact that the random policies
take action that are more often at the limit of the action space, as shown in figure 2 (fig-
ure obtained on the Ball In Cup environment, but representative of random policies action
distribution), which in the case of a torque-controlled robotic arm can lead faster to the
joint limits, self-collision or obstacle hitting and thus to episode termination. Removing the
walls as shown on Figure 3b indeed qualitatively brings the two data distributions very close
one to another. As expected, RARPH data distributions, both for actions and states, is
in-between the ones obtained with random policies and random actions, as shown on figure
3.

5



3.3 Prediction error analysis

Redundant Arm

Initialization episodes Prediction horizon Random policies Random actions RARPH

5
1 0.011 ± 0.029 0.002 ± 0.002 0.002 ± 0.002
20 0.236 ± 0.673 0.047 ± 0.042 0.046 ± 0.041
250 16.34 ± 5.855 1.084 ± 0.350 1.071 ± 0.366

10
1 0.002 ± 0.002 0.002 ± 0.002 0.002 ± 0.002
20 0.041 ± 0.035 0.044 ± 0.037 0.044 ± 0.039
250 1.002 ± 0.314 1.066 ± 0.342 1.051 ± 0.359

15
1 0.002 ± 0.002 0.002 ± 0.002 0.002 ± 0.002
20 0.038 ± 0.034 0.041 ± 0.034 0.040 ± 0.035
250 0.917 ± 0.301 1.050 ± 0.322 1.002 ± 0.328

20
1 0.002 ± 0.002 0.002 ± 0.002 0.002 ± 0.002
20 0.033 ± 0.032 0.040 ± 0.034 0.039 ± 0.034
250 0.918 ± 0.287 1.051 ± 0.340 1.019 ± 0.334

Table 2: Mean prediction error on Redundant Arm

The results of this section
are obtained by averaging
the mean prediction error
over 10 repetitions on NS ex-
amples trajectories. Model
is either used for 1-step pre-
dictions or recursively for 20
or H steps, H being the task
horizon.

Looking at Table 1, we
observe that the mean pre-
diction errors and standard
deviations are smaller by a factor of around two on all initialization budgets and all predic-
tion horizons between random policies and random actions. Qualitative results are available
in appendix A. This validates previous results that seemed to show that random policies are
better at gathering initial data for training a dynamics model on the Ball In Cup. Moreover,
RARPH initialization performs better than random actions, but does not run up to random
policies prediction quality.

Redundant Arm No Walls

Initialization episodes Prediction horizon Random policies Random actions RARPH

5
1 0.038 ± 0.286 0.004 ± 0.005 0.004 ± 0.004
20 1.145 ± 7.778 0.082 ± 0.078 0.075 ± 0.076
250 20.37 ± 50.97 2.558 ± 0.613 2.445 ± 0.177

10
1 0.003 ± 0.004 0.003 ± 0.004 0.003 ± 0.004
20 0.063 ± 0.063 0.065 ± 0.069 0.067 ± 0.062
250 2.864 ± 0.770 2.491 ± 0.153 2.521 ± 0.236

15
1 0.003 ± 0.003 0.003 ± 0.003 0.003 ± 0.004
20 0.059 ± 0.059 0.056 ± 0.056 0.063 ± 0.068
250 2.534 ± 0.304 2.532 ± 0.175 2.405 ± 0.144

20
1 0.003 ± 0.003 0.003 ± 0.003 0.003 ± 0.003
20 0.058 ± 0.059 0.057 ± 0.055 0.060 ± 0.062
250 2.485 ± 0.291 2.476 ± 0.198 2.458 ± 0.116

Table 3: Mean prediction error on Redundant Arm without
walls

On the Redundant Arm
environment, we observe
that random actions and
RARPH have a better pre-
diction performance (Table
2), RARPH even slightly
outperforming random ac-
tions. This is especially true
for small episodes budget,
where random policies suffer
most from the lack of data
due to early stopping. In-
deed, when removing the walls, we observe that random policies and random actions per-
form equally better, except for the smallest budget scenario where self-collision must play
an important part in the early stopping of random policies.

4. Conclusion

In this paper we have shown the importance of comprehending the task dynamics and of
selecting the data gathering initialization method beforehand. We compared two initializa-
tion methods employed in the state of the art and compared their performance on three
different experimental setups. Results show that various factors like sparse interactions or
early-stopping criterion can be detrimental to one method or another, suggesting hybrid ap-
proaches. The hybrid approach does not yield best results on all tasks, but its performances
are more regular than other techniques.

6



Acknowledgments

This work has received funding from the European Union’s Horizon 2020 research and
innovation program under grant agreement no 869855 (Project ’SoftManBot’).

Appendix A.

(a) Ball In Cup (b) Redundant Arm (c) RA no walls

Figure 4: Initialization methods mean prediction error over whole state-space on
considered environments on NS archive trajectories on a 20 episode budget

References

Chae H An, Christopher G Atkeson, and John M Hollerbach. Model-based control of a robot
manipulator. MIT press, 1988.

Christopher G Atkeson and Stefan Schaal. Robot learning from demonstration. In ICML,
volume 97, pages 12–20, 1997.

Eduardo F Camacho and Carlos Bordons Alba. Model predictive control. Springer science
& business media, 2013.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforce-
ment learning in a handful of trials using probabilistic dynamics models. Advances in
neural information processing systems, 31, 2018.

Antoine Cully and Yiannis Demiris. Quality and diversity optimization: A unifying modular
framework. IEEE Transactions on Evolutionary Computation, 22(2):245–259, 2017.

Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient approach
to policy search. In Proceedings of the 28th International Conference on machine learning
(ICML-11), pages 465–472. Citeseer, 2011.

Adam Gaier, Alexander Asteroth, and Jean-Baptiste Mouret. Data-efficient design explo-
ration through surrogate-assisted illumination. Evolutionary computation, 26(3):381–410,
2018.

7



Yarin Gal, Rowan McAllister, and Carl Edward Rasmussen. Improving pilco with bayesian
neural network dynamics models. In Data-Efficient Machine Learning workshop, ICML,
volume 4, page 25, 2016.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee,
and James Davidson. Learning latent dynamics for planning from pixels. In International
conference on machine learning, pages 2555–2565. PMLR, 2019.

Wenbing Huang, Deli Zhao, Fuchun Sun, Huaping Liu, and Edward Chang. Scalable gaus-
sian process regression using deep neural networks. In Twenty-fourth international joint
conference on artificial intelligence, 2015.

Nick Jakobi, Phil Husbands, and Inman Harvey. Noise and the reality gap: The use of
simulation in evolutionary robotics. In European Conference on Artificial Life, pages
704–720. Springer, 1995.

Jing Jiang. A literature survey on domain adaptation of statistical classifiers. URL:
http://sifaka. cs. uiuc. edu/jiang4/domainadaptation/survey, 3(1-12):3, 2008.

Leon Keller, Daniel Tanneberg, Svenja Stark, and Jan Peters. Model-based quality-diversity
search for efficient robot learning. In 2020 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pages 9675–9680. IEEE, 2020.

Seungsu Kim and Stéphane Doncieux. Learning highly diverse robot throwing movements
through quality diversity search. In Proceedings of the Genetic and Evolutionary Com-
putation Conference Companion, pages 1177–1178, 2017.

Sylvain Koos, Jean-Baptiste Mouret, and Stéphane Doncieux. The transferability approach:
Crossing the reality gap in evolutionary robotics. IEEE Transactions on Evolutionary
Computation, 17(1):122–145, 2012.

Joel Lehman and Kenneth O Stanley. Abandoning objectives: Evolution through the search
for novelty alone. Evolutionary computation, 19(2):189–223, 2011a.

Joel Lehman and Kenneth O Stanley. Evolving a diversity of virtual creatures through
novelty search and local competition. In Proceedings of the 13th annual conference on
Genetic and evolutionary computation, pages 211–218, 2011b.

Bryan Lim, Luca Grillotti, Lorenzo Bernasconi, and Antoine Cully. Dynamics-aware quality-
diversity for efficient learning of skill repertoires. arXiv preprint arXiv:2109.08522, 2021.

Bryan Lim, Alexander Reichenbach, and Antoine Cully. Learning to walk autonomously
via reset-free quality-diversity. arXiv preprint arXiv:2204.03655, 2022.

Aurélien Morel, Yakumo Kunimoto, Alex Coninx, and Stéphane Doncieux. Automatic
acquisition of a repertoire of diverse grasping trajectories through behavior shaping and
novelty search. In IEEE International Conference on Robotics and Automation 2022,
2022.

8



Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. Neural network
dynamics for model-based deep reinforcement learning with model-free fine-tuning. In
2018 IEEE International Conference on Robotics and Automation (ICRA), pages 7559–
7566. IEEE, 2018.

Athanasios S Polydoros and Lazaros Nalpantidis. Survey of model-based reinforcement
learning: Applications on robotics. Journal of Intelligent & Robotic Systems, 86(2):153–
173, 2017.

Justin K Pugh, Lisa B Soros, and Kenneth O Stanley. Quality diversity: A new frontier for
evolutionary computation. Frontiers in Robotics and AI, 3:40, 2016.

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and
Deepak Pathak. Planning to explore via self-supervised world models. In International
Conference on Machine Learning, pages 8583–8592. PMLR, 2020.

Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman.
Dynamics-aware unsupervised discovery of skills. arXiv preprint arXiv:1907.01657, 2019.

Olivier Sigaud and Freek Stulp. Policy search in continuous action domains: an overview.
Neural Networks, 113:28–40, 2019.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of
machine learning algorithms. Advances in neural information processing systems, 25,
2012.

Kenneth O Stanley, Jeff Clune, Joel Lehman, and Risto Miikkulainen. Designing neural
networks through neuroevolution. Nature Machine Intelligence, 1(1):24–35, 2019.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel.
Domain randomization for transferring deep neural networks from simulation to the real
world. In 2017 IEEE/RSJ international conference on intelligent robots and systems
(IROS), pages 23–30. IEEE, 2017.

9


	Introduction
	Method
	Experiments
	Experimental setups
	Data distribution analysis
	Prediction error analysis

	Conclusion

