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Alihan Hüyük (University of Cambridge) ah2075@cam.ac.uk

Mihaela van der Schaar (University of Cambridge, UCLA, The ATI) mv472@cam.ac.uk

Abstract

We investigate a good arm identification problem in which the goal is to discover as many
arms above a threshold as fast as possible, subject to constraints on both confidence in each
individual discovery and total budget. This problem resembles existing fixed confidence
and fixed budget settings (which are usually considered separately) and aim for discovery
of all good arms, but requires different considerations when designing learning algorithms
because the combined constraint necessitates an early focus on the most promising arms
(as not all arms need to be classified in our setting). We consider two types of possible
solutions: successive discovery strategies for identifying individual good arms, and succes-
sive elimination strategies for identifying bundles of arms that are good on average. We
empirically investigate their performance and provide insight into the (dis)advantages of
these strategies as well as different components that can be used in their implementation.

1. Introduction

Consider a setting in which a player, given a set of options, aims to adaptively identify as
many good options as fast as possible – subject to both a constraint on confidence in every
discovery as well as a total budget limit. Here, good options are those that exceed a given
quality threshold; that is, chosen options do not necessarily need to be among the best as
long as they are “good enough”. Our interest in this setting was originally motivated by the
goal of designing adaptive clinical trials to discover subgroups in which a drug works – in
this context, any group with any effect is of interest[1], yet any discovery needs to be with
confidence to control Type I error and budget (in terms of patients that can be recruited) is
very limited. Nonetheless, we believe that this setting could be of general interest for many
more applications, e.g. recruitment or portfolio management, where the goal is to either
confidently identify a single good arm, candidate or other type of option as fast as possible,
or to confidently identify as many of them as possible given a pre-specified budget – and
therefore study this problem in generality here1. This problem fits perfectly within the
literatures on thresholding bandits [3–6] or good arm identification [7–9], but differs with
respect to previous work which usually focusses on discovering all good arms with either

1. In a companion paper [2] (also presented at this workshop), we study the original clinical trial problem
and considerations arising in this context in more detail. The learning strategies under investigation
in both papers are similar, however, the present paper differs in that it (i) takes a more general ‘good
arm identification’ perspective, (ii) focusses on understanding different implementation choices within
the considered learning strategies (i.e. the sampling and elimination rules discussed in Sec. 3) while the
previous paper fixes a single choice and (iii) contains a new and extensive empirical investigation into
the effects of those choices.
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fixed confidence or fixed budget. We provide a more extensive comparison with related
work and settings considered therein in Appendix A.

We hold that our problem – identifying good arms under a mixed fixed budget/fixed
confidence constraint – is sufficiently different and interesting to be considered separately
as it necessitates different considerations when designing learning algorithms: In the stan-
dard case where the ultimate goal is to identify all good options, performance is usually
dominated by the last discoveries, i.e. those that are hardest to make, and the timing of the
earliest discoveries is therefore not of primary interest. This changes in our setting: when
budget is very limited or the goal is to make any single discovery as fast as possible, it
instead becomes important to focus on the most promising options, i.e. those that can be
proven to be good using the fewest samples possible. We therefore believe that investigating
different learning strategies and their performance in this context is an interesting and novel
addition to the literature on good arm identification.

Outlook. To tackle our problem, we consider adapting two types of strategies that
have been used in the literature to solve related problem. On the one hand, we consider
strategies that we will refer to as successive discovery strategies: these strategies successively
sample individual arms according to some exploration rule, and after each sample make
individual discoveries by testing whether it is possible to declare any individual arm as
good/bad. When using upper confidence bound-based exploration (sampling) rules, this is
similar to the good arm identification algorithms proposed in [7–9]. We consider alternative
rules and provide insights into the strengths of different types of exploration rules in our
experiments. On the other hand, we consider strategies that allow us to solve a slightly
relaxed version of our problem: instead of demanding individual good arms to be identified,
we now also accept bundles of arms (super-arms) that are good on average. This relaxation
is inspired by clinical trials where a drug usually only has to be demonstrated to work across
a population on average, but applies to other settings e.g. ensuring average quality of a
workforce or average performance of a portfolio. In this case, it can be interesting to rely on
successive elimination strategies, which sample all active arms (those that are still under
consideration) at each time step and can subsequently either accept the complete active
set of arms as good or remove individual arms that appear bad. In our experiments, we
demonstrate when and how such elimination strategies can speed up identification as they
allow to share statistical strength across arms.

2. Problem setting

We consider a setting with K arms (options) and a player that at each time t chooses an arm
Jt ∈ K to observe reward Xt ∼ νJt from, where all Xt are subgaussian random variables
with mean µJt = EνJt

[Xt]. An arm j is considered good if µj > µ0, where µ0 is some

prespecified threshold. Given prespecified weights for arms πj ∈ [0, 1] with
∑K

j=1 πj = 1,
we also consider super-arms (sets/bundles of arms) S ⊆ K, which are considered good if
µS =

∑
j∈S

πjµj∑
j∈S πj

> µ0. Throughout, we assume πj =
1
K so that µS = |S|−1

∑
j∈S µj .

The ultimate goal of the player is to identify the set Sgood = {j : µj > µ0} with
high confidence, but budget is limited to B rounds of sampling. In the strict version of
the problem, we therefore aim to discover the largest set of arms that can be individually
declared good with high confidence, i.e. using at most B samples, find a set Ŝstrict = {j :
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P(µj ≤ µ0) ≤ α}. In the relaxed version of the problem, we instead aim to find the largest
good super-arm, which is good on average with high confidence, i.e. a set Ŝrelax ⊆ K s.t.
P(µS ≤ µ0) ≤ α. It is well-known that the number of samples needed to distinguish µj

from µ0 scales as (µj − µ0)
−2, which can get very large as µj approaches the threshold

µ0 [7], making it disproportionally difficult to classify arms with very small distance to
the threshold. Inspired by common practice in clinical trials [10], we therefore introduce
a minimum relevance threshold µmin > µ0 (to be set depending on the application under
consideration) and allow arms to be declared bad when they lie below µmin while ensuring
that power to detect larger effects is preserved, i.e. P(j is declared bad|µj = µmin) ≤ β.

Throughout, we denote by Nj(t) =
∑

t′≤t 1{Jt′ = j} and NS(t) =
∑

t′≤t 1{Jt′ ∈ S}
the number of times an arm and super-arm, respectively, has been played by time t, and
estimate means of individual arms by µ̂j,Nj(t) = Nj(t)

−1
∑

t′≤t 1{Jt′ = j}Xt′ and, if all arms

have been sampled equally often, of super-arms by µ̂S,NS(t) = NS(t)
−1

∑
t′≤t 1{Jt′ ∈ S}Xt′ ,

respectively. As [7], we assume access to confidence intervals ϕ(t, δ) for which it holds that
P(∩∞

t=1{|µ̂S,t − µS | ≤ ϕ(t, δ)})≥1−δ for δ ∈ (0, 1) and instantiate it using Thm. 8 of [11].

3. Learning strategies

In this section, we introduce and discuss two types of learning strategies that can be used
to discover (i) sets of individually good arms and (ii) good super-arms, respectively. Note
that solutions to (i) are also valid solutions to (ii), but the reverse is not necessarily true.

3.1 Successive discovery strategies

We first consider successive discovery strategies, versions of which have been used for good
arm identification (GAI) with fixed confidence [7–9], originally inspired by upper confidence
bound (UCB)-style algorithms for best arm identification [12, 13]. We consider the following
general procedure a successive discovery strategy: at each time step t before budget B is
exhausted, the algorithm (i) chooses an arm Jt from the unclassified active set A to sample
from using an exploration rule E , (ii) checks whether any arm i can be identified as good
and removed from A because µ̂i,Ni(t) − ϕ(Ni(t), α) > µ0 and (iii) checks whether any arm i
can be discarded2 and removed from A because µ̂i,Ni(t) + ϕ(Ni(t), β) < µmin.

Clearly, the exploration rule E used in such a successive discovery strategy will have a
large impact on how fast the first arms will be discovered. In our experiments, we therefore
investigate the use of different rules:

• Eunif : The simplest sampling rule would be to uniformly sample any one of the active
arms, ignoring any information that has accumulated.

• EUCB: The standard sampling rule in the GAI literature [7–9] seems to use an opti-
mistic UCB approach, i.e. sample argmaxj∈A µ̂j,Nj(t−1) + ϕ(Nj(t − 1), α). This rule
selects the arm that currently appears best (i.e. likely to have the highest mean), how-
ever, it does not necessarily exploit accumulated knowledge by repeatedly sampling an
arm who is close to be identified as good; in fact, as ϕ(t, δ) shrinks with increasing t,
we suspect that EUCB may encourage frequent switching between similar arms which

2. The formulation presented here is more general than existing GAI algorithms, which either do not remove
arms [7, 9] or use the same threshold & confidence for removal and discovery [8].
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may lead to no identifications when budget is very limited. Therefore, we explore the
use of two new sampling strategies for this problem.

• ELCB: As our identification criterion relies on a lower confidence bound (LCB), sam-
pling the arm with the best LCB would correspond to selecting arms that appear most
promising for early identification. Thus, we also consider using ELCB which chooses
argmaxj∈A µ̂j,Nj(t−1) − ϕ(Nj(t − 1), α). Again, as ϕ(t, δ) shrinks in t, this strategy
may conversely risk getting stuck on an arm that only appeared good early on.

• ELUCB: We therefore consider a final strategy ELUCB = EUCB ∪ELCB which will take
two consecutive samples whenever sampling according to UCB and LCB disagree.

3.2 Successive elimination strategies

Second, we consider successive elimination strategies, versions of which have been used for
best arm identification, e.g. [12, 14], where they have empirically been shown to be very
wasteful [13]. In our relaxed problem formulation that aims to only find a good super-arm,
on the other hand, we believe that successive elimination strategies can be more efficient
than successive discovery when allowing to share statistical strength (sample size) across
all sampled arms. We consider the following general successive elimination strategy: while
budget is not depleted, (i) sample each arm in the active set (super-arm) A once, (ii) test
whether the active super-arm can be identified as good as µ̂A,NA(t) − ϕ(NA(t), α) > µ0 and
(iii) remove bad individual arms from the active set using a removal (elimination) rule R.

Here, the removal (elimination) rule R will determine how the algorithm behaves. We
consider two possibilities:

• Rarm: As in the successive discovery strategy, we use an arm-based removal rule that
checks for any arm that can be removed individually through µ̂i,Ni(t) + ϕ(Ni(t), β) <
µmin. Note that successive elimination with Rarm is almost identical to successive
discovery with Eunif and differs only in the identification rule used (arm-based vs
super-arm-based).

• Rsuper: In addition, we exploit that we could also make use of super-arm information
also when removing arms. The event 1{µ̂A,NA(t) + ϕ(NA(t), β) < µmin} provides
evidence that at least one arm does not meet the minimum quality µmin, so when this
event occurs, we remove the empirically worst arm argminj∈A µ̂j,Nj(t) − ϕ(Nj(t), α)

4. Empirical Investigation: Understanding the (dis)advantages of
different strategies

We consider a stylized simulation setup to gain insight into the (dis)advantages of the
two strategies (Successive Discovery – SDisc – and Successive Elimination – SElim) and
their different sampling and removal rules. We consider K = 10 arms and assume that

we observe Xt ∼ N (µJt , 1). As [7], we use ϕ(t, δ) =

√
2log(1/δ)+3 log log(1/δ)+(3/2) log log(et/2))t .

We let µ0 = 0, µmin = 0.5, α = 0.05 and β = 0.1. In the main results presented in Fig.
1, we let µj ∈ {µb, µg}, where µb = 0 and µg = 0.5 unless stated otherwise, and vary
ng = |{j : µj ≥ 0}|. Throughout, we do not restrict budget and report tstop, the stopping
time of the algorithm (i.e. the time when all arms are classified as good or not), as well as

tid,jg and tid,jb , the time taken to identify the jth good arm and to discard the jth bad arm,
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Figure 1: Results describing time until (A) termination, (B&C) identification of good arms and
(D&E) removal of bad arms, avg. across 1000 replications. (A): Time to termination tstop by
number of good arms ng. (B&C): Number of good arm identifications over time, for ng=4 (B) and
ng=8 (C). (D&E): Number of removals of bad arms over time, for ng=2 (D) and ng=6 (E).

respectively; doing so allows us to understand what the algorithm would have identified
given any budget. We discuss insights in turn below; additional results are in Appendix B.

Natural stopping times. In Fig. 1A, we investigate how long it would take the
different algorithms to select/discard all arms for different ng. First, we observe that
the sampling strategy of SDisc has no impact on the stopping time; this is expected as
identification of the final/worst arm determines tstop. Second, the total time to termination
increases as ng increases for SDisc because the identification criterion is stricter than the
removal criterion (i.e. β > α). Third, SElim(Rarm), which is identical to SDisc(Eunif )
except for the super-arm-based identification criterion, performs identically to SDisc when
ng = 0 but begins to terminate earlier when ng increases as sample size can be shared
across good arms. Finally, SElim(Rarm + Rsuper) terminates fastest throughout, as it
shares statistical strength across arms both when discarding and accepting arms; thus, the
more homogeneous the arms (ng close to 0 or 10) the faster it terminates.

Time to identify the jth good arm. In Fig. 1B&C, we investigate when the different
algorithms make good arm discoveries, for ng = 4, 8. When comparing algorithms, we find
that SDisc generally makes the first discovery before SElim, as SElim makes all discoveries
at the same time (yet this often happens before SDisc even makes its second discovery).
When comparing sampling strategies within SDisc, major differences become visible. (Non-
adaptive) uniform sampling now clearly appears suboptimal; the first discovery happens
much later than for adaptive sampling and subsequent discoveries happen much quicker
after each other. Within the adaptive strategies, ELCB indeed makes the first few discoveries
faster than EUCB in this setting, as the latter will unnecessarily switch between good arms
as upper bounds cross (because the underlying good means are identical); as expected,
ELUCB lies inbetween.

Figure 2: Good arm identifications over time
for two additional scenarios.

If the good arms were to exhibit quantita-
tively very different effects, the arm with the
largest µj should need least samples to be discov-
ered – thus we would expect UCB-type strate-
gies that haven proven successful in best arm
identification [13] to be advantageous in this
context. In Fig 2, we therefore further inves-
tigate the relative performance of sampling strategies when altering the underlying sim-
ulation: when the means in good arms are very different (Scen. 1: µ1 = 0.5, µ2 = 1;
µj = 0, j > 2) the relative performance indeed reverses. With more good arms and
less spacing between means (Scen. 2: µj = 0.5 + 0.5

7 (j − 1), j ≤ 8; µj = 0, j > 8),
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this difference becomes less pronounced. In Appendix B, we additionally investigate
how sampling strategies compare when outcome variance is known to differ across arms.

Time to discard the jth bad arm. In Fig. 1D&E, we investigate when the different
algorithms discard arms that do not appear good. First, we observe that, unsurprisingly,
SElim – an algorithm operating by successive elimination – discards arms much faster than
SDisc. Second, we observe that SElim(Rarm +Rsuper) indeed benefits from the super-arm-
based removal criterion as arms are discarded much faster especially when ng small, which is
when the super-arm-based removal criterion will be met earlier. Third, we note that uniform
sampling leads to faster elimination than (L)UCB-based sampling, which is expected as the
latter actively avoid sampling arms that appear bad. Perhaps more surprisingly, LCB
sampling leads to similarly fast discarding of the first bad arms, which we attribute to LCB
being more likely to continue sampling from a arm that has already been sampled often.

Figure 3: (A): Avg. number of missed arms by ng.
(B& C): Avg. |S| by ng, for µb= 0,−0.5.

Incorrectly classified arms. Finally,
we consider whether arms are (in)correctly
classified as good. In Fig. 3A, we observe
that good arms are seldomly missed by ei-
ther algorithm (in fact, the rate lies far be-
low the expected β ∗ng, which we attribute
to the used anytime confidence intervals be-
ing unnecessarily conservative as t << ∞
here); only SElim removes good arms slightly more often with the aggressive removal cri-
terion Rsuper. Further, in Fig. 3B, we observe interesting differences in arms below the
threshold that are included in the selected set S (note: for SElim, this does not necessarily
constitute an error as long as µS > 0). As SDisc identifies arms individually, |S| ≈ ng

throughout, while SElim allows free-riding of arms with µj = µb on the larger means of
good arms, i.e. |S| > ng, especially when ng is large, which leads to the super-arm mean
being worse but still good (above µ0). In Fig. 3C we set µb=−0.5 instead of 0, and observe
that this behavior decreases when arms contribute sufficiently large negative effects.

5. Conclusion and Future Work

We investigated how to best identify many good arms fast in a setting where there are con-
straints on both confidence and budget, and presented empirical insights into (dis)advantages
of successive discovery versus successive elimination strategies, as well as different explo-
ration and removal rules that could be used in their implementation. We showed that the
elimination-based strategy, which only discovers a good super-arm, generally terminates
using fewer samples, but may include arms that are not truly good if other arms have
a sufficiently high mean. Using successive discovery strategies, which discover individual
arms, this can generally be avoided – if one is willing to use substantially more samples.
Comparing sampling strategies for successive discovery, we found that there are scenarios
where either UCB or LCB-sampling dominate, making LUCB-sampling a good intermedi-
ate choice. It would be an interesting next step to complement these empirical findings
with theoretical ones, e.g. by theoretically investigating how the complexities of the strict
and relaxed problem formulations compare or by theoretically characterizing the problem
structures under which different exploration rules are expected to have an advantage.
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[19] Rémy Degenne and Wouter M Koolen. Pure exploration with multiple correct answers.
Advances in Neural Information Processing Systems, 32, 2019.

[20] Victor Gabillon, Mohammad Ghavamzadeh, and Alessandro Lazaric. Best arm identi-
fication: A unified approach to fixed budget and fixed confidence. Advances in Neural
Information Processing Systems, 25, 2012.
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Appendix A. Extended literature review: Relationship to bandit
literature

The prototypical goal in a bandit problem is to maximize the rewards of all arms that
are played (e.g. [15]). Since the mean rewards are unknown initially, this requires striking
a balance between exploring arms to gain information about their rewards and exploiting
arms that appear to have high rewards. Instead, we focus here on a setting that is known as
pure exploration in the bandit literature, where the rewards of played arms do not matter
except for that of a singular arm identified at the end [16–19].

Different purely-exploratory objectives have been considered in the multi-armed bandit
literature. Best arm identification (BAI) problems aim to identify the arm (or the top-K
arms) with the largest mean reward (e.g. [12]). Here, the success can be measured via the
reward gap between the identified arm and the true best arm. In the fixed budget setting, the
goal is to maximize the probability of the identified arm indeed being the best given a fixed
budget of samples [20–22], while in the fixed confidence setting, the goal is to minimize the
number of samples necessary to guarantee a fixed level of confidence [20, 23–29]. Good arm
identification (GAI) problems (sometimes called pure exploration in thresholding bandits)
aim to identify arms with mean rewards that are higher than a pre-specified threshold.
These problems too can be considered either in fixed budget [3, 6] or fixed confidence [8, 9]
settings. In this literature, two dominant types of learning strategy seem to have emerged:
the thresholding bandit solutions of e.g. [3, 6] focus on playing arms close to the threshold to
increase confidence in classification of the hardest arms, while the literature titled good arm
identification [8, 9] has relied on successive discovery strategies similar to what we describe
in the main text. [9]’s successive discovery strategy additionally relies on a subsampling
strategy (of the active set) to speed up discovery when there are many good arms; this
improvement could be incorporated into the successive discovery strategy we consider and
is orthogonal to our investigation of sampling rules.

Our strict problem formulation is thus essentially a type of GAI problem but it requires
both the budget as well as the confidence in each identified arm being good to be fixed3,
and given those constraints, aims to identify as many good arms as possible. In existing
formulations of GAI, the aim is usually to identify all good arms, which is only possible with
the more relaxed constraint of either just the budget or the confidence being fixed (but not
both at the same time). The relaxed version of our problem is similar in that it too requires
both the budget and the confidence to be fixed but it only aims to identify a collection of
arms that are good on average rather than arms that are all individually good.4 Table 1
formally compares our strict and relaxed problems with existing pure exploration problems.

3. In this paper, we consider a relatively weak requirement for error-control: we require each single discovery
to be true at pre-specified confidence level α, which means that the total error can be as large as Kα
(strict problem) or 2Kα (relaxed problem, due to combinatorial nature of super-arms). In our clinical
trial focussed companion paper [2], we seek stricter control of the Familywise Error Rate (FWER) using
Bonferroni-style adjustments.

4. Our relaxed problem formulation could be seen as a generic combinatorial bandit problem [18, 30];
however, to the best of our knowledge no existing solutions exploit the idea of sharing statistical strength
across arms by pooling samples and solutions derived from e.g. [18, 30] would therefore resemble standard
GAI solutions.
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Table 1: Comparison of pure exploration problems. The strict and relaxed verions of our problem
uniquely require both the budget as well as the confidence to be fixed, and aim to identify as many
suitable arms as possible within those constraints. In contrast, other problems aim to identify all
suitable arms, which is only possible with the more relaxed constraint of either just the budget or
just the confidence being fixed. FB and FC stand for fixed budget and fixed confidence respectively.

Problem Ref.
Type of

arms identified
Number of

arms identified
Budget Confidence Formulation

BAI [12]
Best arms

i∗ = argmaxi µi
Top-K arms

Variable Variable minimize µi∗ − µı̂∗

BAI w/ FB [22] Fixed (T ) Maximized maximize P(̂ı∗(T ) = i∗)
BAI w/ FC [29] Minimized Fixed (1− δ) minimize T s.t. P(̂ı∗(T ) ̸= i∗) ≤ δ

GAI w/ FB [3] Good arms
I = {i : µi > µ0}

All good arms
Fixed (T ) Maximized maximize P(Î(T ) = I)

GAI w/ FC [9] Minimized Fixed (1− δ) minimize T s.t. P(Î(T ) ̸= I) ≤ δ

Strict (Ours)
Good arms

I = {i : µi > µ0}
Maximized Fixed (T )

Fixed (1− δ)
w.r.t. single discovery

maximize |Î(T )| s.t. for j ∈ Î(T ), P(µj < µ0) ≤ δ

Relaxed (Ours)
Good super arms

I : 1
|I|

∑
i∈I µi > µ0

Maximized Fixed (T ) Fixed (1− δ) maximize |Î(T )| s.t. P
(

1
|Î(T )|

∑
i∈Î(T ) µi ̸> µ0

)
≤ δ

Appendix B. Additional Results

B.1 Identifications: Complete results

In Fig. 4, we present results capturing time until identification of each good arm for
ng ∈ {2, 4, 6, 8, 10} (only ng = 4, 8 are presented in the main text). In Fig. 5, we present
results capturing time until removal of each bad arm for ng ∈ {0, 2, 4, 6, 8} (only ng = 2, 6
are presented in the main text). These results reflect the same insights as those presented in
the main text, both in terms of comparing algorithms and in terms of comparing sampling
strategies.

Figure 4: Results describing identification of good arms over time, for ng ∈ {2, 4, 6, 8, 10}; avg.
across 1000 replications.

Figure 5: Results describing removal of bad arms over time, for ng ∈ {0, 2, 4, 6, 8}; avg. across 1000
replications.

B.2 Additional simulation scenarios

Varying means We present additional results on the setting presented in Fig. 2 of the
main text: for ng ∈ {2, . . . , 10} we let µj = 0.5+0.5 j−1

ng−1 for j ≤ ng and µj = 0 otherwise. As
discussed in the main text, we observe that the relative performance of sampling strategies
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changes in this setting: ELCB generally performs worse than EUCB here; with increasing ng

and hence decreasing spacing between the good means, this effect reduces.

Figure 6: Results describing identification of good arms over time, for ng ∈ {2, 4, 6, 8, 10} for a
setting with varying means; avg. across 1000 replications.

Different variances Finally, we consider how changing variance affects the performance
of the different sampling algorithms5. In Fig. 7(a), we compare the original setting (µg =
0.5) with ng = 2 and σ = 1 for all arms to one where the means are the same but σ1 = 0.5
and σ2 = 1. In Fig. 7(b), we compare the setting with ng = 2 and µ1 = 0.5 and µ2 = 1 with
σ = 1 for all arms from the previous paragraph, to one where either the better arm (j = 1)
or the worse arm (j = 2) has smaller variance σj = 0.5 than all other arms with σ = 1.
We make a number of interesting observations: In the setting on the left hand side, where
means are equal, we observe that ELCB improves compared to EUCB when variance differs,
as it intrinsically makes use of the fact that arms with lower variance need less samples to
be identified, while EUCB may erroneously focus on arms with high variance (which have
higher UCB). In the setting on the right hand side, where means differ, we observe that the
advantage of EUCB over ELCB in discovering the first good arm observed in the constant
variance setting essentially disappears as we let variance differ. This is expected when the
better arm has a lower variance as the higher UCB of the worse arm may confuse EUCB but
ELCB would sample the correct arm. Perhaps more surprisingly, it seems that even when
the worse arm has the lower variance, ELCB outperforms EUCB.

(a) Equal means (b) Different means

Figure 7: Results describing identification of good arms over time for different variances, for ng = 2
with equal means (left) and different means (right)

5. We assume known variance and use ϕ(t, δ) = σ
√

2log(1/δ)+3 log log(1/δ)+(3/2) log log(et/2))
t

from [11]
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