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Abstract

We consider a smooth online contextual convex optimization problem, where the learner,
given the context, has flexibility to decide whether to predict, get feedback and suffer a
loss, or to abstain and suffer no loss but get no feedback in every round. The learner is
compared against a competitor that gets feedback, and suffers a loss, at every round. This
paves the way for designing an abstention rate for the learner that obtains zero cumulative
regret. We design an epoch-based online gradient descent algorithm, where, at every epoch,
abstention rates are computed adaptively in order to minimize abstentions while ensuring
zero regret. We bound the excess abstention needed by our algorithm compared to a certain
benchmark abstention schedule. The ratio of excess abstentions to the benchmark in every

epoch m decays at a rate approximately O
(
maxKc=1

√
1

τc,m

)
, where K is the number of

contexts and τc,m is the total number of observations for context c in epoch m.

Keywords: Online learning, Limited feedback

1. Introduction

Consider a resource constrained (e.g., low-power, battery-limited) edge device, such as a
sensor or a smartphone that receives a stream of learning tasks (e.g., classification, regres-
sion). Due to resource limitations, such a device cannot locally implement most modern day
accurate but resource-intensive models (e.g., deepNNs) that are needed to make accurate
decisions. Instead the device has access to such a complex model implemented on a cloud
server, to which it can send queries in order to maintain accuracy. This incurs communi-
cation costs such as latency and battery drain. By leveraging this ability, we should hope
that our device would perform better than the best possible on-device model (which could
be interpreted as the best compression of the cloud model). Of course, we need to do this
while minimizing the number of queries to the cloud, i.e., minimizing the total resource
consumption (Xu et al., 2014; Nan and Saligrama, 2017). Furthermore, the complexity of
the tasks may vary depending on some external factors. For example, regression tasks as-
signed to a sensor can be hard during some specific times of the day, and can be easy during
other times. These scenarios can be modeled by incorporating contextual information in
the learning tasks.
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We are interested in devising on-device learning algorithms that address these situations.
However, we also recognize an additional wrinkle: in many such on-device prediction tasks,
obtaining any sort of feedback on the predictions is extremely difficult (e.g. a smartphone
user may not indicate whether a dining recommendation was good or not). However, if we
believe that complex cloud model is highly accurate, we can use a query to the cloud not
only to obtain better predictions, but also as a way of obtaining labels. Thus, the decision
to query or not is based not only on problem “difficulty”, but also on a desire to gather
data.

Selective online optimization is a paradigm of relevance to such settings (Cesa-Bianchi
et al., 2005; Alon et al., 2015). At each round, the learning setup allows an agent to
optionally observe feedback (typically, a convex and smooth loss function; depending on
the generated context at that round) before picking a decision with some probability. This
allows us to model a scenario in which feedback is expensive or scarce. In a different twist,
we allow the agent to also obtain this expensive information before taking any action. Hence,
the agent enjoys flexibility to pick the a postiori best decision corresponding to the observed
feedback, and abstain from suffering a loss. Conceptually, this captures querying the cloud
model and picking an accurate decision for the learning task of that round. If the agent
decides to not query/abstain, then it doesn’t receive any feedback, and it picks the decision
suggested by a standard online learning algorithm (e.g. online gradient descent), which is
run locally on the edge device.

Given a certain amount of prediction error budget, we would like to minimize the total
number of abstentions made by the learning. Thus, there should be some ideal pareto-
frontier of possible performances. However, we will focus on a particular intuitively-desirable
budget: the total loss of the learning should be strictly smaller than the loss of the best-
in-hindsight on-device model. That is, given this additional flexibility of abstaining, we
would like to ensure a negative regret for the learner while minimizing the total number of
abstentions (i.e. number of queries to the cloud).

Our problem is related to that of online selective classification (Cortes et al., 2018;
Li et al., 2011; Gangrade et al., 2021). In this setting, data (feature, label) is generated
sequentially by an adversary; and a learner uses the features to produce a decision which
can either be a label, or an abstention. Typically, feedback is provided if the learner
abstains; and the learner is said to incur a mistake if it didn’t abstain and its prediction
did not equal the true label. The emphasis is on ensuring very few mistakes, and bound
the regret suffered compared to a classifier that makes no mistakes, while abstaining the
fewest number of times. However, it is not straightforward to extend these results to the
contextual learning setting since it presents an additional challenge of adapting abstention
probabilities with contexts.

We construct an epoch-based online gradient descend (OGD) scheme with doubling
epoch lengths. At the beginning of every epoch, we adaptively compute abstention prob-
abilities for every context without having to rely on the future loss functions. With these
abstention probabilities, we query the cloud model to ensure non-positive regret of OGD in
the current epoch. With the emphasis on non-positive regret, we bound the learner’s ex-
cess abstentions over an optimal abstention strategy that has the knowledge of cumulative
competitor loss for all contexts. We show that at every epoch m, the excess abstentions
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decays at a rate approximately O
(
maxKc=1

√
1

τc,m

)
, where K is the number of contexts and

τc,m is the total number of observations for context c in epoch m.

2. Preliminaries

We consider a modification of the online convex optimization problem with contexts and
abstentions. First, we describe a more standard setting without abstentions before describ-
ing our full setting. The learning game proceeds as follows. At reach round s ≥ 1, we (i)
observe a context c ∈ C, where |C| = K, (ii) play a point wc,s ∈ W ⊂ Rd from some closed
and non-empty set W of diameter D, (iii) observe convex loss function fc,s : Rd → R, and
(iv) pay a loss of value fc,s(wc,s). The aim of this game is to minimize the cumulative regret
with respect to any competitor u = (u1, . . . , uK) ∈ WK , where uc ∈ W is the competitor
associated with context c. The cumulative regret after T rounds is defined as

R(u) =

K∑
c=1

Rc(uc), Rc(uc) =

τc,T∑
s=1

(fc,s(wc,s)− fc,s(uc)),

where τc,T denotes the number of times context c arrives in T rounds.
In what follows, we will work with losses that are smooth and stochastic. Specifically,

we assume that each loss function fc,s is H-smooth in open sets containing W and satisfies
fc,s(w) ∈ [0, 1] for all w ∈ R. This implies ‖∇fc,s(w)‖2 ≤ 2Hfc,s(w) for all w, c and s.
Furthermore, for each context c, the loss functions {fc,s}s>1 are drawn i.i.d. from some dis-
tribution Dc supported over [0, 1]W . We also assume that contexts generated independently
of all other randomness with (known) probabilities π = (π1, . . . , πK) so that

∑K
c=1 πc = 1.

Adaptive learning rate for OGD. Define, for each context c ∈ C, and competitor
uc ∈ W , its cumulative loss in T rounds L∗c,T =

∑τc,T
s=1 fc,s(uc). Then, standard analysis

of OGD (Orabona, 2019) for losses corresponding to context c with learning rate ηc,s =
D√

2
∑s
s′=1 ‖∇fc,s′ (wc,s′ )‖2

, s = 1, . . . , τc,T , yields the regret

Rc(uc) 6 2D

√√√√H

τc,T∑
s=1

fc,s(wc,s) =
√

2 min
ηc>0

D2

2ηc
+Hηc

τc,T∑
s=1

fc,s(wc,s), (1)

which can be further expressed in terms of L∗c,T as Rc(uc) 6 4HD2 + 4D
√
HL∗c,T .

Abstentions. In this paper we make a modification to the contextual online convex
optimization game: after seeing the context c, our learner may optionally choose to see
the loss fc,s before picking wc,s (we call this choice “abstaining”, or “receiving feedback”).
Otherwise, we get no feedback. Further, we make the assumption that for all s, there is
some w∗c,s ∈ W such that fc,s(w

∗
c,s) = 0. We will be focusing our attention on randomized

strategies which abstain with some c-dependent probability pc, and always play w∗c,s to
suffer zero loss when abstaining. We can show that a simple variant of adaptive gradient
descent with such randomized feedback obtains:

E[R(u)] 6
K∑
c=1

4HD2

pc
+ 4D

√
HL∗c,T
pc

− pcL∗c,T

 , (2)

where the expectation is over the randomness introduced due to abstentions. From this, it
is clear that appropriate choices of pc will lead to negative regret.
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The key problem is determining what pc should be: contexts with large L∗c,T are in-
herently “difficult” to predict on-device, and so we should increase pc. Note that this
“difficulty” arises from two different phenomena. If a context c is very common (has high
πc), then L∗c,T becomes larger. However, even for a relatively rare context, L∗c,T may still
be large if it is impossible for the on-device model to accurately predict in this context.

Note that this problem may be interesting even for a single context. However, when
multiple contexts are involved then it is a significantly richer study: we now have the ability
to “hedge” different contexts against each other. For example, by abstaining slightly more
than may be naively required on a “hard”, but possibly slightly less common context, we
obtain a more negative regret on that context, which can be used to cancel out a positive
regret on an easier but more common context, saving a large number of abstentions on
this easier context in the process. Thus, the goal is to determine how to balance the these
abstention rates pc given that we do not know L∗c,T apriori.

3. Algorithm and Result

We consider an epoch-based strategy, where the length of epoch m is given by τm with
τm+1 = 2τm, m > 1. Intuitively, in each epoch, we select conservative pc using an estimate
of L∗c generated in the previous epochs. Then, we will obtain negative regret in this epoch
while refining our estimates of L∗c in order to reduce pc further in subsequent epochs.

Let τc,m denote the number of occurrence of context c in epochm and L∗c,m :=
∑τc,m

s=1 fc,s(uc)
denotes the cumulative loss of a competitor uc in epoch m. Given probabilities p =
(p1, . . . , pK), total number of abstentions in epoch m is given by Am(p) =

∑K
c=1 πcpcτm.

Furthermore, from (2), the regret in epoch m, denoted by Rm(u; p), satisfies E[Rm(u; p)] 6∑K
c=1

(
4HD2

pc
+ 4D

√
HL∗c,m
pc
− pcL∗c,m

)
. If the cumulative competitor loss L∗c,m, c = 1, . . . ,K,

were known apriori, the abstention probabilities guaranteeing non-positive regret in epoch
m could have been computed as follows:

p∗m = argmin
0≺p�1

Am(p) s.t.
K∑
c=1

4HD2

pc
+ 4D

√
HL∗c,m
pc

− pcL∗c,m

 6 0. (3)

Since the competitor losses are not known in advance, we estimate those using data gen-
erated in epoch m − 1. To this end, let Ic,m−1,s denotes the indicator of abstaining for
context c at round s 6 τc,m−1, which occurs with probability p̂c,m−1. Define the estimate

L̂c,m = 2
∑τc,m−1

s=1
Ic,m−1,s

p̂c,m−1
fc,s(wc,s). Also, define, for δ ∈ (0, 1], λc ∈ (0, 1), the deviations

∆U
c,m = αc,m + 2βc,m − 4

√
2τc,m−1 log(8K/δ), ∆L

c,m = αc,m + 2λcβc,m + 2D2H/(1− λc) ,

where αc,m = 2
√

2πcτm−1 log(8K/δ) + 2
3 log(8K/δ), βc,m =

1−p̂c,m−1

p̂c,m−1

√
2τc,m−1 log(8K/δ).

Using these estimates, we compute abstention probabilities p̂m = (p̂1,m, . . . , p̂K,m) as

p̂m = argmin
0≺p�1

Am(p) s.t.

K∑
c=1

4HD2

pc
+4D

√
H(L̂c,m+∆U

c,m)

pc
−pc(λcL̂c,m−∆L

c,m)

60. (4)

Excess abstentions. Define, for each context c, the competitor uc = argminw∈W E[fc,s(w)].
First, we obtain the following concentration bound for the competitor loss τc,mL

∗
c,m.
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Algorithm 1 Epoch-Based OGD with abstentions

1: Parameter: Confidence level δ ∈ (0, 1], constants λ1, . . . , λK ∈ (0, 1)
2: Initialize: p̂c,1 = 1 for all c, initial epoch length τ1

3: for epoch m = 1, 2, . . . do
4: Initialize wc,1 ∈W and τc,m = 0 for all c
5: for time s = 1, 2, . . . , τm do
6: Observe context cs and set τcs,m = τcs,m + 1
7: Sample Ics,m,τcs,m ∼ B(p̂cs,m)
8: if Ics,m,τcs,m = 1 then
9: Output w∗cs,τcs,m and pay loss 0

10: else
11: Output wcs,τcs,m and pay loss fcs,τcs,m(wcs,τcs,m)
12: end if
13: Set wcs,τcs,m+1 = wcs,τcs,m −

D√
2
∑τcs,m

s′=1
‖∇fcs,s′ (wc,s′ )‖

2
∇fcs,τcs,m(wcs,τcs,m)

14: end for
15: Set size of next epoch τm+1 = 2τm
16: Compute estimates L̂c,m+1, ∆U

c,m+1, ∆L
c,m+1 for all c

17: Compute abstention rates p̂c,m+1 for all c using (4)
18: end for

Lemma 1. For any m > 1, δ ∈ (0, 1], λ1, . . . λK ∈ (0, 1), with probability at least 1− δ,
∀c = 1, . . . ,K, λcL̂c,m −∆L

c,m 6 L∗c,m 6 L̂c,m + ∆U
c,m .

Armed with this result, we have the following bound on regret and excess abstentions.

Theorem 2. Define, for each c ∈ [K] and m > 1, εUc,m =
∆U
c,m

L∗c,m
and εLc,m =

∆L
c,m

L∗c,m
. Then, for

each epoch m > 1, with probability at least 1− δ, we have

E[Rm(u; p̂m)] 6 0,
Am(p̂m)−Am(p∗m)

Am(p∗m)
6

K
max
c=1

(
1 +

1

λc

)(
(1− λc) + (λcε

U
c,m + εLc,m)

λc − (λcεUc,m + εLc,m)

)
.

Observe that εUc,m ≈ O(1/
√
τc,m) and εLc,m ≈ O(λc/

√
τc,m). Hence, we the excess factor

in abstentions corresponding to context c behaves approximately as O
(
ac,m + bc,m/

√
τc,m

)
for appropriate constants ac,m, bc,m (depending on λc, D,H,K, δ, πc, p̂c,m−1). Therefore, the
total excess abstentions in epoch m decays at a rate roughly O

(
maxKc=1 1/

√
τc,m

)
.

Remark 3. Instead of epoch-based scheme, one can consider abstaining for first half of the
horizon T , and use data generated to compute abstention rates for the next half. As a corol-
lary of Theorem 2, this scheme attains O

(
maxKc=1 1/

√
τc,T

)
bound on excess abstentions.

Proof. We work under the good event of Lemma 1. We have the expected regret

E[Rm(u; p̂m)] 6
K∑
c=1

(
4HD2

p̂c,m
+ 4D

√
HL∗c,m
p̂c,m

− p̂c,mL∗c,m

)

6
K∑
c=1

4HD2

p̂c,m
+ 4D

√
H(L̂c,m + ∆U

c,m)

p̂c,m
− p̂c,m(λcL̂c,m −∆L

c,m)

 6 0 ,

5



where the last inequality follows from definition of p̂m. Denote, for each context c, an
abstention probability (assuming it is well-defined)

p̃c,m := p∗c,m
1/λc + εUc,m + εLc,m/λc

λc − λcεUc,m − εLc,m
= p∗c,m

1 + λcε
U
c,m + εLc,m

λc(λc − λcεUc,m − εLc,m)
.

It holds that p̃m = (p̃1,m, . . . , p̃K,m) is a feasible point of (4). To see this, note that

K∑
c=1

4HD2

p̃c,m
+ 4D

√
H(L̂c,m + ∆U

c,m)

p̃c,m
− p̃c,m(λcL̂c,m −∆L

c,m)


6

K∑
c=1

4HD2

p̃c,m
+ 4D

√
H(L∗c,m/λc + ∆U

c,m + ∆L
c,m/λc)

p̃c,m
− p̃c,m(λcL

∗
c,m − λc∆U

c,m −∆L
c,m)


6

K∑
c=1

4HD2

p̃c,m
+ 4D

√
HL∗c,m(1/λc + εUc,m + εLc,m/λc)

p̃c,m
− p̃c,mL∗c,m(λc − λcεUc,m − εLc,m)


=

K∑
c=1

(
4HD2

p∗c,m

λc−λcεUc,m−εLc,m
1/λc+εUc,m+εLc,m/λc

+4D

√
HL∗c,m(λc−λcεUc,m−εLc,m)

p∗c,m
−p∗c,mL∗c,m

( 1

λc
+εUc,m+

εLc,m
λc

))

6
K∑
c=1

(
4HD2

p∗c,m
+ 4D

√
HL∗c,m
p∗c,m

− p∗c,mL∗c,m

)
6 0 ,

where the second last inequality is due to λc < 1 and the last inequality follows from (3).
The bound on expected abstentions follows by noting that Am(p̂m) 6 Am(p̃m).

Proof sketch of Lemma 1. Since we consider doubling epochs, we first control the
difference between competitor loss L∗c,m in epoch m and twice the competitor loss L∗c,m in
epoch m− 1. To this end, Bernstein’s inequality yields with probability at least 1− 2δ,

|L∗c,m − 2L∗c,m−1| = |
τc,m∑
s=1

fc,s(uc)− 2

τc,m−1∑
s=1

fc,s(uc)| 6 2
√

2πcτm−1 log(2/δ) +
2

3
log(2/δ) .

Since the competitor loss L∗c,m−1 is unknown, we control its deviation from the loss of OGD.

First, by Azuma-Hoeffding bound, we get
∑τc,m−1

s=1 fc,s(wc,s)−fc,s(uc) > −2
√

2τc,m−1 log(2/δ),
with probability at least 1− δ. Next, by regret bound of OGD (see (1)), for any ηc > 0, we

get
∑τc,m−1

s=1 (fc,s(wc,s)− fc,s(uc)) 6
√

2
(
D2

2ηc
+Hηc

∑τc,m−1

s=1 fc,s(wc,s)
)

. Choosing an ηc > 0

such that λc := 1−
√

2Hηc > 0, we obtain

2λc

τc,m−1∑
s=1

fc,s(wc,s)−
2D2H

1− λc
6 2

τc,m−1∑
s=1

fc,s(uc) 6 2

τc,m−1∑
s=1

fc,s(wc,s)− 4
√

2τc,m−1 log(2/δ).

Since we get to see feedback in epoch m−1 only with probability p̂c,m−1, we now need to con-
trol the loss of OGD with its importance-weighted version. To this end, by Azuma-Hoeffding

inequality, we obtain
∣∣∣∑τc,m−1

s=1

(
1− Ic,m−1,s

p̂c,m−1

)
fc,s(wc,s)

∣∣∣ 6 1−p̂c,m−1

p̂c,m−1

√
2τc,m−1 log(2/δ), with

probability at least 1 − δ. Putting everything together, taking a union bound over all
contexts and replacing δ with δ/(4K), the result follows.

Conclusion. We conclude by noting some future directions: (a) when losses are gener-
ated by an adversary, and (b) when context probabilities need to be learned adaptively.
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Appendix

Proof of Equation (2)

Fix a context c ∈ [K]. Let Ic,s be the indicator of whether we get feedback on round s so

that E[Ic,s] = pc. Then, we run OGD using losses f̂c,s =
Ic,s
pc
fc,s. Note that these losses

are H
pc

smooth. Further, on rounds where Ic,s = 1, we can ignore the output of the online
gradient descent and instead play w∗c,s. Then, the regret of OGD would be

E

[τc,T∑
s=1

f̂c,s(wc,s)− f̂c,s(uc)

]
≤ 4HD2

pc
+ 4D

√
HL∗c,T
pc

,

where the expectation is over the randomness due to abstentions. However, our regret in
expectation is given by

E[Rc(uc)] ≤
4HD2

pc
+ 4D

√
HL∗c,T
pc

+ E

[τc,T∑
s=1

Ic,s(fc,s(w
∗
c,s)− fc,s(wc,s))

]

≤ 4HD2

pc
+ 4D

√
HL∗c,T
pc

− E

[τc,T∑
s=1

pcfc,s(wc,s)

]

≤ 4HD2

pc
+ 4D

√
HL∗c,T
pc

− E

[τc,T∑
s=1

pc(fc,s(wc,s)− fc,s(uc))− pc
τc,T∑
s=1

fc,s(u)

]

=
4HD2

pc
+ 4D

√
HL∗c,T
pc

− pc E[Rc(uc)]− E[pc

τc,T∑
s=1

fc,s(uc)].

Rearranging −pc E[Rc(uc)] and dividing by 1 + pc, we get

E[Rc(uc)] ≤
1

1 + pc

4HD2

pc
+ 4D

√
HL∗c,T
pc

− pc E

[τc,T∑
s=1

fc,s(uc)

]
≤ 4HD2

pc
+ 4D

√
HL∗c,T
pc

− pcL∗c,T .

The result now follows by summing over all c = 1, . . . ,K.

Proof of Lemma 1

Consider the random variable Z =
∑τc,m

s=1 fc,s(uc)− 2
∑τc,m−1

s=1 fc,s(uc). Let Jc,m,s denote the
indicator of observing context c at round s of epoch m. With an abuse of notation, we write

Z =

τm/2∑
s=1

Jc,m,sfc,s(uc)−
τm−1∑
s=1

Jc,m−1,sfc,s(uc)︸ ︷︷ ︸
Z1

+

τm∑
s=τm/2+1

Jc,m,sfc,s(uc)−
τm−1∑
s=1

Jc,m−1,sfc,s(uc)︸ ︷︷ ︸
Z2

.

Using independence of associated random variables and τm = 2τm−1, we note that Z1

is sum of τm−1 of random variables, independent of each other, with each having mean
zero and absolute value upper bounded by 1. Furthermore, each having variance upper
bounded by 2πc. Then, by Bernstein’s inequality, with probability at least 1 − δ, |Z1| 6
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√
2πcτm−1 log(2/δ) + 1

3 log(2/δ). A similar result holds for Z2. Combining both, we get

|
τc,m∑
s=1

fc,s(uc)− 2

τc,m−1∑
s=1

fc,s(uc)| 6 |Z1|+ |Z2| 6 2
√

2πcτm−1 log(2/δ) +
2

3
log(2/δ),

with probability at least 1− 2δ. Now, by regret upper bound of OGD (1), for any ηc > 0,

2

τc,m−1∑
s=1

(fc,s(wc,s)− fc,s(uc)) 6
√

2

(
D2

ηc
+ 2Hηc

τc,m−1∑
s=1

fc,s(wc,s)

)
.

Furthermore, for the competitor uc = argminw∈W E[fc,s(w)], we obtain
τc,m−1∑
s=1

(fc,s(wc,s)− fc,s(uc)) >
τc,m−1∑
s=1

(fc,s(wc,s)− E[fc,s(wc,s)])︸ ︷︷ ︸
Z3

+

τc,m−1∑
s=1

(E[fc,s(uc)]− fc,s(uc))︸ ︷︷ ︸
Z4

.

Now, using Azuma-Hoeffding’s inequality for martingale difference sequences, we obtain
Z3 > −2

√
2τc,m−1 log(1/δ) with probability at least 1 − δ. A similar bound holds for Z4.

Combining both using a union bound, we have with probability at least 1− δ,
τc,m−1∑
s=1

(fc,s(wc,s)− fc,s(uc)) > −2
√

2τc,m−1 log(2/δ).

Now, choose an ηc > 0 such that λc := 1−
√

2Hηc > 0. Then, we have the following upper
and lower bounds on

∑τc,m−1

s=1 fc,s(u):

2λc

τc,m−1∑
s=1

fc,s(wc,s)−
2D2H

1− λc
6 2

τc,m−1∑
s=1

fc,s(uc) 6 2

τc,m−1∑
s=1

fc,s(wc,s)− 4
√

2τc,m−1 log(2/δ).

Now, for s = 1, 2, . . . , τm−1, define the random variable Xs =
(

1− Ic,m−1,s

p̂c,m−1

)
fc,s(wc,s). Note

that {Xs}s is a martingale difference sequence. Also, |Xs|2 6
(

1−p̂c,m−1

p̂c,m−1

)2
. Hence, by

Azuma-Hoeffding inequality, with probability at least 1− δ,∣∣∣∣∣
τc,m−1∑
s=1

(
1− Ic,m−1,s

p̂c,m−1

)
fc,s(wc,s)

∣∣∣∣∣ 6 1− p̂c,m−1

p̂c,m−1

√
2τc,m−1 log(2/δ).

Putting everything together, with probability at least 1− 4δ, we obtain

L∗c,m 6 2

τc,m−1∑
s=1

Ic,m−1,s

p̂c,m−1
fc,s(ws) + αc,m + 2βc,m − 4

√
2τc,m−1 log(2/δ),

L∗c,m > 2λc

τc,m−1∑
s=1

Ic,m−1,s

p̂c,m−1
fc,s(ws)− αc,m − 2λcβc,m − 2D2H/(1− λc).

The result follows by taking a union bound over all contexts and replacing δ with δ/(4K).
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