ICML2022 Workshop on Adaptive Experimental Design and Active Learning in the Real World

Random Actions vs Random Policies: Bootstrapping
Model-Based Direct Policy Search

Elias Hanna

Sorbonne Université, CNRS,

Institut des Systémes Intelligents et de Robotique, ISIR,
F-75005 Paris, France

Alex Coninx

Sorbonne Université, CNRS,

Institut des Systéemes Intelligents et de Robotique, ISIR,
F-75005 Paris, France

Stéphane Doncieux

Sorbonne Université, CNRS,

Institut des Systéemes Intelligents et de Robotique, ISIR,
F-75005 Paris, France

Abstract

H.ELIASQHOTMAIL.FR

CONINX@ISIR.UPMC.FR

DONCIEUX@ISIR.UPMC.FR

This paper studies the impact of the initial data gathering method on the subsequent learning
of a dynamics model. Dynamics models approzimate the true transition function of a given
task, in order to perform policy search directly on the model rather than on the costly real
system. This study aims to determine how to bootstrap a model as efficiently as possible,
by comparing initialization methods employed in two different policy search frameworks
in the literature. The study focuses on the model performance under the episode-based

framework of FEvolutionary methods using probabilistic ensembles.

Ezperimental results

show that various task-dependant factors can be detrimental to each method, suggesting to

explore hybrid approaches.
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1. Introduction

Sparse reward tasks are frequent in robotics and call for data-greedy learning algorithms
with strong exploration capabilities (Lehman and Stanley, 2011a; Pugh et al., 2016; Cully
and Demiris, 2017; Kim and Doncieux, 2017). They have recently shown promising results
on notoriously difficult tasks like grasping as they have discovered grasping movements
without the need of demonstrations or gripper specific constraints (Morel et al., 2022).
Such learning algorithms are based on direct policy search (Sigaud and Stulp, 2019) and
cannot be used directly on the real robot as they need up to millions of policy evaluations.
They thus heavily rely on simulations, but simulations are not perfect representations of the
real robotic setup. It may create issues when such discrepancies are exploited by the learning
algorithm, leading to issues either called reality gap (Jakobi et al., 1995) or simulation bias

(An et al., 1988; Atkeson and Schaal, 1997).



To alleviate this problem, several techniques do exist. Some ignore the badly modeled
parts of the simulator, potentially missing the most rewarding behaviours (Koos et al.,
2012). Sim-to-real approaches, like domain randomization (Tobin et al., 2017) or domain
adaptation (Jiang, 2008), are only efficient when the source domain (usually a simulator)
dynamics are not too different from the real system dynamics. Model-based approaches
do not suffer from those issues (Polydoros and Nalpantidis, 2017), as they directly learn a
model of the system from data gathered on the target domain. The robot behaviour is then
trained using the model in different fashions.

Policy search consists in defining a parameterized policy and in directly optimizing its
parameters while it is controlling a robot (Sigaud and Stulp, 2019). Model-based policy
search is a long standing research field made of very diverse methods ranging from methods
inspired by model predictive control (MPC) (Camacho and Alba, 2013) to model-based rein-
forcement learning (RL) (Polydoros and Nalpantidis, 2017). On one side there is step-based
policy search methods, mainly resulting from the reinforcement learning framework (Sut-
ton and Barto, 2018), and on the other side, there is episode-based policy search methods,
mainly resulting from Bayesian Optimization (Snoek et al., 2012) and from Evolutionary
methods (Stanley et al., 2019). The interest of using a model in the RL framework is not
new, and first promising results were obtained in PILCO by Deisenroth and Rasmussen
(2011). Model-based techniques started by using Gaussian Processes (Deisenroth and Ras-
mussen, 2011; Gaier et al., 2018), but as problems arose (Huang et al., 2015), more methods
started turning to Neural Networks architectures for dynamics modeling (Gal et al., 2016;
Nagabandi et al., 2018; Chua et al., 2018; Sharma et al., 2019; Lim et al., 2021).

Model-based policy search is thus promising (Gaier et al., 2018; Keller et al., 2020; Lim
et al., 2021, 2022), but it requires to learn a model that is accurate enough to predict the
behavior of the policy over a complete rollout, i.e. with model predictions that are used
in closed loop over a given horizon. In this case, error accumulates and makes predictions
rapidly diverge from the ground truth, thus misleading any learning algorithm that would
rely on it. The bootstrap phase in which data is acquired to train a first model is thus
critical. As experiments on the real robot are to be minimized, it is important to define
the most efficient approach to randomly gather initial data. Two different approaches have
been used, either random actions (Nagabandi et al., 2018; Hafner et al., 2019; Sekar et al.,
2020) or random policies (Lim et al., 2021, 2022). We compare their impact on the generated
data distribution and on the obtained model quality, so that an active model-based learning
approach is bootstrapped as efficiently as possible.

2. Method

We place ourselves in the Reinforcement Learning framework (Sutton and Barto, 2018). In
this context, we define the tuple < S, A, f,m >, where S is the state-space in which the
agent can take states s and that contains all the needed information to determine the agent
and environment dynamics, A is the action-space in which the action can draw actions
from. f is the transition function that describes how the agent actions influence the state
of the system such that f: Ax S — S, and finally 7 is a function that maps an action to
a specific state s € § such that 7 : § — A.



The transition function f is supposed to be deterministic: s;11 = f(s¢,a¢). Learning
the dynamics model is the same as learning explicitly the system’s transition function f,
by approximating it with a function fg parameterized by a vector 6. The idea behind
model based policy search is thus to fit a model f@ given limited measurements of the
true transition function f in the form of N data samples D = {(sn,an),snﬂ}fy:l. The
approximated function f is then used recursively to predict a policy behaviour without
interacting with the costly real system. Policies are then rolled out on the model on a given
horizon H. We call episode a complete policy rollout on the learnt model. In this paper,
the model that learns the dynamics of the task is represented by ensembles of probabilistic
models (Chua et al., 2018; Hafner et al., 2019; Sekar et al., 2020). We refer the reader to
Chua et al. (2018) for more details on ensembling for dynamics modeling.

As we want to study the influence of the model
initial data gathering when coupled with evolution-
ary methods, we further detail the variables of in-
terest we will be looking into for our experiments.
Indeed, evolutionary methods, like Novelty Search
(Lehman and Stanley, 2011a) or Quality-Diversity
approaches (Lehman and Stanley, 2011b; Pugh et al.,
2016), make use of what is called a behavior space,
denoted B, and of an observer function op which as-
sociates a behavior descriptor b € B to a trajectory
of states 7 = {sg, s1,...,s7} of length T such that
og : ST — B. This behavior descriptor b thus char-

acterizes the agent’s behavior in a way that is task- 5

(a) Ball In Cup Environment

aligned and more compact than the whole trajectory
7. When using dynamics models, the part of most in-
terest for evolutionary methods is thus the ability for
the dynamics model to predict the agent’s behavior
b, as the agent’s behavior is directly derived from the

agent trajectory in the state-space during a rollout. (b) Redundant Arm with walls environ-

Model-based approaches are iterative and alter- ment

nate between exploration on the real system and ex-  Figyre 1: Benchmark environments
ploration in the model. The focus here is on the

initial data gathering that bootstraps the process. Two initialization methods will be com-
pared:

e Random policies: randomly parameterized policies, represented as a fully connected
neural network with two hidden layers of size 10, rolled out on the task horizon H
and taking as input the system current state s;. An episode consists of rolling out
such a policy on a newly reinitialized environment.

e Random actions: B uniformly drawn actions a € A, each applied for R step sequen-
tially on the task horizon H such that B = %. An episode thus consists of rolling out
B different actions, for R step each, on a newly reinitialized environment.



We also consider an hybrid approach that splits its budget evenly between the two
aforementioned methods, which will be called Random Action Random Policies Hybrid
(RARPH).

The only parameter we can influence to collect data is the way the agent acts in its
environment. Ideally, we would need independent and identically distributed data to train
the dynamics model. Indeed, this is a requirement so that the model is able to generalize
well once it is used on unseen parts of the real-system state-action space. The issue is that
1.1.d. actions do not guarantee i.i.d. states as the mapping between the two is a complex
function. Random policies have been used to generate initial training data with convincing
results although inducing a strong bias as all H samples collected during an episode come
from a single trajectory and are thus not independent. In contrast, random actions should
provide data closer to i.i.d. data, as the collected data samples are only dependant by
subsets of size R and should be uniformly distributed in the whole action space A.

The goal of this study is thus to determine if such an induced bias is detrimental or
profitable to learning a dynamics model of the task, and to what extent it is task-dependant.
We hypothesize that random policies might be advantageous in environments with sparse
interactions, as they tend to explore a broader part of the state-space, while random ac-
tions should provide a safe initialization method, whatever the environment is. The naive
hybrid approach proposed is expected to bring better performance than random actions in
environments with sparse interactions, while remaining competitive in others as well.
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3.1 Experimental setups

. . . 20000 1
The first environment considered is the

Ball-In-Cup environment (Figure la). It
consists of a ball hanging below a cup by a
string. The cup is controlled in position in
the 3D space. The task consists of putting
the ball inside the cup. This problem is in-
teresting as it involves sparse interactions, 0] " L " " "
as giving the ball an upward velocity re- Min-max normalized value of state for data samples
quires to swing the ball. The state-space
consists of the 3D relative position and ve-
locity of the ball to the cup, and the con-
sidered outcome space is the relative position of the ball to the cup.

The second environment is the Redundant Arm environment (Figure 1b). It consists
of a 20-DOF robotic arm controlled in an environment with or without obstacles (walls).
Each articulation of the robotic arm is torque-controlled. The tasks consist in reaching
certain parts of the space with the robot end-effector. The problem is hard to gather data
from as hitting a wall or self-colliding stops the episode. Having the two scenarios, with
and without walls helps us to distinguish the effect of early stopping on the data gathering
of the initialization method. The state-space consists in the position of each of the twenty
joints and of the x-y position of the end-effector. The considered outcome space is the
end-effector position.
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Figure 2: Histogram of training data
distribution on test environments for actions
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Figure 3: Histograms of training data distribution on test environments for RARPH

3.2 Data distribution analysis

As stated before, the key interest on the model learning aspect when coupling a learnt model
with an evolutionary method is the capacity the model has to predict correctly the agent
behavior in its outcome space. Focusing our analysis on the outcome space dimensions of
the state-space is thus relevant for this study, as this will highlight which method explores
best the state-space dimensions of interest and theoretically lead to less prediction error
when using gathered data to train a dynamics model. In order to do so we estimate the
discrepancies between the data distributions using histograms of the data distribution on
the dimensions of the outcome space for each initialization method.

Ball Tn Cup All the results are
Initialization episodes | Prediction horizon | Random policies | Random actions RARPH th d h :
1 0.022 £ 0.040 | 0.054 £ 0.126 | 0.035 = 0.061 gathered on each envi
5 20 0.349 + 0.685 0.601 4+ 1.178 0.634 + 1.052 ronment Wlth 20 episodes
300 4.140 £ 2413 | 26.56 + 57.86 | 7.149 & 2.591
1 0.018 £ 0.043 | 0.043 £ 0.093 | 0.030 £ 0.053 of each method, repeated
10 20 0.293 £ 0.554 | 0.600 & 1.175 | 0.521 £ 0.807 . .
300 3981 £ 2210 | 7.110 + 12.36 | 7.003 £ 2.217 10 times. Only one di-
1 0.018 + 0.042 | 0.037 & 0.076 | 0.026 + 0.050 mension of the outcome
15 20 0.284 + 0.569 | 0.547 + 1.043 | 0.444 % 0.755 . .
300 2.880 + 1.668 4.395 + 11.75 | 3.796 + 1.603 space 1S shown each time,
1 0.017 + 0.042 | 0.033 £ 0.070 | 0.024 £ 0.047 s :
20 20 0.266 + 0.537 | 0.520 + 1.044 | 0.404 + 0.668 as 1t 1s representative of
300 4.463 + 3.080 5.467 £ 4.736 | 4.500 + 3.984 the other outcome space

dimensions. As observed
on figure 3a, the data dis-
tribution of random policies on Ball In Cup is broader, as the agent observes transitions in
a wider portion of the outcome space. On contrary, on the Redundant Arm environment
we observe on figure 3c that the random actions data distribution is broader and has many
more samples due to early stopping. This is explained by the fact that the random policies
take action that are more often at the limit of the action space, as shown in figure 2 (fig-
ure obtained on the Ball In Cup environment, but representative of random policies action
distribution), which in the case of a torque-controlled robotic arm can lead faster to the
joint limits, self-collision or obstacle hitting and thus to episode termination. Removing the
walls as shown on Figure 3b indeed qualitatively brings the two data distributions very close
one to another. As expected, RARPH data distributions, both for actions and states, is
in-between the ones obtained with random policies and random actions, as shown on figure
3.

Table 1: Mean prediction error on Ball In Cup



3.3 Prediction error analysis

The results of this section

are obtained by averaging Redundant Arm
L. Initialization episodes | Prediction horizon | Random policies | Random actions RARPH
the mean prediction error 1 0.011 £ 0.020 | 0.002 £ 0.002 | 0.002 < 0.002
i 5 20 0.236 + 0.673 | 0.047 = 0.042 | 0.046 & 0.041
over 10 repetitions on NS ex- 250 16.34 £ 5.855 | 1.084 + 0.350 | 1.071 + 0.366
amples trajectories. Model 1 0.002 £ 0.002 | 0.002 + 0.002 | 0.002 + 0.002
. 10 20 0.041 + 0.035 | 0.044 £ 0.037 | 0.044 % 0.039
is either used for 1-St€‘p pre- 250 1.002 + 0.314 1.066 £ 0.342 | 1.051 = 0.359
s : 1 0.002 £ 0.002 | 0.002 + 0.002 | 0.002 & 0.002
dictions or recursively for 20 15 20 0.038 £ 0.034 | 0.041 + 0.034 | 0.040 + 0.035
or H steps, H belng the task 250 0.017 + 0.301 1.050 + 0.322 | 1.002 & 0.328
hori 1 0.002 + 0.002 | 0.002 + 0.002 | 0.002 & 0.002
Oorizom. 20 20 0.033 £ 0.032 | 0.040 & 0.034 | 0.039 = 0.034
: 250 0.918 + 0.287 | 1.051 & 0.340 | 1.019 + 0.334
Looking at Table 1, we

observe that the mean pre-
diction errors and standard
deviations are smaller by a factor of around two on all initialization budgets and all predic-
tion horizons between random policies and random actions. Qualitative results are available
in appendix A. This validates previous results that seemed to show that random policies are
better at gathering initial data for training a dynamics model on the Ball In Cup. Moreover,
RARPH initialization performs better than random actions, but does not run up to random
policies prediction quality.

Table 2: Mean prediction error on Redundant Arm

On the Redundant Arm Redundant Arm No Walls

. Initialization episodes | Prediction horizon | Random policies | Random actions RARPH
environment, we observe 1 0.038 £ 0.286 | 0.004 = 0.005 | 0.004 £ 0.004
. 5 20 1.145 £ 7.778 | 0.082 £ 0.078 | 0.075 + 0.076
that random actions and 250 2037 £50.97 | 2558 £ 0.613 | 2445  0.177
RARPH have a better pre- 1 0.003 = 0.004 | 0.003 + 0.004 | 0.003 + 0.004
L 10 20 0.063 £ 0.063 | 0.065 + 0.069 | 0.067 + 0.062
diction performance (Table 250 2.864 £ 0.770 | 2.491 £ 0.153 | 2.521 £ 0.236
. 1 0.003 + 0.003 | 0.003 + 0.003 | 0.003 + 0.004
2)7 RARPH even Shghtly 15 20 0.059 = 0.059 | 0.056 = 0.056 | 0.063 £ 0.068
outperforming random ac- 250 2.534 £0.304 | 2532+ 0.175 | 2.405 £ 0.144
. L. . 1 0.003 = 0.003 | 0.003 + 0.003 | 0.003 £ 0.003
tions. This is eSpeCIaHy true 20 20 0.058 £ 0.059 | 0.057 + 0.055 | 0.060 + 0.062
250 2.485 + 0.291 2.476 £ 0.198 | 2.458 + 0.116

for small episodes budget,
where random policies suffer
most from the lack of data
due to early stopping. In-
deed, when removing the walls, we observe that random policies and random actions per-
form equally better, except for the smallest budget scenario where self-collision must play
an important part in the early stopping of random policies.

Table 3: Mean prediction error on Redundant Arm without
walls

4. Conclusion

In this paper we have shown the importance of comprehending the task dynamics and of
selecting the data gathering initialization method beforehand. We compared two initializa-
tion methods employed in the state of the art and compared their performance on three
different experimental setups. Results show that various factors like sparse interactions or
early-stopping criterion can be detrimental to one method or another, suggesting hybrid ap-
proaches. The hybrid approach does not yield best results on all tasks, but its performances
are more regular than other techniques.
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Appendix A.
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Figure 4: Initialization methods mean prediction error over whole state-space on
considered environments on NS archive trajectories on a 20 episode budget
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