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Abstract
The real-world testing of decisions made using causal machine learning models is an essential
prerequisite for their successful application. We focus on evaluating and improving contextual
treatment assignment decisions: these are personalised treatments applied to e.g. customers,
each with their own contextual information, with the aim of maximising a reward. In this
paper we introduce a model-agnostic framework for gathering data to evaluate and improve
contextual decision making through Bayesian Experimental Design. Specifically, our method
is used for the data-efficient evaluation of the regret of past treatment assignments. Unlike
approaches such as A/B testing, our method avoids assigning treatments that are known to
be highly sub-optimal, whilst engaging in some exploration to gather pertinent information.
We achieve this by introducing an information-based design objective, which we optimise
end-to-end. Our method applies to discrete and continuous treatments. Comparing our
information-theoretic approach to baselines in several simulation studies demonstrates the
superior performance of our proposed approach.
Keywords: Real-world testing, Bayesian experimental design, causal decision making
evaluation, contextual optimisation, mutual information.

1. Introduction

Machine learning models, particularly causal machine learning models, can be used to make
real-world decisions (Joyce, 1999; Geffner et al., 2022). We consider the problem of collecting
experimental data to evaluate such models and improve decisions made in future. For
example, suppose a company has developed a model describing the relationship between
customer engagement and revenue. This model will be used to offer personalised promotions
to each customer in order to maximise some reward, e.g. revenue. Before deploying it to all
of its customers, the company may wish to collect experimental data to validate the model.

To formalise this, we consider the contextual optimisation problem in which a treatment
or treatments must be assigned to each context to receive a reward. We focus on the
experimental design problem of finding treatments that allow us to evaluate the regret of
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past actions and to improve decisions made in the future. Our aim, then, is to choose actions
to test the model; we are not directly optimising rewards in the experimental phase. In line
with our real-world scenario, we focus on designing large batch experiments, in which we
must select a large number of treatments for different contexts before receiving any feedback.

A standard experimental design procedure is random treatment assignment, which
corresponds to A/B testing when treatment is binary (Fisher, 1936; Kohavi and Longbotham,
2017). However, this naive approach has significant drawbacks, as it may involve applying
many sub-optimal actions, meaning that the opportunity cost of experimentation becomes
high and experimental resources are wasted applying treatments that are known a priori to
be sub-optimal. On the other hand, applying the best treatments based on existing beliefs—a
pure exploitation strategy—may also be uninformative for model testing as it fails to account
for uncertainty and the need to gather data where uncertainty is high.

To design an experiment in a more principled way, we turn to the framework of Bayesian
experimental design (BED) (Lindley, 1956; Chaloner and Verdinelli, 1995; Foster et al., 2019).
In contrast to standard BED, which maximises the information gained about all model
parameters, we define the objective for experimental design as the expected information
gained about the maximum reward obtainable for a set of evaluation contexts (max-value EIG).
This directly addresses the problem of gaining data to evaluate the regret of past decisions,
because, given a past outcome, the unknown component of regret is how much better the
reward could have been. The formulation is also relevant to the problem of gathering data
(exploration) to obtain better rewards in later interactions (exploitation).

As a model-based framework, BED requires the specification of a Bayesian model (Gelman
et al., 2013) relating contexts, treatments and rewards. Since the model makes predictions
about interventional distributions, causality plays a central role in selecting a correct model,
particularly when the model is pre-trained with observational data. One approach is to rely
on assumptions about the causal graph (Pearl, 2009; Sharma et al., 2021). Alternatively, the
model can incorporate Bayesian uncertainty about the causal structure (Heckerman et al.,
1999; Annadani et al., 2021; Geffner et al., 2022). In this paper, we propose a model-agnostic
approach to experimental design that accommodates this full range of Bayesian models; we
only require differentiability of samples from the model.

To find the optimal experimental design for a given Bayesian model, we first show that
the InfoNCE bound (van den Oord et al., 2018) can be used to estimate the max-value
EIG objective. We then optimise the testing treatment assignment (experimental design) by
gradients (Foster et al., 2020; Kleinegesse and Gutmann, 2020). Our method is applicable to
multiple treatments, both continuous and discrete, using carefully tuned Gumbel–Softmax
(Maddison et al., 2016; Jang et al., 2016) for the latter case. We show experimentally that
our approach is effective on a number of synthetic models, learning intuitively correct large
batch designs that outperform standard baselines by significant margins.

2. Problem set-up

We are interested in the efficient evaluation of the regret of past treatment assignment
decisions. We formalise this by considering a contextual optimisation problem in which
treatment, a, is applied in context, c, to receive reward y. For example, in the customer
engagement scenario, c would be the information we have about the customer that cannot
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be directly acted upon, such as age, income and historical data of past interactions, a would
denote a particular choice of promotions that we offer to the customer, and the reward y
would be the future revenue generated by the customer, net of promotion costs.

Expected regret We are interested in gathering data to evaluate the expected regret of
the past action a performed in a context of interest c∗. This is defined as

R(a, c∗) = m(c∗)− E[y|do(a), c∗], (1)

where p(·|do(a), c∗) denotes the interventional distribution when action a is applied to context
c∗ and m(c∗) = maxa′ E[y|do(a′), c∗] denotes the best obtainable outcome for context c∗.
Suppose that a has been performed historically to c∗, and we wish evaluate the regret of this
treatment. The primary obstacle to evaluating this regret in the real world is that m(c∗) is
not known, i.e. we do not know how much better the outcome could have been if a different
treatment had been applied. We therefore wish to obtain experimental data, possibly from
different contexts, that will help us to efficiently infer m(c∗). Gathering data to learn m(c∗)
also aids in choosing the best treatment in future interactions with c∗.

Bayesian model In general, we also do not know the true interventional distribution
p(y|do(a), c). We therefore model the relationship between a, c and y is a Bayesian manner,
by introducing a Bayesian parameter ψ with a prior p(ψ). Different samples of ψ corresponds
to different hypotheses p(y|do(a), c, ψ), whilst marginalising over ψ summarises the total
Bayesian uncertainty in y|do(a), c. Figure 1 illustrates an example with a binary treatment.

The role of causality Causal considerations are central to building a correct model of
the interventional distribution p(y|do(a), c), particularly when the prior p(ψ) is fitted by
conditioning on past observational data. By making certain assumptions about the causal
graph and the (non-)existence of unobserved confounders, one can reduce the problem to
that of learning specific functions (Pearl, 2009; Sharma et al., 2021). These assumptions
are often made implicitly in the optimisation literature (Bareinboim et al., 2015). Through
suitable assumptions, any Bayesian model that predicts y from a, c can be used as a model
for p(y|do(a), c), so a causal treatment of the problem does not restrict the class of models
that can be considered. Alternatively, the Bayesian parameter ψ can incorporate uncertainty
in the causal graph (Heckerman et al., 1999; Annadani et al., 2021; Geffner et al., 2022). Our
approach to experimental design is concordant with either of these modelling choices.

3. Bayesian Experimental Design for Contextual Optimisation

Whilst standard BED would design experiments to maximise the information gathered
about the Bayesian parameter ψ, our goal is to efficiently evaluate the regret (1). This
translates to estimating the maximum achievable rewards for a set of D∗ evaluation contexts
C∗ = c∗1, . . . , c

∗
D∗ , denoted m∗ = m(c∗1), . . . ,m(c∗D∗). In the customer engagement example,

C∗ represents a set of customers for which we are aiming to infer the best possible rewards
m∗. To learn about m∗, we are allowed to perform a batch of D experiments at contexts
C = c1, . . . , cD. In the customer engagement example, C represents the set of customers
that will participate in the real-world test. The experimental design problem is to select the
treatments A = a1, . . . , aD to apply to C so that the experimental outcomes y = y1, . . . , yD
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Figure 1: An example with a scalar context and a binary treatment a ∈ {1, 2}. The dark
(resp. light) shaded area shows our uncertainty about y|do(a), c arising from
uncertainty in ψ, measured by one (resp. two) st. dev. from the mean. We want to
estimate m∗ = m(c∗), the unknown maximum achievable reward at the evaluation
context c∗. We perform three experiments at c1, c2, c3 (dotted orange lines). UCB
chooses the reward-maximising treatments in each experimental context, bringing
no information about m∗, as Treatment 2 is a priori suboptimal at c∗. Random
design selects Treatments 1 and 2 with equal probability; our method selects
treatments whose outcomes will be most informative about m∗ given the prior.

that we get from the real-world test are maximally informative about m∗. More formally, we
design A to maximize expected information gain between y and m∗

I(A;C,C∗) = Ep(y,m∗|C,C∗,do(A))

[
log

p(y|m∗, do(A),C)

p(y|do(A),C)

]
, (2)

where p(y|do(A),C) = Ep(ψ)
[
p(y|do(A),C, ψ)

]
, p(m∗|C∗) = Ep(ψ)

[
p(m∗|C∗, ψ)

]
and

p(y,m∗|C,C∗, do(A)) = Ep(ψ)
[
p(m∗|C∗, ψ)p(y|C, do(A), ψ)

]
. We refer to I(A;C,C∗)

as the max-value EIG. The objective is doubly intractable (Rainforth et al., 2018) meaning
that its optimisation, or even evaluation with a fixed A, is a major challenge. The likelihoods
in the expectation are implicit (not available analytically) making the problem more difficult.

3.1 Training stage: Objective estimation and optimization

Recently, gradient-based approaches for optimising EIG have been developed for experimental
design for parameter learning (Foster et al., 2020; Kleinegesse and Gutmann, 2020) as opposed
to contextual optimisation, which is the focus of this work. Inspired by likelihood-free mutual
information estimators, we show the InfoNCE bound (van den Oord et al., 2018) can be
adapted to the contextual optimisation setting we consider here. Concretely,

L(A, U ;C,C∗, L) = Ep(ψ)p(y,m∗
0|do(A),C,C∗,ψ)p(m∗

1:L|C∗)

[
log

exp(U(y,m∗
0))

1
L+1

∑
ℓ exp(U(y,m∗

ℓ ))

]
(3)

is a lower bound on I(A;C,C∗) for any L ≥ 1 and any critic function U . We provide a
proof of this claim in Appendix A. To learn a suitable critic U , we use a neural network with
trainable parameters ϕ. We then optimise the lower bound L(A, U ;C,C∗, L) simultaneously
with respect to ϕ and A, thereby improving the tightness of the bound and optimising the
experimental design together. When the actions A are continuous, we require that a sample
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y of p(y|do(a), c, ψ) is differentiable with respect to a. In this case, a pathwise gradient
estimator (Mohamed et al., 2020) for ∇A,ϕL can be readily computed and we apply standard
stochastic gradient ascent (SGA) (Robbins and Monro, 1951) to optimise our objective (3).

Discrete action space Previous gradient-based BED work has focused on fully differ-
entiable models. Here we propose a practical way to deal with discrete designs. Rather
than learning the treatments A directly, we introduce a stochastic treatment policy πα with
trainable parameters α representing the probabilities of selecting each treatment. During
training we use a Gumbel–Softmax (Maddison et al., 2016; Jang et al., 2016) relaxed form of
A and update α by gradients. Further detail is provided in Appendix A.

3.2 Deployment stage: Real-world testing

Once we optimise the objective (3), we perform the batch of experiments A to obtain
real-world outcomes y and estimate p(ψ|D)—the posterior of our Bayesian model, given the
experimental data D = (y,A,C). We then calculate the posterior p(m∗|C∗,D), and this it
to estimate the regret (1) of a set of past treatments. Importantly, through our design of A,
the data contained in D should lead to the most accurate estimate of m∗, which translates to
an accurate estimate of the regret and an accurate evaluation metric for the original decisions.
Algorithm 1 in the Appendix gives a complete description of our method.

4. Related Work

The most closely related objective to our max-value EIG (2) is Max-value Entropy Search
(MES, Wang and Jegelka, 2017). It was proposed as a computationally efficient alternative
to Entropy Search (ES, Hennig and Schuler, 2012) and Predictive Entropy Search (PES,
Hernández-Lobato et al., 2014). Our objective differs from MES in two essential ways:
firstly, MES is applicable to Gaussian processes (GPs), whilst our objective is model-agnostic;
secondly, we focus on contextual optimisation, rather than finding a single maximiser. For a
more comprehensive discussion of related work, see Appendix B.

5. Empirical Evaluation
c a

y

Figure 2: Causal graph.

We test the efficacy of our method on several synthetic exper-
iments. In all synthetic experiments, we assume the causal
graph is as shown in Figure 2, but note that our method is
not restricted to this graph structure. We compare our method
against random treatment assignment and the Upper Confidence
Bound (UCB) (Auer, 2002) algorithm. Our key evaluation met-
rics are EIG and accuracy of inferring m∗. For the former we
evaluate (3) with the trained critic and learnt designs. For the latter, we sample a realisation
ψ̃ and m̃∗ from the prior, treating it as the ground truth environment in the Deployment
stage of our framework (§ 3.2). We report the mean squared error (MSE) between our
estimate m∗ and the ground truth m̃∗. We report three additional metrics—average regret,
MSE of estimating ψ̃, and deviation from the true optimal treatment. Full details about the
models, training, and further results are given in Appendix C.
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Figure 3: Discrete treatments: optimal designs and key metrics. More details in Appendix C.

Method EIG estimate MSE(m∗) MSE(ψ) MSE(A) Regret

Random0.2 5.407 ± 0.003 0.0041 ± 0.0001 0.0114 ± 0.0003 0.544 ± 0.023 0.091 ± 0.002
Random1.0 5.798 ± 0.004 0.0024 ± 0.0002 0.0053 ± 0.0002 0.272 ± 0.018 0.060 ± 0.002
Random2.0 4.960 ± 0.004 0.0042 ± 0.0002 0.0102 ± 0.0003 0.450 ± 0.021 0.090 ± 0.002
UCB0 5.774 ± 0.003 0.0069 ± 0.0005 0.0154 ± 0.0007 0.747 ± 0.055 0.082 ± 0.002
UCB1 5.876 ± 0.003 0.0030 ± 0.0002 0.0102 ± 0.0004 0.338 ± 0.024 0.067 ± 0.002
UCB2 5.780 ± 0.004 0.0031 ± 0.0002 0.0093 ± 0.0003 0.378 ± 0.031 0.069 ± 0.002

Ours 6.527 ± 0.003 0.0014 ± 0.0001 0.0039 ± 0.0002 0.143 ± 0.018 0.044 ± 0.001

Table 1: Continuous treatments: evaluation of 40D design. More details in Appendix C.

Discrete treatments We consider a model with four treatment options, two of which are
a priori sub-optimal; the other two have the same mean but Treatment 1 has higher variance
than Treatment 2 (Figure 3). Intuitively, the optimal strategy would be to A/B test only
the top 2 treatments, which is exactly what our method has learnt. The random method is
wasteful as it queries the sub-optimal treatments, while UCB1 only ever queries Treatment 1.
As a result, our method is much more accurate at estimating the true m∗.

Continuous treatments We test our method on a continuous treatment problem, where
we design a batch of 40 experiments to learn about the max-values at 39 evaluation contexts.
As Table 1 shows, our method outperforms the baselines on all metrics. Although our method
is optimised to accurately estimate m̃∗, it is also significantly better at estimating ψ̃, which
in turn translates to choosing better treatments in the future, as the lower MSE(A) indicates.

6. Discussion and Conclusion

By combining ideas from Bayesian experimental design, contextual bandits and Bayesian
optimisation, we proposed a method for real-world model testing by regret evaluation of past
context-dependent treatment assignments. Our method also applies to gathering data to
improve future decision making, in fact, we saw that gaining information for regret evaluation
and for model improvement are really two sides of the same coin. To compute large batch
designs efficiently, we cast the problem in terms of implicit likelihood BED, resulting in a
model agnostic approach that is able to handle both discrete and continuous designs.

Future work may introduce the ability to handle constraints, and explore the scaling of
our method to high dimensional treatments and contexts, both continuous and discrete. Our
method could also be extended to apply to sequential, adaptive experimentation.
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Algorithm 1: Data-efficient regret evaluation
Input: Bayesian simulator p(y,m∗|do(a), c, c∗, ψ), batch size D of experimental

contexts C, batch size D∗ of evaluation contexts C∗, initial A, initial Uϕ,
number of contrastive samples L ≥ 1

Output: Optimal treatments A for experimental contexts C to be tested
Training stage:

while Computational training budget not exceeded do
Sample ψ ∼ p(ψ)
Sample y ∼ p(y|C, do(A), ψ) and m∗ ∼ p(m∗|C∗, ψ)
Compute L(A, Uϕ;L) (3) and update the parameters (A, ϕ) using a SGA

end
Deployment stage:

Run a batch of experiments A to obtain real-world observations y and estimate a
posterior p(ψ|D), D = {y,A,C} .

Use the updated model to get an estimate of m∗ and evaluate the regret (1)
associated with some (past) treatment assignment in contexts C∗.

Appendix A. Method

For completeness we formalise the claim made in Section 3.1 in Proposition 1, and provide a
proof, following standard arguments.

Proposition 1 (InfoNCE lower bound) For any critic function U : Y × R → R and
number of contrastive samples L ≥ 1 we have L(A;C,C∗, L) ≤ I(A;C,C∗), where

L(A, U ;C,C∗, L) = Ep(ψ)p(y,m∗
0|C,C∗,do(A),ψ)p(m∗

1:L,ψ1:L|C∗)

[
log

exp(U(y,m∗
0))

1
L+1

∑
ℓ exp(U(y,m∗

ℓ ))

]
(4)

The bound is tight for the optimal critic U∗(y,m∗) = log p(y|m∗, do(A),C)+c(y) as L→ ∞,
where c(y) is an arbitrary function depending only on the outcomes y.

Proof Let U :Y × R→R be any function (critic) and introduce the shorthand

g(y,m∗
0:L) :=

exp(U(y,m∗
0))

1
L+1

∑
ℓ exp(U(y,m∗

ℓ ))
(5)

Multiply the mutual information objective of Equation (2) by g(y,m∗
0:L)/g(y,m

∗
0:L) to get

I(A;C,C∗) = Ep(y,m∗|C,C∗,do(A))

[
log

p(y,m∗|C,C∗, do(A))

p(y|C, do(A))p(m∗|C∗)

]
(6)

= Ep(ψ)p(y,m∗
0|C,C∗,do(A),ψ)

[
log

p(y,m∗
0|C,C∗, do(A))

p(y|C, do(A))p(m∗
0|C∗)

]
(7)

= Ep(ψ)p(y,m∗
0|C,C∗,do(A),ψ)p(m∗

1:L,ψ1:L|C∗)

[
log

p(y|m∗
0, do(A),C)

p(y|do(A),C)

]
(8)

= Ep(ψ)p(y,m∗
0|C,C∗,do(A),ψ)p(m∗

1:L,ψ1:L|C∗)

[
log

p(y|m∗
0, do(A),C)g(y,m∗

0:L)

p(y|do(A),C)g(y,m∗
0:L)

]
(9)
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which we can split into two expectations—one that does not contain the implicit likelihoods
and another that is equal to L(A, U ;C,C∗, L)

= Ep(ψ)p(y,m∗|C,C∗,do(A),ψ)p(m∗
1:L,ψ1:L|C∗)

[
log

p(y|m∗
0, do(A),C)

p(y|do(A),C)g(y,m∗
0:L)

]
+ Ep(ψ)p(y,m∗|C,C∗,do(A),ψ)p(m∗

1:L,ψ1:L|C∗) [log g(y,m
∗
0:L)]

= KL(p1 || p2) + L(A, U ;C,C∗, L)

≥ L(A, U ;C,C∗, L)

(10)

where

KL(p1 || p2) = Ep(ψ)p(y,m∗
0|C,C∗,do(A),ψ)p(ψ1:L)p(m

∗
1:L|ψ1:L,C∗)

[
log

p(y|m∗
0, do(A),C)

p(y|do(A),C)g(y,m∗
0:L)

]
(11)

= E
[
log

p(y,m∗
0|C,C∗, do(A))p(m∗

1:L|C∗)

p(m∗
0|C∗)p(y|do(A),C)g(y,m∗

0:L)p(m
∗
1:L|C∗)

]
(12)

where the expectation is with respect to p(ψ)p(y|C, do(A), ψ)p(m∗
0|ψ,C∗)p(ψ1:L)p(m

∗
1:L|ψ1:L,C

∗).
This is a valid KL divergence (since p2 = p(m∗

0|C∗)p(y|do(A),C)g(y,m∗
0:L)p(m

∗
1:L|C∗) inte-

grates to one by symmetry argument) and hence non-negative.
Finally, substituting U∗(y,m∗) = log p(y|m∗, do(A),C) + c(y) in the definition of L

L(A, U∗;C,C∗, L) = Ep(ψ)p(y,m∗
0|do(A),C,C∗,ψ)p(m∗

1:L,ψ1:L|C∗)

[
log

p(y|m∗, do(A),C)
1

L+1

∑
ℓ p(y|m∗

ℓ , do(A),C)

]
(13)

which is monotonically increasing in L and tight in the limit as L→ ∞ since

1

L+ 1

∑
ℓ

p(y|m∗
ℓ , do(A),C) → p(y|do(A),C) a.s. (14)

(See e.g. Foster et al., 2020, Theorem 1 for more detail).

Discrete action space Given K ≥ 2 possible treatments, we learn a (non-deterministic)
policy π with parameters α

πd,i =
exp((logαd,i + gd,i)/τ)∑K
j=1 exp((logαd,j + gd,j)/τ)

, i = 1, . . . ,K, gd,i,∼ Gumbel(0, 1), τ > 0, (15)

where the parameter τ is called the temperature, which we anneal during optimisation—
starting the optimisation at high temperatures, when gradients exhibit low variance, and
gradually reducing it towards 0, a which stage gradients are high variance, but we (should)
have already learnt good treatments. We optimise the parameters α and those of the critic
network ϕ jointly with SGA. Once the policy is trained, the optimal design for experiment d
in the batch is ad = argmax(πd,1, . . . , πd,K).

11



Appendix B. Additional Related Work

Our setting is related to contextual Bayesian optimisation; some of the more closely related
methods include Profile Expected Improvement (PEI, Ginsbourger et al., 2014), Multi-task
Thompson Sampling (MTS, Char et al., 2019) and conditional Bayesian optimization (ConBO,
Pearce et al., 2020). All of these methods are, however, restricted to GPs and the criteria
they use to choose optimal designs are not information-based.

Contextual bandits is another broad framework that our work is related to. An extensive
line of research is focused on online linear bandits and discrete actions chosen using (variations
of) UCB, Thompson sampling or ϵ-greedy strategy (Auer, 2002; Chu et al., 2011; Agrawal
and Goyal, 2013; Han et al., 2020). Krause and Ong (2011) instead model the reward as a
GP defined over the context-action space and develop CGP-UCB. More recently, Zanette
et al. (2021) proposed designing a batch of experiments offline to collect a good dataset from
which to learn a policy. Although this is similar to our setting, our approach is not restricted
to linear rewards and uses an information-theoretic design objective.

Similar variational EIG objectives have been used in implicit likelihood BED methods for
parameter learning, but not for contextual optimisation. Gradient-based methods for large
batch experimentation include SG-BOED (Foster et al., 2020) and MINEBED (Kleinegesse
and Gutmann, 2020), while the policy-based iDAD (Ivanova et al., 2021) applies to batch
and adaptive settings. Our ability to handle discrete designs is another important distinction
of our method.

Appendix C. Experiments

C.1 Training details

We implement all experiments in Pyro (Bingham et al., 2018). All experiments baselines ran
for 50K gradient steps, using a batch size of 2048. We used the Adam optimiser (Kingma
and Ba, 2014) with initial learning rate 0.001 and exponential learning rate annealing with
coefficient 0.96 applied every 1000 steps. We used a separable critic architecture (Poole et al.,
2019) with simple MLP encoders with ReLU activations and 32 output units.

For the discrete treatment example: we added batch norm to the critic architecture,
which helped to stabilise the optimisation. We had one hidden layer of size 512. Additionally,
for the Gumbel–Softmax policy, we started with a temperature τ = 2.0 and hard=False
constraint. We applied temperature annealing every 10K steps with a factor 0.5. We switch
to hard=True in the last 10K steps of training.

For the continuous treatment example: We used MLPs with hidden layers of sizes
[design dimension × 2, 412, 256] and 32 output units.

Note: In order to evaluate the EIG of various baselines, we train a critic network for each
one of them with the same hyperparameters as above.

C.2 Posterior inference details

After completing the training stage of our method (Algorithm 1), we need to deploy the
learnt optimal designs in the real world in order to obtain rewards y. This experimental data
is then used to fit a posterior p(ψ|D).
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Method EIG estimate MSE(m∗) MSE(ψ) Hit rate(A) Regret

UCB0.0 1.735 ± 0.005 2.541 ± 0.104 3.129 ± 0.054 0.513 ± 0.01 1.170 ± 0.036
UCB1.0 2.514 ± 0.006 1.003 ± 0.043 1.521 ± 0.021 0.496 ± 0.01 1.119 ± 0.035
UCB2.0 2.504 ± 0.006 0.965 ± 0.045 1.486 ± 0.021 0.497 ± 0.01 1.169 ± 0.037
Random 3.573 ± 0.006 1.953 ± 0.070 1.347 ± 0.024 0.503 ± 0.01 1.150 ± 0.036

Ours 4.729 ± 0.009 0.594 ± 0.025 1.326 ± 0.020 0.501 ± 0.01 1.152 ± 0.035

Table 2: Discrete treatments: evaluation metrics of 10D design.

Figure 4: Posterior checks

There are many ways to do the posterior inference and
quality of the results will crucially depend on the accuracy
of the fitted posteriors. In both of our examples and for
all baselines we use use Pyro’s self-normalised importance
sampling (SNIS). Samples from this posterior are used for
the evaluation metrics.

We validate the accuracy of estimated posteriors by
running various sanity checks, including diagnostic plots
such as Figure 4, showing the standard deviation of our
posterior mean estimate (measure of how uncertainty about
the parameter) and L2 error to the true parameter. The
red line shows the rolling mean over 200 points of the
latter, and the gray band—the 2 standard deviations. For
this plot we used the continuous treatments example with
D = 20 experimental contexts.

C.3 Evaluation metrics details

As discussed in the main text, we evaluate how well we can estimate m∗ by sampling a ground
truth ψ̃ from the prior and obtaining a corresponding ground truth m̃∗. We approximate the
max-values m∗ empirically using 2000 posterior samples of ψ We similarly estimate ψ using
2000 posterior samples. We define the optimal treatment under the posterior model to be
average (with respect to that posterior) optimal treatment when treatments are continuous or
UCB0 when treatments are discrete. Finally the regret is computed as the average difference
between the true max value (from the true environment and the true optimal treatment) and
the one obtained by applying the estimated optimal treatment. We used 4000 (resp. 2000)
true environment realisation for the continuous (resp. discrete) example.

C.4 Discrete treatments example

Model We first give details about the toy model we consider in Figure 3. Each of the four
treatments a = 1, 2, 3, 4 is a random function with two parameters ψk = (ψk,1, ψk,2) with the

13



Method EIG estimate MSE(m∗) MSE(ψ) Hit rate(A) Regret

UCB0.0 1.740 ± 0.003 2.709 ± 0.058 3.197 ± 0.018 0.500 ± 0.005 1.150 ± 0.017
UCB1.0 2.508 ± 0.002 0.993 ± 0.016 1.529 ± 0.007 0.498 ± 0.004 1.140 ± 0.007
UCB2.0 2.505 ± 0.006 0.991 ± 0.023 1.518 ± 0.012 0.497 ± 0.003 1.145 ± 0.015
Random 3.573 ± 0.333 2.369 ± 0.382 1.756 ± 0.269 0.502 ± 0.003 1.166 ± 0.008

Ours 4.769 ± 0.048 0.628 ± 0.025 1.369 ± 0.014 0.502 ± 0.005 1.160 ± 0.021

Table 3: Discrete treatments example: 10D design, stability across training seeds

following Gaussian priors (parameterised by mean and covariance matrix):

ψ1 ∼ N
((

5.00
15.0

)
,

(
9.00 0
0 9.00

))
ψ2 ∼ N

((
5.00
15.0

)
,

(
2.25 0
0 2.25

))
(16)

ψ3 ∼ N
((

−2.0
−1.0

)
,

(
1.21 0
0 1.21

))
ψ4 ∼ N

((
−7.0
3.0

)
,

(
1.21 0
0 1.21

))
(17)

and reward (outcome) likelihoods:

y|c,a, ψ ∼ N (f(c,a, ψ), 0.1) (18)

f(c,a, ψ) = −c2 + β(a, ψ)c+ γ(a, ψ) (19)
γ = (ψa,1 + ψa,2 + 18)/2 (20)
β = (ψa,2 − γ + 9)/3 (21)

Intuition about the parameterisation: The first component of each ψi defines the mean
reward at context c = −3, while the second one defines the mean reward at context c = 3.
The reward is then the quadratic equation that passes through those points and leading
coefficient equal to −1.

Experimental and evaluation contexts We use experimental and evaluation contexts
of the same sizes. The experimental context, c is an equally spaced grid of size 10 between
−3 and −1. We set the evaluation context c∗ = −c. Figure 3 in the main text visually
illustrates this: the x-axis of the points in each plot are the experimental contests, while the
dashed gray lines are the evaluation contexts.

Further results Table 2 shows all the evaluation metrics for the discrete treatment
example from the main text. Our method achieves substantially higher EIG and lower MSE
of estimating the max-rewards. On all other metrics all methods perform similarly. This
is to be expected, since Treatments 1 and 2 have exactly the same means and due to the
way the model was parameterised (by the value of the quadratic at contexts 3 and -3), the
probability of the optimal treatment being 1 or 2 is exactly 50% (the hit rate all baselines
achieve). Note that UCB1 and UCB2 achieve statistically identical results, which is expected
given they select the same designs.

Training stability We perform our method with the same hyperparameters but different
training seeds and report the mean and standard error in Table 3.
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Figure 5: Continuous treatment example: 20D design to learn about 19 evaluation contexts
(dashed gray lines). The random baseline samples treatments from N (0, 1).

Method EIG estimate MSE(m∗) MSE(ψ) MSE(A) Regret

Random0.2 5.548 ± 0.044 0.0037 ± 0.0002 0.0101 ± 0.0008 0.451 ± 0.033 0.083 ± 0.004
Random1.0 5.654 ± 0.128 0.0031 ± 0.0004 0.0065 ± 0.0008 0.343 ± 0.044 0.069 ± 0.006
Random2.0 5.118 ± 0.163 0.0045 ± 0.0003 0.0096 ± 0.0010 0.498 ± 0.032 0.086 ± 0.004
UCB0.0 5.768 ± 0.002 0.0066 ± 0.0002 0.0148 ± 0.0002 0.729 ± 0.022 0.082 ± 0.001
UCB1.0 5.892 ± 0.006 0.0031 ± 0.0001 0.0097 ± 0.0002 0.354 ± 0.013 0.068 ± 0.001
UCB2.0 5.797 ± 0.004 0.0030 ± 0.0001 0.0090 ± 0.0001 0.343 ± 0.011 0.071 ± 0.001

Ours 6.538 ± 0.008 0.0013 ± 0.0001 0.0038 ± 0.0001 0.131 ± 0.006 0.042 ± 0.0001

Table 4: Continuous treatments example: 40D design training stability. Mean and standard
error are reported across 6 different training seeds.

C.5 Continuous treatment example

Model For the continuous treatment example we use the following model:

Prior: ψ = (ψ0, ψ1, ψ2, ψ3), ψi ∼ Uniform[0.1, 1.1] iid (22)

Likelihood: y|c,a, ψ ∼ N (f(ψ,a, c), σ2), (23)

where

f(ψ,a, c) = exp

(
−
(
a− g(ψ, c)

)2
h(ψ, c)

)
g(ψ, c) = ψ0 + ψ1c+ ψ2c

2 h(ψ, c) = ψ3 (24)

Experimental and evaluation contexts The experimental context, c is an equally
spaced grid of size D = 40 (or 20 or 60 in Further Results below) between −3.5 and and
3.5. The evaluation context c∗ is of size D∗ = D − 1 and consists of the midpoints of the
experimental context (see Figure 5 for an illustration).
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Method EIG estimate MSE(m∗) MSE(ψ) MSE(A) Regret

Random0.2 4.262 ± 0.004 0.0086 ± 0.0003 0.0176 ± 0.0004 1.046 ± 0.041 0.120 ± 0.002
Random1.0 4.264 ± 0.004 0.0068 ± 0.0003 0.0158 ± 0.0004 0.799 ± 0.033 0.114 ± 0.002
Random2.0 4.116 ± 0.003 0.0083 ± 0.0003 0.0198 ± 0.0005 1.002 ± 0.044 0.127 ± 0.003
UCB0.0 5.093 ± 0.004 0.0074 ± 0.0004 0.0186 ± 0.0006 0.800 ± 0.047 0.097 ± 0.002
UCB1.0 5.040 ± 0.004 0.0072 ± 0.0004 0.0180 ± 0.0006 0.764 ± 0.041 0.097 ± 0.002
UCB2.0 5.038 ± 0.004 0.0048 ± 0.0003 0.0127 ± 0.0004 0.573 ± 0.033 0.086 ± 0.002

Ours 5.642 ± 0.003 0.0034 ± 0.0002 0.0073 ± 0.0003 0.065 ± 0.002 0.344 ± 0.027

Table 5: Continuous treatment example: 20D design to learn about 19 evaluation contexts.

Method EIG estimate MSE(m∗) MSE(ψ) MSE(A) Regret

Random0.2 6.033 ± 0.003 0.0026 ± 0.0001 0.0068 ± 0.0002 0.307 ± 0.019 0.068 ± 0.002
Random1.0 5.877 ± 0.004 0.0025 ± 0.0002 0.0058 ± 0.0002 0.310 ± 0.023 0.064 ± 0.002
Random2.0 6.153 ± 0.003 0.0022 ± 0.0002 0.0046 ± 0.0002 0.226 ± 0.019 0.055 ± 0.002
UCB0.0 6.106 ± 0.003 0.0056 ± 0.0004 0.0134 ± 0.0006 0.586 ± 0.045 0.077 ± 0.002
UCB1.0 6.200 ± 0.003 0.0027 ± 0.0003 0.0086 ± 0.0003 0.305 ± 0.028 0.063 ± 0.002
UCB2.0 6.234 ± 0.003 0.0024 ± 0.0002 0.0069 ± 0.0002 0.252 ± 0.024 0.064 ± 0.002

Ours 6.932 ± 0.003 0.0007 ± 0.0001 0.0027 ± 0.0001 0.069 ± 0.009 0.033 ± 0.001

Table 6: Continuous treatment example: 60D design to learn about 59 evaluation contexts.

Baselines Since we have a continuous treatment, for the random baseline we consider sam-
pling designs at random from N (0, 0.2), N (0, 1) or N (0, 2), which we denote by Random0.2,
Random1 and Random2, respectively.

Training stability We perform our method with the same hyperparameters but different
training seeds and report the mean and standard error in Table 4.

Further results We report the results of the same experiment, but with a smaller and
larger batch sizes of experimental and evaluation contexts. Table 5 shows results for
an experimental batch size of 20 contexts to learn about 19 evaluation contexts, while
Figure 5 visually illustrates the model and the designs. Finally, Table 6 shows results for an
experimental batch size of 60 contexts to learn about 59 evaluation contexts.
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