ICML2022 Workshop on Adaptive Experimental Design and Active Learning in the Real World

LG-FAL : Federated Active Learning Strategy using
Local and Global Models

SangMook Kim * SANGMOOK.KIM@KAIST.AC.KR
SangMin Bae * BSMN0223@KAIST.AC.KR
Se-Young Yun f YUNSEYOUNG@KAIST.AC.KR
Kim Jaechul Graduate School of AI, KAIST

Hwanjun Song ' HWANJUN.SONG@NAVERCORP.COM

CLOVA AI Research, NAVER

Abstract

Recently, using unlabeled data points of each client in federated learning is attracting
attention. Federated active learning is a framework that annotates and utilizes informative
unlabeled instances at the client level. In FAL, we observe that there are two types of query
selectors, namely ‘global’ and ‘local only’ models, and their performance dominance differs
across datasets. In this paper, we analyze the advantages of the two query selectors and then
propose a new FAL strategy, named LG-FAL, that exploits both benefits. Our experiments
confirm that LG-FAL shows excellent performance on various benchmark datasets.

Keywords: Federated Learning, Active Learning

1. Introduction

Federated Learning (FL) is a distributed framework that allows multiple parties to learn
machine models cooperatively without direct access to local client data for the privacy-
preserving. Existing studies on federated learning assume the known ground-truth labels
of the entire data, but in the real-world scenario, each client inevitably contains a large
amount of unlabeled data due to the high cost of labeling. Annotating and exploiting
the unlabeled set guarantees model performance improvement. However, as the labeling
budget is limited in real applications, it is common to choose small but informative training
instances to annotate. Therefore, active learning (AL) is becoming a promising learning
protocol to reduce the high human-labeling cost, where a small number of maximally-
informative instances are selected by a query strategy and labeled by an oracle.

Federated active learning (FAL) (Ahmed et al., 2020; Ahn et al., 2022) merges the philos-
ophy of AL into FL. As demonstrated in Figure 1-(a), each client queries the instances with
an AL sampling strategy, selecting potentially the most informative instances iteratively un-
der the FL pipeline. Given a decentralized pipeline in FL, there are two types of available
models as the query selector: (1) a ‘global’ model, which is the model globally optimized
through model aggregation, and (2) a ‘local only’ model, which is the model separately
trained in the client side only for its local data. So far, the global model has been recog-
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Figure 1: (a) shows the FAL framework where the performance of the global model is
improved by continuously annotating unlabeled data on the local client-side, and
(b) contrasts the performance of two query selectors, the global and the local only
models, when BADGE was used as the query criterion.

nized as a better selector for FAL (Ahn et al., 2022), but we found an opposite result that
the local only model can outperform the global model with respect to data diversity; the
local only model provides more effective queries for FAL in CIFAR-10 data of Figure 1-(b).

Based on this finding, we study a new perspective of query selection in FAL — the local
only model helps increase intra- and inter-class diversity of the selected query instances. In
this paper, we propose a new FAL querying scheme, coined as LG-FAL (Local and Global
FAL), which leverages both local only and global models throughout two phases, decoupling
the role of the two models for query selection: (1) the first phase improves the intra- and
inter-class diversity of the selected instances with the local only model (2) while the second
phase improves the informativeness of them with the global model. We verified that LG-
FAL consistently outperforms other combinations of query selectors, naemly global only,
local only, and their ensemble model, on CIFAR-10, SVHN, and medical datasets.

2. Problem Definition

Let U}, be the unlabeled set of k-th client at the round r, where & = {1,..., K'}. At the first
AL round (i.e., r = 1), each client randomly selects B instances L}, = {z1,...,zg} from U
and labels them to obtain the initial labeled set Di = {(x1,41),..., (25, yp)}. For the next
round (i.e., 7 > 2), each client selects additional B instances L} from U, ' = U] 2\ L~}
based on the given querying criterion, they are labeled by the oracle to expand the previous
labeled set to D} = D} ' U{(2;,y:) | ; € L} }. For the evaluation of the selected instances,
a global model 6 is tralned from the random initialization in a FL fashion. The objective
of FL is to obtain the optimal parameter 6*, minimizing the loss on D" = UleDZ as

|D7|

0* = argmin f(6), where f(0 |DT‘ Zfl (1)

0

where f;(0) = {(x;,y;;0) and £(-) is the loss function determined by the network parameter.



However, due to the data privacy, the global model is optimized based on the reformu-
lated update rule on the partitioned data over clients, as follows:

K

HGEDY | Dkl F(0}), where F(6}) = |D1T| > lwi i 0p), (2)
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where the model 07 is updated locally in the client side for its local data Dj, and then
they are aggregated globally to generate a global model 8”. The local update and model
aggregation procedures are alternated until the global model converges; this is the most
popular FL training pipeline proposed by FedAvg (McMahan et al., 2017).

Regarding the query selection per AL round, the converged global model 6"+ is typically
used as the query selector. Since the global model is distributed to all clients in FL setup,
each client queries the unlabeled instances based on the model for labeling. Let A(-) be the
querying function and B be the labeling budget. Then, the query set of the k-th client for
the round r + 1 is constructed by

Lyt = A(US,0™,B) where Uy =U; '\ Lj. (3)

The querying function A(-) in Eq. (3) could vary depending on which active learning
algorithm is used. For example, Confidence Sampling (Wang and Shang, 2014) queries the
instances with the highest uncertainty as

A(U,Q,B) = argmax - p(y|x70)97 (4)
LCU,|L|=B,z€L
where ¢ denotes the index of top-1 class probability. After updating the available labeled
dataset, i.e., Ditt = DY U{(2;,5:) | z; € L'}, we train the global model §"+* for the next
AL round by Eq. (2). This procedure is repeated during the given AL rounds.

3. Proposed LG-FAL Method
3.1 Local Only vs. Global Models

We consider two different trained models: (1) the local only models optimized in each client
for their local data (i.e., the partitioned dataset D), and (2) the global model optimized
for the entire data via the FL pipeline. In this section, we investigate what benefits the
two models can provide as the query selector for FAL. We analyze the instances queried by
the two different models using the Margin Sampling criterion on CIFAR-10; the other AL
uncertainty-based strategies showed consistent trends.

Local Only Model helps increase intra- and inter-class diversity in query selection.

The intra-class diversity indicates how much the queried set can represent the entire
unlabeled set within a specific class boundary. To measure this perspective, we visualize
the feature embeddings via t-SNE (Van der Maaten and Hinton, 2008) in Figure 2. We can
observe that the local only model takes more diverse instances when selecting the query (i.e.,
the dotted red circles). In contrast, when the global model is used for all clients, the queried
instances tend to be skewed towards the specific feature spaces. Meanwhile, for the local
only models, the query set respectively labeled by different local models covers a wider
region in their coverage because each local model can focus on its own local feature spaces.
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Figure 2: t-SNE visualization to measure intra-class diversity. ‘Yellow’ and ‘blue’ colors
in (b) and (c) represent the unlabeled set and the query set, respectively. The
t-SNE embeddings of CIFAR-10 is extracted using pre-trained ResNet-18.

The inter-class diversity indicates the class bal- Table 1: The quantitative analysis

ance with respect to the number of instances; that of the inter-class diversity.
is, the labeled set should maintain the similar num- Selector | IR | EMD
ber of instances over classes. Table 1 measures the Global 2774180 | 0.3320.06

two indicators for inter-class diversity: (1) Imbalance Local Only | 105479 | 0.2440.06
Ratio (IR) (Buda et al., 2018), which is the propor-
tion of the number of the majority class to that of the minority class, and (2) Earth Mover’s
Distance (EMD) (Zhao et al., 2018), which is the distance between two data distributions,
i.e., local client’s data and the entire global data (IR and EMD scores are averaged over
all clients). As shown in Table 1, since each local only model has high uncertainty on the
minor class of its local training data, the class distribution of the locally queried set tends
to be balanced, resulting in a better balance of aggregated query set over clients. Therefore,
the IR and EMD scores of the local only model are much smaller than those of the global
model. In addition, the lower EMD score between the global and local distribution indicates
weight divergence of hindering model convergence can be alleviated.

Based on the results, we confirm that the local only model considers the intra- and
inter-class diversity better than the global model.

Global Model helps increase informativeness in query selection. The global model is
the subject of learning and performing prediction. Hence, as witnessed by other FAL
literature (Ahmed et al., 2020; Ahn et al., 2022), it excels at identifying informative instances
in unlabeled data compared with the local only model.

3.2 Two-Phase Strategy Integrating Local Only and Global Models

To construct a query set with high diversity and informativeness, we propose a two-phase
way named LG-FAL, integrating the local only and global models for query selection. Figure
3 is the overview of LG-FAL. Our algorithm consists of two phases, leading to (1) high intra-
and inter-class diversity using the local only model and (2) high informativeness using the
global model. For the ease understanding, let us assume a scenario where the k-th client
queries B unlabeled instances in AL round r + 1:
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Figure 3: Overview of LG-FAL strategy. The labeling budget B = 3 in this example.

e Phase I: First, we extract the feature embeddings of the unlabeled set using the local only
model 6;.. Then, we select the query set with a uncertain sampling method A(Uy, 0;., B),
where the sampling method can be any uncertainty-based or hybrid strategy. Lastly, the
features obtained in the first step are clustered into B numbers. Here, the cluster centers
correspond to the instances chosen by the local only model. Note that they are not
directly used as the query, but the clusters provide representation boundaries with high
intra- and inter-class diversity to the next phase.

e Phase II: We sample the final query instances based on the informativeness score com-
puted by the global model. However, a stratified sampling is applied using the clusters
obtained in Phase I. Let C; be the i-th cluster. Then, the final B query instances are se-
lected, one for each cluster; the most informative instance by the global model is selected
respectively within each cluster boundary,

L = {A(C1, 07, 1), .., A(Cp. 6™ 1)) (5)

By doing this, class diversity can be maintained without losing informativeness. There-
fore, our method can leverage the advantages of both global and local only models,
achieving high intra- and inter-class diversity and high informativeness.

4. Performance Evaluation

The used datasets and evaluation setup is detailed in Appendix B for sake of space.

4.1 Local Only and Global Models vs. LG-FAL

We evaluate that LG-FAL outperforms the baseline methods using global and local only
models as their query selector. For LG-FAL, we use Margin sampling in Phase I and II, but
any combination of uncertainty-based sampling is possible. For the baselines, we combine
them with the most representative AL method, BADGE, to select the query set; BADGE
is known to achieve excellent performance by considering uncertainty and diversity even in
the FL setting. The comparison with other combinations is provided in Appendix C.
Looking at the Figure 4, the proposed LG-FAL queries more diverse and informative
instances, achieving consistently the best test accuracy in every datasets. This is because
LG-FAL utilizes the advantages of local only and global models properly through its two



Local Only(BADGE) ~ ====* Ens-Margin =~ ===== Random-Margin

75 87
86
85

Test Accuracy(%)
Test Accuracy(%)

65

01 02 03 04 05 06 07 08 0.1 0.2 0.3 0.4 0.5
Ratio of Queries Ratio of Queries

0.1 0.2 03 0.4 0.5
Ratio of Queries

(a) CIFAR-10 (b) SVHN (¢) PathMNIST
Figure 4: Comparison of active learning test accuracy on the various benchmark datasets.

phases. In contrast, there is no winner between Global (BADGE) and Local Only (BADGE)
since their performance dominance is not consistent across datasets. Therefore, LG-FAL
provides data-agnostic performance improvements over other baseliens.

4.2 Simple Ensemble vs. LG-FAL

An ensemble of local and global models can be a simple way to combine them. To compare
LG-FAL with it, we analyze the effect of the ensemble by applying Margin sampling to the
average of prediction vectors of the local only and global model. ‘Ens-Margin’ of Figure
4 shows the Ensemble-Margin sampling performance. Its performance lies in the middle
between the performance of the local only model and the global model. That is, this simple
way suffers from a performance trade-off between the two models. However, LG-FAL shows
consistently the best performance by decoupling the role of two models through two phases.

4.3 Inter-Class Diversity: Random Sampling vs. LG-FAL

In Phase I of LG-FAL, we split representation space into B clusters that have centroids with
high uncertainty; this improves intra- and inter-class diversity. We compare this approach
with a simple random sampling method, which is a traditional way to keep intra-class
diversity (see ‘Random-Margin’ in Figure 4). Compared to LG-FAL, there is a significant
performance drop when using random sampling in Phase I. This is because random sampling
cannot increase ‘inter-class’ diversity in the presence of the class imbalance problem in local
data; that is, it samples more instances from a major class. In contrast, our uncertainty-
based clusters give higher sampling weights to the instances in a minor class due to their
high uncertainty, therefore achieving high intra- and inter-class diversity simultaneously.

5. Conclusion

We proposed a novel algorithm LG-FAL that selects diverse and informative queries using
global and local only models. It was shown from various datasets that LG-FAL queries the
instances with high intra- and inter-class diversity as well as high informativeness, compared
with other combinations of query selection models and strategies. Our research will provide
deep insight and research direction into the field of federated active learning.
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Appendix A. Related Work

A.1 Active Learning

Active Learning (AL) is a promising approach to minimize the labeling effort by querying the
most valuable samples among the pool of unlabeled dataset. There are three major types
of active learning strategies; uncertainty sampling, representative sampling, and hybrid
strategy. Uncertain sampling queries the most uncertain samples that lie on the current
decision boundary. The predictive class probability distribution has been widely used to
approximate the distance to the decision boundary; Confidence sampling (Wang and Shang,
2014), Margin sampling (Roth and Small, 2006), or Entropy sampling (Wang and Shang,
2014). In addition, there are various criterion for informativeness measure; the sample
gradient (EGL (Settles et al., 2007), ISAL (Liu et al., 2021), and GraNd (Paul et al., 2021)),
variance of model predictions (QBC (Seung et al., 1992), Variation Ratios (Freeman, 1965),
Mean STD (Kampffmeyer et al., 2016), and ENS (Beluch et al., 2018)), mutual information-
based objectives (Pess-MI (Sourati et al., 2016) and FIR (Sourati et al., 2017)), Bayesian
uncertainty (BALD (Houlsby et al., 2011) and Deep Bayesian AL (Gal et al., 2017)), or the
prediction for adversarial samples (DeepFool (Ducoffe and Precioso, 2018) and ALFA-Mix
(Parvaneh et al., 2022)).

Representative sampling algorithms select a set of unlabeled instances that represents
the entire unlabeled data distribution. Thus, optimization on chosen examples ensures a low
error with respect to the full dataset. CoreSet (Sener and Savarese, 2017) and FF-Avtive
(Geifman and El-Yaniv, 2017) define the problem of active learning as CoreSet selection
and select a subset using the geometry of the datapoints. Inspired by the CoreSet method,
Caramalau et al. (2021) adapt the CoreSet method on a sequential Graph Convolution
Network (GCN) to measure the relation between labeled and unlabeled samples. Besides,
Agarwal et al. (2020) replace the Euclidean distance with the pairwise Contextual Diversity
in a CoreSet algorithm.

On the other hand, recent state-of-the-art algorithms support a hybrid of uncertainty
and representative sampling. For example, COMB (Baram et al., 2004) and ALBL (Hsu
and Lin, 2015) present a meta-active learning algorithm, which combines the various active
learning strategies by using the multi-armed bandit. T'wo-step approaches have also been
proposed; first prefilter with uncertainty sampling and then select the representative samples
with a submodular data subset selection framework (FASS (Wei et al., 2015)) or K-means
clustering (Diverse mini-Batch AL (Zhdanov, 2019)). Meanwhile, there are several existing
approaches to simultaneously consider both the uncertainty and diversity via a VAE and
discriminator (VAAL (Sinha et al., 2019)), the gradient embedding with a k-MEANS++
initialization scheme (BADGE (Ash et al., 2019)), or an adversarial loss with Wasserstein
distance (WAAL (Shui et al., 2020)).

A.2 Federated Learning

McMahan et al. (2017) firstly introduce a Federated Learning (FL) framework, where mul-
tiple clients collaboratively train a central model while keeping the training data decentral-
ized. FL can be categorized into cross-device FL and cross-silo FL in terms of the client
device type, client statefulness, and distribution scale (Kairouz et al., 2021). Cross-device
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FL supposes that the clients are a huge amount of mobile or edge devices, so each client is
stateless (i.e., participates only once in a task) and highly unreliable due to wi-fi or slower
connections. On the other hand, in a cross-silo FL setting, clients are from different organi-
zations (e.g., medical or financial) and are almost always available during the FL training.
However, the more sensitive data there is, the stronger data access restrictions may arise.
The main bottleneck for FL is a statistical heterogeneity problem. Beyond the most classic
algorithm, FedAvg (McMahan et al., 2017), there have been various algorithms minimizing
the weight divergence between the local client updates and the aggregated gradient, such
as FedProx (Li et al., 2020), SCAFFOLD (Karimireddy et al., 2020), FedDyn (Acar et al.,
2021), and FedDC (Gao et al., 2022).

While most previous works focus on a supervised scenario, the assumption for the fully
labeled samples is not suitable for FL and real-world scenarios. Therefore, the recent papers
propose the methods to utilize the unlabeled data via active learning (Ahmed et al., 2020; 7;
Ahn et al., 2022), semi-supervised learning (Jeong et al., 2020), and self-supervised learning
(Zhang et al., 2020; Zhuang et al., 2021, 2022; Lu et al., 2022). In particular, Ahn et al.
(2022) argues that using an aggregated global model as a query selector outperforms the
case of separately trained models at the client level. However, we found some contradictory
results and investigated the reason in terms of the diversity and local class balance. In this
paper, we propose a novel federated active learning algorithm that enables to simultaneously
utilize the global and local only model.

Appendix B. Implementation Details

Training Settings In a federated active learning framework, we should not violate the
fairness issue of labeling costs between clients. Therefore, we assume that 10 clients have the
same number of total training samples and query the same number of instances per every
AL round. The clients start with an initially labeled set (5% of their training dataset) and
obtain the label of 5% samples for one AL round. Moreover, we basically consider a cross-
silo FL setting where every client participates in every FL round. In local update steps,
we used a stochastic gradient descent (SGD) with a learning rate of 0.01 and a momentum
of 0.9 as an optimizer. We decayed the learning rate by 0.1 at half and three-quarters of
federated learning rounds to ensure convergence. Besides, we set the number of FL rounds
to 100 and local epochs to 5, respectively.

We evaluated our method with two classical public datasets, such as CIFAR-10 (Krizhevsky
et al., 2009) and SVHN Netzer et al. (2011), and one medical benchmark, PathMNIST
Kather et al. (2019). PathMNIST is a large-scale MNIST-like collection of standardized
biomedical images about a colon pathology. It consists of training samples of 89,996 images
for nine tissue classes and test samples of 7,180 images. Note that we used a random hor-
izontal flipping for the data augmentation strategy. As for the choice of the architecture,
we employed the four layers of convolution neural network for a base architecture. We left
the experiments for various architecture and benchmarks as future work.

Heterogeneity Setting For the data heterogeneous FL scenario, we adopt Latent Dirich-
let Allocation (LDA) strategy (Wang et al., 2020; Li et al., 2021), where each client k is
assigned the partition of classes by sampling py ~ Dir(« - 1), where 1 € RC. ais a
concentration parameter that controls the data heterogeneity. The smaller «, the more
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Figure 5: Visualization of the client data distribution on CIFAR-10. The concentration
parameter o = 0.1 (Left) and o = 1.0 (Right). The x-axis and y-axis denote the
client index and the number of data, respectively.

heterogeneous scenario. Since we consider a fairness issue in the FAL framework, the to-
tal number of samples is equally partitioned for all clients. Therefore, we made a doubly
stochastic matrix P = [p1,...,Px]' by scaling py to pg, when the number of client and
image class are same (i.e., P is a square matrix). Note that we set the sum of columns
and rows to the proper values for a non-square matrix P. We visualized the examples of
CIFAR-10 when o = 0.1 and 1.0 in Figure 5.

Appendix C. Performance Comparison with AL Baselines

In this Section, we considered the following active learning strategies:

¢ Random sampling randomly selects B samples from the unlabeled pool dataset.

e Margin sampling selects the smallest p(y|z;0); — p(y|z; 0),, where § and y’ are the
indices of the largest and second largest class probability (Roth and Small, 2006).

e CoreSet selection chooses the small subset that can represent the whole unlabeled
set (Sener and Savarese, 2017).

e BADGE selects groups of points that are disparate and high magnitude when rep-
resented in a hallucinated gradient space (Ash et al., 2019).

We compared our LG-FAL algorithm to the other active learning strategies in Figure 6 and
7. LG-FAL outperforms all the query selector and AL strategy combinations in various
benchmarks and heterogeneity levels.

By the way, CoreSet and Random sampling mostly showed the poor performance against
the uncertainty-usage strategies. The reason for the lower accuracy is the lack of the infor-
mativeness and inter-class diversity, even though they can consider the intra-class diversity.
Figure 7 shows the performance of a = 1.0 setting, where the local data heterogeneity
between clients is alleviated. Especially, the performance gap between our LG-FAL and
BADGE with the global model has been decreased. It is because the intra-class diversiy
can guarantee the inter-class diversity as the client has more class balanced dataset.

13



= Qurs = Margin CoreSet === BADGE === Random

75 87 84
86
73 83
85 8
71 ~84
S S ~—  zs
4 83 S
g 6 g / 2 80
g R 2
S& 2 S 27
Z Z 3
65 =80 =78
79 77
63
78 76
61 77 75
01 02 03 04 05 06 07 08 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
Ratio of Queries Ratio of Queries Ratio of Queries
75 87 84

86 83

Test Accuracy(%)
N N N f=) ~ ~
b S 3 3 = o
Test Accuracy(%)
~ ~ =< oo oo =] - =
o0 o (=] — 5] w -~ W
Test Accuracy(%)
~ - ~ ~ =] o o0
(=N ~ =] =) (=} —_— (5]

o)
-
2

-

a

0.1 02 03 04 05 06 07 08 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
Ratio of Queries Ratio of Queries Ratio of Queries
(a) CIFAR-10 (b) SVHN (c) PathMNIST

Figure 6: The performance comparison with Global (Top) and Local Only models (Bottom)
when a = 0.1.
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Figure 7: The performance comparison with Global (Top) and Local Only models (Bottom)
when a = 1.0.
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