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Abstract
Causal discovery from observational and interventional data is challenging due to limited
data and non-identifiability: factors that introduce uncertainty in estimating the underlying
structural causal model (SCM). Selecting experiments (interventions) based on the uncer-
tainty arising from both the factors can expedite the identification of the SCM. Existing
methods in experimental design for causal discovery from limited data either rely on linear
assumptions for the SCM or select only the intervention target. This work incorporates
recent advances in Bayesian causal discovery into the Bayesian optimal experimental design
framework, allowing for active causal discovery of large, nonlinear SCMs while selecting both
the interventional target and the value. We demonstrate the performance of the proposed
method on synthetic graphs for nonlinear SCMs as well as on the in-silico single-cell gene
regulatory network dataset, DREAM.

1. Introduction

What is the structure of the protein-signaling network derived from a single cell? How do
different habits influence the presence of disease? Such questions refer to causal effects
in complex systems governed by nonlinear, noisy processes. On most occasions, passive
observation of such systems is insufficient to uncover the real cause-effect relationship and
costly experimentation is required to disambiguate between competing hypotheses. As such,
the design of experiments is of significant interest; an efficient experimentation protocol helps
reduce the costs involved in experimentation while aiding the process of producing knowledge
through the scientific method.

In the language of causality (Pearl, 2009), the causal relationships are represented
qualitatively by a directed acyclic graph (DAG), where the nodes correspond to different
variables of the system of study and the edges represent the flow of information between the
variables. The abstraction of DAGs allows us to represent the space of possible explanations
(hypotheses) for the observations at hand. Representing such hypotheses as Bayesian
probabilities (beliefs) allows us to formalize the problem of the scientific method as one
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of Bayesian inference, where the goal is to estimate the posterior distribution p(DAGs |
Observations). A posterior distribution over the DAGs allows us to employ information-
theoretic acquisition functions that guide experimentation towards the most informative
variables for disambiguating between competing hypotheses. Such design procedures belong
to the field of Bayesian Optimal Experimental Design (Lindley, 1956) for Causal Discovery
(BOECD) (Tong and Koller, 2001; Murphy, 2001).

An intervention in a causal model refers to the variable (or target) we manipulate and
the value (or strength) at which we set the variable. Hence, the design space in the case of
learning causal models is the set of all subsets of the intervention targets and the possibly
countably infinite set of intervention values of the chosen targets. The intervention value
encapsulates important semantics in many causal inference applications. For instance, in
medical applications, an intervention can correspond to the administration of different drugs
and the intervention value takes the form of a dosage level for each drug. Even though
the appropriate choice of this value is crucial for identifying the underlying causal model,
existing work on active causal discovery focuses exclusively on selecting the intervention
target (Agrawal et al., 2019; Cho et al., 2016). There, the intervention value is generally some
arbitrary fixed value (like 0) which is suboptimal (see Fig. 1a). Hence, a holistic treatment of
selecting the intervention value and the target in the general case of nonlinear causal models
has been missing. We present a simple yet effective causal Bayesian experimental design
method (CBED - pronounced “seabed”) to acquire optimal intervention targets and values by
performing Bayesian optimization. Additionally, we extend CBED to the batch setting and
propose two different batching strategies for tractable, Bayes optimal acquisition of both
intervention targets and values. The first strategy Greedy-CBED builds up the intervention
set greedily. A greedy heuristic is still near-optimal due to submodularity properties of
mutual information (Krause and Guestrin, 2012; Agrawal et al., 2019; Kirsch et al., 2019).
The second strategy Soft-CBED constructs a set of interventions by stochastic sampling from
a finite set of candidates, thereby significantly increasing computational efficiency while
recovering the original SCM as fast as the greedy strategy. This strategy is well suited for
resource-constrained settings.

Assumptions. Throughout this work, we make the following standard assumptions for
causal discovery (Peters et al., 2017): (Causal Sufficiency) There are no hidden confounders,
and all the random variables of interest are observable. (Finite Samples) There is a
finite number of observational/ interventional samples available. (Nonlinear SCM with
Additive Noise) The structural causal model has nonlinear conditional expectations with
additive Gaussian noise. (Single Target) Each intervention is atomic and applied to a single
target of the SCM. Additionally, we assume that interventions are planned and executed in
batches of size B, with a fixed budget of total interventions given by Number of Batches×B.
We also assume that there is no model misspecification with respect to the class of conditional
expectations and noise distributions. Finally, we are interested in recovering the full graph
G with a small number of batches.

2. Method

Let V = {1, . . . , d} be the vertex set of any DAG g = (V, E) and XV = {X1, . . . ,Xd} ⊆ X
be the random variables of interest indexed by V. Let θ be the parameters of mechanisms
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of SCM. We have an initial observational dataset D = {xV
(i)}ni=1 comprised of instances

xV ∼ P (X1 = x1, . . . ,Xd = xd) = p(x1, . . . , xd). The true SCM ϕ̃ = (g̃, θ̃) over random
variables XV is a matter of fact, but our belief in ϕ̃ is uncertain for many reasons. Primarily, it
is only possible to learn the DAG g̃ up to a Markov equivalence class (MEC) from observational
data D. Uncertainty also arises from D from being a finite sample, which we model by
introducing the the random variable Φ. Let ϕ ∼ p(ϕ|D) ∝ p(D | ϕ)p(ϕ) be an instance of the
random variable Φ that is sampled from our posterior over SCMs after observing the dataset D.

We would like to design an experiment to identify an intervention ξ := {(j, v)} :=
do(Xj = v) that maximizes the information gain about Φ after observing the outcome of
the intervention y ∼ P (X1 = x1, . . . ,Xd = xd | do(Xj = v) = p(y | ξ). Here, y is an
instance of the random variable Y ⊆ X distributed according to the distribution speci-
fied by the mutilated true graph g̃′ under intervention. Looking at one intervention at
a time, one can formalize BOECD as gain in information about Φ after observing the
outcome of an experiment y. The experiment ξ := {(j, v)} that maximizes the informa-
tion gain is the experiment that maximizes the mutual information between Φ and Y:
{(j∗, v∗)} = argmaxj,v {I(Y;Φ | {(j, v)},D)}. Note that the objective considers optimizing
over not just the discrete set of intervention targets j ∈ V, but also over the uncountable set
of intervention values v ⊂ Xj .

2.1 Single Design

To maximize the objective in Equation 2, we need to (1) estimate MI for candidate inter-
ventions and (2) maximize the estimated MI by optimizing over the domain of intervention
value for every candidate interventional target.

Estimating the MI. As mutual information is intractable, there are various ways to
estimate it depending on whether we can sample from the posterior and whether the likelihood
can be evaluated (Foster et al., 2020; Poole et al., 2019; Houlsby et al., 2011). Since the models
we consider allow both posterior sampling and likelihood evaluation, it suffices to obtain
an estimator which requires only likelihood evaluation and Monte Carlo approximations
of the expectations. To do so, we derive an estimator similar to Bayesian Active Learning
by Disagreement (BALD) (Houlsby et al., 2011), which considers MI as a difference of
conditional entropies over the outcomes Y:
I(Y;Φ | {(j, v)},D) = H(Y | {(j, v)},D)−H(Y | Φ, {(j, v)},D)

= − E
p(y|{(j,v)},D)

[
log

(
E

p(ϕ|D)
[p(y | ϕ, {(j, v)})]

)]
+ E

p(ϕ|D)

[
E

p(y|ϕ,{(j,v)})
[log (p(y | ϕ, {(j, v)}))]

]
(1)

where H(·) is the entropy. See Appendix B.1 for the derivation. A Monte Carlo estimator
of the above equation can be used as an approximation (Appendix B.2). Equation (1) has
an intuitive interpretation. It assigns high mutual information to interventions that the
model disagrees the most regarding the outcome. We denote the MI for a single design as
I({(j, v)}) := I(Y;Φ | {(j, v)},D).

Selecting the Intervention Value. Maximizing the objective is achieved not only by se-
lecting the intervention target but also by setting the appropriate intervention value. Although
optimizing the intervention target is tractable (discrete and finite number of nodes to select
from),
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Figure 1: For each t iteration of
the BO algorithm and each node
j, we get a utility function evalua-
tion Û t

j (the utility being the MI in
our case). Then we sample without
replacement proportionally to the
scores to prepare a batch (2.2).

selecting the value to intervene is usually intractable
since they are continuous. For any given target node j, MI
is a nonlinear function over v ∈ Xj and hence solving with
gradient ascent techniques only yields a local maximum.
Given that MI is expensive to evaluate, we treat MI for
a given target node j as a black-box function and obtain
its maximum using Bayesian Optimization (BO) (Kush-
ner, 1964; Zhilinskas, 1975; Močkus, 1975). BO seeks
to find the maximum of this function maxv∈XjI({(j, v)})
over the entire set Xj with as few evaluations as possi-
ble. See appendix E for details. In our work, we run
GP-UCB (Srinivas et al., 2010) independently on every
candidate intervention target j = {1, . . . , d} by querying
points within a fixed domain [−k, k] ⊂ R. Note that the
domain can be chosen based on the application, for ex-
ample, if we must constrain dosage levels within a fixed
range. Each GP is one-dimensional in our setup; hence
a few evaluations of UCB are sufficient to get a good value maxima candidate. Further,
GP-UCB for each candidate target is parallelizable, making it efficient. We finally select the
design with the highest MI across the candidate intervention targets.

2.2 Batch Design

In many applications, it is desirable to select the most informative set of interventions instead
of a single intervention at a time. Take, for example, a biologist entering a wet lab with a
script of experiments to execute. Batching experiments removes the bottleneck of waiting for
an experiment to finish and get analyzed until executing the next one. Given a budget per
batch B which denotes the number of experiments in a batch, the problem of selecting the
batch then becomes argmaxΞ I(Y;Φ | Ξ,D), such that cardinality(Ξ) = B, where Ξ is a
set of interventions

⋃B
i=1(ji, vi) and Y denotes the random variable for the outcomes of the

interventions of the batch. We denote the MI for a batch design as I(Ξ) := I(Y;Φ | Ξ,D).

Greedy Algorithm. Computing the optimal solution I(Ξ∗) is computationally infeasible.
However, as the conditional mutual information is submodular and non-decreasing (see
Appendix B.4 for proof), we can derive a simple greedy algorithm (Algorithm 1) that can
achieve at least a (1 − 1/e) ≈ 0.64 approximation of the optimal solution (Krause and
Guestrin, 2012; Nemhauser et al., 1978). We denote this strategy as Greedy-CBED.

Soft Top-K. Although the greedy algorithm is tractable, it requires O(Bd) instances of
GP-UCB. Kirsch et al. (2021) show that a soft top-k selection strategy performs similarly to
the greedy algorithm, reducing the computation requirements to O(d) runs of GP-UCB. To
achieve this, we construct a finite set of candidate intervention target-value pairs by keeping
all the T evaluations of GP-UCB for each node j = {1, . . . , d}. Therefore, for d nodes, we our
candidate set is comprised of d× T experiments. We score each experiment in this candidate
set using the MI estimate. We then sample without replacement B times proportionally to
the softmax of the MI scores (Algorithm 2). We denote this strategy as Soft-CBED.
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Figure 2: Results on the E-SID ↓ metric (100 seeds, with standard error of the mean shaded) for
50 variables involving nonlinear functional relationships and additive Gaussian noise. (a) We show
that Soft-CBED with GP-UCB value selection strategy significantly outperforms the baselines. (b)
We isolate the effect of the value selection strategy. We show that intervening with a fixed value and
sampling from the support of data both perform worse than having an optimizer like GP-UCB. (c) we
compare non-batch (CBED) vs batch-based acquisition functions (Greedy-CBED, Soft-CBED). As we
can see, Soft-CBED performs as well as Greedy-CBED. For all experiments, we use the DiBS (Lorch
et al., 2021) posterior model.

3. Experiments and Results

Acquisition Functions. (Random) Random baseline acquires interventional targets at
random. (AIT / softAIT) active intervention targeting (AIT) (Scherrer et al., 2021) uses
an f-score based acquisition strategy to select the intervention targets. See appendix ?? for
more details. Since the original proposed approach does not consider a batch setting, we
introduce a variant that augments AIT with the proposed soft batching, as described in
section 2.2. (CBED / GreedyCBED / SoftCBED) These are the Monte Carlo estimates
of MI, as described in section 2. (CBED) selects a single intervention (target and value) that
maximizes the MI and this intervention is applied for the whole batch. In Greedy-CBED ,
the batch is built up in a greedy fashion selecting the target, value pairs one at a time
(Algorithm 1). Soft-CBED is sampling (target, value) pairs proportionally to the MI scores
to select a batch, as described in section 2.2 and Algorithm 2.

Value Selection Strategies. (Fixed) This value selection strategy assumes setting the
value of the intervention to a fixed value. In the experiments, we fixed the value to 0.
(Sample-Dist)This value selection strategy samples from the support of the observational
data. (GP-UCB) This strategy uses the proposed GP-UCB Bayesian optimization strategy
to select the value that maximizes MI.

Results. (ER and SF task.) We generate Erdős–Rényi Erdős and Rényi (1959) (ER) and
Scale-Free (SF) graphs (Barabási and Albert, 1999) of size 20 and 50. We provide more details
about the experiments in appendix D.1. (Single-Cell Protein-Signalling Network.)
The DREAM family of benchmarks Greenfield et al. (2010) are designed to evaluate causal
discovery algorithms of the regulatory networks of a single cell. Refer to appendix D.2 for
details and exact settings. For each of the acquisition objectives and datasets, we present the
mean and standard error of the expected structural hamming distance E-SHD, expected
structural interventional distance E-SID (Peters and Bühlmann, 2015), area under the
receiver operating characteristic curve AUROC and area under the precision-recall curve
AUPRC. In Appendix H we describe the metrics in detail. We evaluate these metrics as
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Figure 3: Comparison of acquisition functions on DREAM dataset, for 50 dimensions and batch
size 10 on E-SID↓ metric (6 seeds, with standard error of the mean).

a function of the number of acquired interventional samples (or experiments), which helps
quantitatively compare different acquisition strategies. Apart from E-SID, we relegate results
with other metrics to the appendix J.

On the synthetic graphs (Figure 2), we can see that for SF graphs with 50D variables
and nonlinear functional relationships, the proposed approach based on soft top-k to select a
batch with GP-UCB outperforms all the baselines in terms of the E-SID metric. On the
other hand, AIT alone does not converge to the ground truth graph fast even after combining
with the proposed value acquisition, but when further augmented with the proposed soft
strategy, the softAIT recovers the ground truth causal graph upto 4 times faster and performs
competitively to Soft-CBED. We observe similar performance across other metrics as well,
including for ER graphs. Full results are presented in the appendix J.

Next, we examine the importance of having a value selection strategy for active causal
discovery. We use the MI estimator in Equation 1; moreover, we test the proposed GP-UCB
with two heuristics - the fixed value strategy and sampling values from the support. As
we can see in Figure 2(b), selecting the value using GP-UCB clearly benefits the causal
discovery process. We expect this finding as the mutual information is not constant with
respect to the intervened value. To make this point clear, we demonstrate in the appendix G
the influence of the value in a simple two variables graph. In addition, we note that naively
sampling from the support of the observed dataset performs worse than fixing the value to 0.
We hypothesize that this is due to lower epistemic uncertainty in the high density regions of
the support, hinting that these regions might be less informative.

In order to further understand how the soft batch strategy compares with other batch
selection strategies, we compare the results of Soft-CBED with Greedy-CBED and CBED. We
observe (Figure 2(c)) that Greedy-CBED and Soft-CBED give very similar results overall.
While Greedy-CBED is optimal under certain conditions (Kirsch et al., 2019), Soft-CBED
remains competitive and has the advantage that the batch can be selected in a one-shot
manner. This is also evident from the runtime performance of both these batching strategies
in Table 5 (appendix I). Both these batch selection strategies perform significantly better
than selecting one intervention target/value pair, and executing them B times (CBED).

Finally, on the DREAM task, we see that our method outperforms softAIT and random
baselines on the E-SID metric (see Figure 3). In these experiments, since the intervention is
emulating the gene knockout setting, we only use the fixed value strategy, with a value of 0.0.
Although random baseline still remains a competitive choice, in certain settings, Soft-CBED
objective is significantly better (Ecoli1, Ecoli2 datasets).
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Appendix A. Algorithms

Algorithm 1: Greedy-CBED
Input : E environment, N initial

observational samples, B
batch Size, d number of
nodes

▷ Initialize set of experiments
Ξ to empty

1 Ξ← ∅
2 for n = 1 . . .B do
3 for j = 1 . . . d do

▷ Select optimal
intervention value per
node j using GP-UCB

4 Vj ← argmaxv I(Ξ ∪ {(j, v)})
5 Uj ← I(Ξ ∪ {(j, Vj)})

6 j∗ ← argmaxj Uj

7 v∗ ← Vj∗

8 Ξ← Ξ ∪ {(j∗, v∗)}
9 return Ξ

Algorithm 2: Soft-CBED
Input : E environment, N initial

observational samples, B
batch Size, d number of
nodes, ζ softmax
temperature

1 for j = 1 . . . d do
▷ Select candidate
intervention values per
node j using GP-UCB

2 Initialize µ0
j and σ0

j

3 for t = 1 . . . T do
4 V t

j ←
argmaxv µ

t−1
j (v) +

√
βtσt−1

j (v)

5 Û t
j ← I({(j, V t

j )})
6 Update the GP to obtain µt

j

and σt
j

7 {(ti, ji)}i∈{1,...,B} ← B samples without
replacement ∝ exp (Û t

j/ζ)

8 Ξ← {(ji, V ti
ji
)}i∈{1,...,B}

9 return Ξ

Appendix B. Theoretical Results

B.1 Deriving the Mutual Information over Outcomes

In the following lemma, we derive the mutual information over outcomes given in (1).

Lemma 1

I(Y;Φ | {(j, v)},D)

=− E
p(y|{(j,v)},D)

[
log

(
E

p(ϕ|{(j,v)},D)
[p(y | ϕ, {(j, v)})]

)]
+ E
p(ϕ|D)

[
E

p(y|ϕ,{(j,v)})
[log (p(y | ϕ, {(j, v)}))]

]
(2)
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Proof

I(Y;Φ | {(j, v)},D) = H(Y | {(j, v)},D)−H(Y | Φ, {(j, v)},D) (3a)
= H(Y | {(j, v)},D)− E

p(ϕ|D)
[H(Y | ϕ, {(j, v)})] (3b)

= − E
p(y|{(j,v)},D)

[log (p(y | {(j, v)},D))] + E
p(ϕ|D)

[
E

p(y|ϕ,{(j,v)})
[log (p(y | ϕ, {(j, v)}))]

]
(3c)

= − E
p(y|{(j,v)},D)

[
log

(∫
ϕ
p(y,ϕ | {(j, v)},D)dϕ

)]
+ E
p(ϕ|D)

[
E

p(y|ϕ,{(j,v)})
[log (p(y | ϕ, {(j, v)}))]

]
(3d)

= − E
p(y|{(j,v)},D)

[
log

(∫
ϕ
p(ϕ | {(j, v)},D)p(y | ϕ, {(j, v)},D)dϕ

)]
+ E
p(ϕ,|D)

[
E

p(y|ϕ,{(j,v)})
[log (p(y | ϕ, {(j, v)}))]

]
(3e)

= − E
p(y|{(j,v)},D)

[
log

(
E

p(ϕ|{(j,v)},D)
[p(y | ϕ, {(j, v)})]

)]
+ E
p(ϕ|D)

[
E

p(y|ϕ,{(j,v)})
[log (p(y | ϕ, {(j, v)}))]

]
.

(3f)

B.2 Estimating the Mutual Information over Outcomes

For models that allow for evaluation of the experimental outcome density (likelihood),
p(y | ϕ, {(j, v)}), we can use the following estimator for I(Y;Φ | {(j, v)},D):

Î(Y;Φ | {(j, v)},D) = Ĥ(Y | {(j, v)},D)− Ĥ(Y | Φ, {(j, v)},D) (4)

Algorithm 3: Mutual Information Computation
Input : Posterior q(ϕ | D ∪ D©), Number of posterior samples c, Number of

interventional samples m, Intervention {(j, v)}. We notate as the
interventional and Y the observational data.

▷Sample from the posterior
1 {ϕ̂i ∼ q(ϕ | D ∪ D©)}ci=1

▷Sample from mutilated SCMs
2 {ŷi,j,k ∼ p(y | ϕ̂i, {(j, v)})}mk=1

3 return − 1
c×m

∑c
i=1

∑m
k=1 log

(
1
c

∑c
l=1 p(ŷi,k | ϕ̂l, {(j, v)})

)
+ 1

c×m

∑c
i=1

∑m
k=1 log

(
p(ŷi,k | ϕ̂i, {(j, v)})

)
11



Definition 2 The Monte Carlo estimator, Ĥ(Y | {(j, v)},D), of the marginal entropy of the
experimental outcomes, H(Y | {(j, v)},D), is given by:

− 1

co ×m

co∑
i=1

m∑
k=1

log

(
1

cin

cin∑
l=1

p(ŷi,k | ϕ̂l, {(j, v)})

)
, (5)

where ŷi,k ∼ p(y | ϕ̂l, {(j, v)}) is one of m samples from the density parameterised by the
ith of co SCMs ϕ̂i ∼ p(ϕ | D) augmented by intervention {(j, v)}. The likelihood of the
sample ŷi,k is then evaluated under the parameterisation of the lth of cin additional SCMs
ϕ̂l ∼ p(ϕ | D) augmented by intervention {(j, v)}.

Ĥ(Y | {(j, v)},D) is a consistent but biased estimator of H(Y | {(j, v)},D) due to the
expectation inside of the nonlinear log function. Alternatively, we can look at the following
lower bound on H(Y | {(j, v)},D):

H(Y | {(j, v)},D) = − E
p(y|{(j,v)},D)

[
log

(
E

p(ϕ|D)
[p(y | ϕ, {(j, v)})]

)]
,

≤ − E
p(y|{(j,v)},D)

[
E

p(ϕ|D)
[log (p(y | ϕ, {(j, v)}))]

]
,

by Jensen’s inequality. We can then define an unbiased estimator of this lower bound.

Definition 3 The unbiased Monte Carlo estimator, Ĥ∗(Y | {(j, v)},D), of the lower bound
on the marginal entropy of the experimental outcomes, −Ep(y|{(j,v)},D)

[
Ep(ϕ,|D) [log (p(y | ϕ, {(j, v)}))]

]
,

is given by:

− 1

co × cin ×m

co∑
i=1

m∑
k=1

cin∑
l=1

log
(
p(ŷi,k | ϕ̂l, {(j, v)})

)
, (6)

Finally, we define our estimator for H(Y | Φ, {(j, v)},D).

Definition 4 The Monte Carlo estimator, Ĥ(Y | Φ, {(j, v)},D), of the entropy of the
experimental outcomes conditioned on Φ, H(Y | Φ, {(j, v)},D), is given by:

− 1

co ×m

co∑
i=1

m∑
k=1

log
(
p(ŷi,k | ϕ̂i, {(j, v)})

)
, (7)

where ŷi,k ∼ p(y | ϕ̂i, {(j, v)}) is one of m samples from the density parameterised by the ith
of co graphs ϕ̂i ∼ p(ϕ | D) augmented by intervention {(j, v)}.
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B.3 Monte Carlo Estimator of the Batch Mutual Information

While Equation 1 pertains to MI for a single design, we present here the MI estimator for
the batch design.

I(Y;Φ | Ξ,D) =
∑

{(j,v)}∈Ξ

I(Y;Φ | {(j, v)},D) (8)

=
∑

{(j,v)}∈Ξ

H(Y | {(j, v)},D)−H(Y | Φ, {(j, v)},D)

= −
∑

{(j,v)}∈Ξ

E
p(y|{(j,v)},D)

[
log

(
E

p(ϕ|D)
[p(y | ϕ, {(j, v)})]

)]
+ E

p(ϕ|D)

[
E

p(y|ϕ,{(j,v)})
[log (p(y | ϕ, {(j, v)}))]

]

B.4 Mutual Information Submodularity and Monotonicity Proofs

Theorem 5 I(Y ;ω | X) is submodular.

Proof The proof follows the structure of (Kirsch et al., 2019, Appendix A).

I(Y ∪ {y1};ω | X ∪ {x1}) + I(Y ∪ {y2};ω | X ∪ {x2}) ≥
I(Y ∪ {y1, y2};ω | X ∪ {x1, x2}) + I(Y ;ω | X)

(conditioning on RVs that are independent of the non-conditioning RVs)⇔
I(Y ∪ {y1};ω | X ∪ {x1, x2}) + I(Y ∪ {y2};ω | X ∪ {x1, x2}) ≥

I(Y ∪ {y1, y2};ω | X ∪ {x1, x2}) + I(Y ;ω | X ∪ {x1, x2})
(substituting X ∪ {x1, x2} with X+)⇔

I(Y ∪ {y1};ω | X+) + I(Y ∪ {y2};ω | X+) ≥
I(Y ∪ {y1, y2};ω | X+) + I(Y ;ω | X+)

(subtract 2 ∗ I(Y ;ω | X+) from both sides
and use the identity I(A,B;C)− I(B;C) = I(A;C | B) ) ⇔

I(y1;ω | Y,X+) + I(y2;ω | Y,X+) ≥ I(y1, y2;ω | Y,X+)

⇔
I(y1;ω | Y,X+) + I(y2;ω | Y,X+) =

(h(y1 | Y,X+) + h(y2 | Y,X+))︸ ︷︷ ︸
≥h(y1,y2|Y,X+) (Thomas and Joy, 2006, p.253)

− (h(y1 | Y,X+, ω) + h(y2 | Y,X+, ω))︸ ︷︷ ︸
=h(y1,y2|ω,Y,X+) (because y1⊥⊥y2|ω)

≥

h(y1, y2 | Y,X+)− h(y1, y2 | ω, Y,X+) = I(y1, y2;ω | Y,X+)

Theorem 6 I(Y ;ω | X) is non-decreasing.

13



Proof

I(Y ∪ {y};ω | X ∪ {x})− I(Y ;ω | X) =

(conditioning on RVs that are independent of the non-conditioning RVs)
I(Y ∪ {y};ω | X ∪ {x})− I(Y ;ω | X ∪ {x}) =

(use the identity I(A,B;C)− I(B;C) = I(A;C | B))
I({y};ω | Y,X ∪ {x}) ≥ 0

B.5 Relation to MI Approximation in ABCD

Here we demonstrate that though ABCD (Agrawal et al., 2019) uses an importance weighted
estimate of mutual information, for the specific choice of importance weights used in ABCD,
the MI estimate turns out to be the same as the one used in this work.

We note that ABCD decomposes the MI as entropy over the SCM as opposed to the
entropy over outcomes used in this work.

B.5.1 Entropy Over SCM

The mutual information in (2) can be written as:

I(Y;Φ | {(j, v)},D) = H(Φ | {(j, v)},D)−H(Φ | Y, {(j, v)},D) (9)

where H(·) is the expected entropy. As the posterior p(g,θ|D) does not change as a result
of conditioning on the design choice {(j, v)}, the first entropy term is constant wrt {(j, v)}.
Hence, selecting the most informative target corresponds to minimising the conditional
entropy of the parameters Φ.

H(Φ | Y, {(j, v)},D)

= − E
p(y|{(j,v)},D)

[
E

p(ϕ|y,{(j,v)},D)
[log p(ϕ | y, {(j, v)},D)]

]
(10)

The above equation cannot be estimated from samples of q(ϕ | D) ≈ p(ϕ | D) since the
posterior of the SCM would change when the interventional outcome y is conditioned on. To
address this problem, ABCD Agrawal et al. (2019) proposes to use weighted importance
sampling with weights w = p(y | ϕ, {(j, v)},D) and use samples from q(ϕ | D).

Definition 7 The weighted importance sampling estimate of entropy over SCM (9) with
weights w(ϕ) is given by

ÎWIS =
1

co

co∑
i=1

E
p(y|{(j,v)},D)

[
logw(ϕ̂i)

]
− E

p(y|{(j,v)},D)

[
log

[
E

p(ϕ|D,{(j,v)})
w(ϕ)

]]
(11)
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B.5.2 Entropy Over Outcomes.

We can instead consider an alternative factorisation of (2) which would not require importance
sampling and also compute entropies in the lower dimensional space of experimental outcomes,
as given in Equation 1.

Definition 8 The Monte Carlo estimate of entropy over outcomes (1) is given by

ÎMC =
1

co ×m

co∑
i=1

m∑
k=1

log
(
p(ŷi,k | ϕ̂i, {(j, v)})

)
− 1

co ×m

co∑
i=1

m∑
k=1

log

(
1

cin

cin∑
l=1

p(ŷi,k | ϕ̂l, {(j, v)})

)
(12)

B.5.3 Relation between Approximations with Entropy over SCM and
Entropy over Outcomes

We prove below that for specific choice of importance weights w(ϕ) :== p(y | ϕ, {(j, v)},D)
used in ABCD, the MI approximations due to the above two factorizations are the same..

Theorem B.1 Let ÎWIS (11) be the weighted importance sampling estimate of entropy over
SCM (9) with weights w(ϕ) and ÎMC (12) be the Monte Carlo estimate of entropy over
outcomes (1). Then, ÎWIS = ÎMC if w(ϕ) = p(y | ϕ, {(j, v)},D).

Proof Consider the entropy over SCM:

I(Y;Φ | {(j, v)},D) = H(Φ | {(j, v)},D)−H(Φ | Y, {(j, v)},D)

I(Y;Φ | {(j, v)},D) = H(Φ | {(j, v)},D) + E
p(y|{(j,v)},D)

[
E

p(ϕ|y,{(j,v)},D)
[log p(ϕ | y, {(j, v)},D)]

]
(13)

Consider the importance weighted estimate of the above equation with weights w(ϕ). We
can rewrite p(ϕ | y, {(j, v)},D) as:

p(ϕ | y, {(j, v)},D) = w(ϕ)p(ϕ | D, {(j, v)})
Ep(ϕ|D,{(j,v)}) [w(ϕ)]

(14)

Let {ϕ̂i ∼ p(ϕ | D)}coi=1, using (14) in (13),

ÎWIS(Y;Φ | {(j, v)},D) = H(Φ | {(j, v)},D) + 1

co

co∑
i=1

E
p(y|{(j,v)},D)

log

[
w(ϕ̂i)p(ϕ̂i | D, {(j, v)})
Ep(ϕ|D,{(j,v)}) [w(ϕ)]

]
(15a)

Furthermore, using a Monte-Carlo estimate on first term with ϕ̂i, we get

ÎWIS(Y;Φ | {(j, v)},D) = 1

co

co∑
i=1

[
− log p(ϕ̂i | D, {(j, v)}) + E

p(y|{(j,v)},D)
log

(
w(ϕ̂i)p(ϕ̂i | D, {(j, v)})
Ep(ϕ|D,{(j,v)}) [w(ϕ)]

)]
(15b)
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Focusing on the second term,

E
p(y|{(j,v)},D)

log

[
w(ϕ̂i)p(ϕ̂i | D, {(j, v)})
Ep(ϕ|D,{(j,v)}) [w(ϕ)]

]

= E
p(y|{(j,v)},D)

[
logw(ϕ̂i)

]
+ log p(ϕ̂i | D, {(j, v)})− E

p(y|{(j,v)},D)

[
log

[
E

p(ϕ|D,{(j,v)})
w(ϕ)

]]
(16)

Plugging the above result back in (15b) and noticing that second term in the above equation
cancels with first term in (15b), we get:

ÎWIS =
1

co

co∑
i=1

E
p(y|{(j,v)},D)

[
logw(ϕ̂i)

]
− E

p(y|{(j,v)},D)

[
log

[
E

p(ϕ|D,{(j,v)})
w(ϕ)

]]
(17)

ÎMC is given by (5)+(7). We can notice that ÎWIS = ÎMC if w(ϕ) = p(y | ϕ, {(j, v)},D)
and approximating remaining expectations in the above equation with Monte Carlo samples.

Appendix C. Models

C.1 DiBS Hypermarameters

For optimizing DiBS Lorch et al. (2021) we used RMSProp with learning rate 0.005. Addi-
tionally, per dataset we set the following hyperparameters:

Nodes Dataset Graph Prior
Particles

Transportation
Steps

Number of Particles Kernel

20

Scale Free Scale Free 20000 20 Frobenius Squared Exponential (hlatent = 5.0, htheta = 500)
Erdős-Rényi Erdős-Rényi 20000 20 Frobenius Squared Exponential (hlatent = 5.0, htheta = 500)

50

Scale Free Scale Free 20000 20 Frobenius Squared Exponential (hlatent = 5.0, htheta = 500)
Erdős-Rényi Erdős-Rényi 20000 20 Frobenius Squared Exponential (hlatent = 5.0, htheta = 500)

10

Ecoli1 Erdős-Rényi 10000 20 Frobenius Squared Exponential (hlatent = 5.0, htheta = 500)
Ecoli2 Erdős-Rényi 10000 20 Frobenius Squared Exponential (hlatent = 5.0, htheta = 500)
Yeast1 Erdős-Rényi 10000 20 Frobenius Squared Exponential (hlatent = 5.0, htheta = 500)
Yeast2 Erdős-Rényi 10000 20 Frobenius Squared Exponential (hlatent = 5.0, htheta = 500)

50

Ecoli1 Erdős-Rényi 10000 20 Frobenius Squared Exponential (hlatent = 5.0, htheta = 500)
Ecoli2 Erdős-Rényi 10000 20 Frobenius Squared Exponential (hlatent = 5.0, htheta = 500)
Yeast1 Erdős-Rényi 10000 20 Frobenius Squared Exponential (hlatent = 5.0, htheta = 500)
Yeast2 Erdős-Rényi 10000 20 Frobenius Squared Exponential (hlatent = 5.0, htheta = 500)

Table 1: Settings of DREAM experiments for nodes 10 and 50.

Appendix D. Datasets and Experiment details

D.1 Synthetic Graphs Experiments

In the synthetic data experiments, we focus on two types of graphs. The Erdős-Rényi and
Scale Free. For linear SCMs, we sample the edge weights γ uniformly at random. For the
nonlinear SCM, we parameterize each variable to be a Gaussian whose mean is a nonlinear
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function of its parents. We model the nonlinear function with a neural network. In all
settings, we set noise variance σ2 = 0.1. For both types of graphs, we set the expected
number of edges per vertex to 1.
Erdos-Renyi model:

We used networkx1 and method fast_gnp_random_graph Batagelj and Brandes (2005)
to generate graphs based on the Erdős-Rényi model. We set expected number of edges per
vertex to 1.
Scale Free (Barabasi-Albert) graphs:

We used igraph2 package to generate the graphs. We set the expected number of edges
per vertex to 1.

D.2 DREAM Experiments

For the DREAM experiments, we used GeneNetWeaver Schaffter et al. (2011), a simulator
of gene regulatory networks, based on stochastic differential equations. This simulator
was used to generate data for Dialogue for Reverse Engineering Assessments and Methods
(DREAM) Sachs et al. (2005) competition with three network inference challenges (DREAM3,
DREAM4 and DREAM5). We used the GeneNetWeaver v3.13.

Each experiment is parametrized as an xml file describing the network topology but also
the crucial parameters of the stochastic differential equation that GeneNetWeaver simulates.
In our experiments, we used Ecoli1, Ecoli2, Yeast1 and Yeast2 networks for 10 and 50
nodes.

Each experiment was initialized with 100 observational data. For the observational data,
we used the steady state 4 of wild-type experiments. For the interventional data, we used
the steady-state of knock-out experiments. Each observational or interventional sample was
conducted by running the simulator with a different seed per draw.

Dataset Model Starting Observational Samples Batch Size Number of Batches

10
no

de
s Ecoli1 DiBS non linear 100 5 20

Ecoli2 DiBS non linear 100 5 20
Yeast1 DiBS non linear 100 5 20
Yeast2 DiBS non linear 100 5 20

50
no

de
s Ecoli1 DiBS non linear 100 20 20

Ecoli2 DiBS non linear 100 20 20
Yeast1 DiBS non linear 100 20 20
Yeast2 DiBS non linear 100 20 20

Table 2: Settings of DREAM experiments for nodes 10 and 50.

1. https://networkx.org/documentation/networkx-1.10/reference/generated/networkx.generators.
random_graphs.fast_gnp_random_graph.html

2. https://igraph.org/python/api/latest/igraph._igraph.GraphBase.html#Barabasi
3. https://github.com/tschaffter/genenetweaver
4. Steady state is considered the result of the simulation of the SDE for maximum 2000 steps.
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Appendix E. Bayesian Optimisation

Bayesian Optimisation (BO) Kushner (1964); Zhilinskas (1975); Močkus (1975) is a global
optimisation technique for optimising black-box functions. More formally, for any function U
defined on a set X which is expensive to evaluate, BO seeks to find the maximum of the
function over the entire set X with as few evaluations as possible.

max
x∈X

U(x)

BO typically proceeds by placing a prior on the unknown function and obtaining the posterior
over this function with the queried points x∗ = {x∗1, . . . , x∗t }. A common prior is a Gaussian
Process (GP) Rasmussen (2003) with mean 0 and covariance function defined by a kernel
k(x, x′). Let Ux∗ = [U(x∗1), . . . ,U(x

∗
t )] denote the vector of function evaluations, K the

kernel matrix with Ki,j = k(x∗i , x
∗
j ) and kt+1 = [k(x∗1, xt+1), . . . , k(x

∗
t , xt+1)]. The posterior

predictive of point xt+1 can be obtained in closed form:

p(U) ∼ GP(0, k)
p(U | x∗,Ux∗ , xt+1) = N (µ(xt+1),σ

2(xt+1))

µ(xt+1) = kT
t+1(K+ I)−1Ux∗

σ2(xt+1) = k(xt+1, xt+1)− kT
t+1(K+ I)−1kt+1

Appendix F. Related Work

Early efforts of using Bayesian Optimal Experimental Design for Causal Discovery (BOECD)
can be found in the works of Murphy (2001) and Tong and Koller (2001). However, these ap-
proaches deal with simple settings like limiting the graphs to topologically ordered structures,
intervening sequentially, linear models, and discrete variables.

In Cho et al. (2016) and Ness et al. (2017), BOECD was applied for learning biological
networks structure. More recently, ABCD framework Agrawal et al. (2019) extended the
work of Murphy (2001) and Tong and Koller (2001) in the setting where interventions can be
applied in batches with continuous variables. To achieve this, they (approximately) solve the
submodular problem of maximizing the batched mutual information between interventions
(experiments), outcomes, and observational data, given a DAG. DAG hypotheses are sampled
using DAG-bootstrap (Friedman et al., 2013). Our work differs from ABCD in a few ways:
we work with both linear and nonlinear SCMs by using state-of-the-art posterior models over
DAGs Lorch et al. (2021), we apply BO to select the value to intervene with, but we also
prepare the batch using softBALD Kirsch et al. (2021) which is significantly faster than the
greedy approximation of ABCD method.

In von Kügelgen et al. (2019) the authors proposed the use of Gaussian Processes to
model the posterior over DAGs and then use BO to identify the value to intervene with,
however, this method was not shown to be scalable for larger than bivariate graphs since they
rely on multi-dimensional Gaussian Processes for modeling the conditional distributions.

A new body of work has emerged in the field of differentiable causal discovery, where
the problem of finding the structure, usually from observational data, is solved with gradient
ascent and functional approximators, like neural networks (Zheng et al., 2018; Ke et al., 2019;

18



Brouillard et al., 2020). In recent works (Cundy et al., 2021; Lorch et al., 2021; Annadani
et al., 2021), the authors proposed a variational approximation of the posterior over the DAGs
which allowed for modeling a distribution rather than a point estimate of the DAG that best
explains the observational data D. Such work can be used to replace DAG-bootstrap (Friedman
et al., 2013), allowing for the modeling of posterior distributions with greater support.

Besides the BOECD-based approaches, a few active causal learning works have been
proposed He and Geng (2008); Gamella and Heinze-Deml (2020); Scherrer et al. (2021).
Active ICP Gamella and Heinze-Deml (2020) uses ICP Peters et al. (2016) for causal learning
while using an active policy to select the target, however, this work is not applicable in
the setting where the full graph needs to be recovered. Closer to our proposal belongs
AIT Scherrer et al. (2021), which uses a neural network-based posterior model over the
graphs but evaluates the F-score to select the interventions.

Table 3: Comparison of the proposed experimental design for causal discovery with existing
experimental design for causal discovery techniques.

Method Nonlinear BOED Scalable Continuous Finite Data Setting the value

Murphy, Tong and Koller Murphy (2001); Tong and Koller (2001) ✓ ✓
ABCD Agrawal et al. (2019) ✓ ✓ ✓ ✓
Active NCM Scherrer et al. (2021) ✓ ✓ ✓
Active ICP Gamella and Heinze-Deml (2020) ✓ ✓ ✓
GP-UCB von Kügelgen et al. (2019) ✓ ✓ ✓ ✓ ✓
Sussex Sussex et al. (2021) ✓ ✓
Ours ✓ ✓ ✓ ✓ ✓ ✓
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Appendix G. Mutual Information per value for two Variables graph

Figure 4: Estimation of the Mutual Information using two variables model G. In green we represent
the interventional data. We train an ensemble of a linear (left plot) and a non-linear (right plot)
function approximator (NN) parametrizing a Gaussian Distribution. We can see that in both cases,
MI is influenced by the value of intervention do(X1 = x1). In this experiment we used the BALD
estimator of the MI.

Appendix H. metrics

E-SHD: Defined as the expected structural hamming distance between samples from the
posterior model over graphs and the true graph E-SHD := Eg∼p(G|D)

[
SHD(g, g̃)

]
E-SID: As the SHD is agnostic to the notion of intervention, Peters and Bühlmann (2015)
proposed the expected structural interventional distance (E-SID) which quantifies the dif-
ferences between graphs with respect to the causal inference statements and interventional
distributions.
AUROC: The area under the receiver operating characteristic curve of the binary classifica-
tion task of predicting the presence/ absence of all edges.
AUPRC: The area under the precision-recall curve of the binary classification task of
predicting the presence/ absence of all edges.

Appendix I. Walltime Performance of CBED vs Soft-CBED

20



Figure 5: Performance comparison between different value selection and batch strategies for CBED.
Experiments are performed using an AMD EPYC 7662 64-Core CPU and Tesla V100 GPU.

Strategy
Value Batch Runtime(s)

Fixed Greedy 32.56
Soft 6.42

GP-UCB Greedy 284.98
Soft 24.17

Appendix J. Complete list of Synthetic task results

Unless stated otherwise, for all the synthetic experiments we run 100 seeds, with standard
error of the mean shaded.
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Figure 6: Results of Erdős–Rényi Erdős and Rényi (1959) linear SCMs with 50 variables. Experi-
ments were performed with DAG Bootstrap as the underlying posterior model.
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Figure 7: Results of scale-free linear SCMs with 50 variables. Experiments were performed with
DAG Bootstrap as the underlying posterior model.
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Figure 8: Results of Erdős–Rényi Erdős and Rényi (1959) nonlinear SCMs with 50 variables.
Experiments were performed with DiBS as the underlying posterior model.
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Figure 9: Results of scale-free nonlinear SCMs with 50 variables. Experiments were performed with
DiBS as the underlying posterior model.

Appendix K. Code Dependencies

We are using the following dependencies.

Table 4: Set-up and dataset details for non-convex, non-linear regression prblem.

Name URL License

jaxlib/jax https://jax.readthedocs.io/en/latest/ Apache
causaldag https://github.com/FenTechSolutions/CausalDiscoveryToolbox MIT
pytorch https://github.com/pytorch/pytorch BSD
xarray https://github.com/pydata/xarray Apache
cdt https://github.com/FenTechSolutions/CausalDiscoveryToolbox MIT
bayesian-optimization https://github.com/fmfn/BayesianOptimization MIT
pgmpy https://github.com/pgmpy/pgmpy MIT
igraph https://github.com/igraph/igraph GPL-2.0
numpy https://github.com/numpy/numpy BSD
SciPy https://github.com/scipy/scipy BSD
scikit-learn https://github.com/scikit-learn/scikit-learn BSD
networkx https://github.com/networkx/networkx BSD
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Appendix L. Computation requirements

Table 5: Total number of GPU hours (back-of-the-envelope estimation). Experiments are performed
on an AMD EPYC 7662 64-core CPU and Tesla V100 GPU.

Runtime per acq. Iterations Seeds Experiments total (hours)

greedy ucb (CBED) 284.98 20 100 2 316.64
greedy fixed (CBED) 32.56 20 100 2 36.17

D=50 soft ucb (CBED) 24.17 20 100 2 26.85
soft fixed (CBED) 6.42 20 100 2 7.13

6.42 20 100 2 7.13
greedy ucb (AIT) 284.98 20 100 2 316.64
soft ucb (AIT) 24.17 20 100 2 26.85

greedy ucb (CBED) 113.992 20 100 2 126.65
greedy fixed (CBED) 13.024 20 100 2 14.47

D=20 soft ucb (CBED) 9.668 20 100 2 10.74
soft fixed (CBED) 2.568 20 100 2 2.85
soft sampled (CBED) 2.568 20 100 2 2.85
greedy ucb (AIT) 113.992 20 100 2 126.65
soft ucb (AIT) 9.668 20 100 2 10.74

DREAM soft fixed (CBED) 6.42 20 6 4 0.856
soft fixed (AIT) 6.42 20 6 4 0.856

sum 889.31

Appendix M. License

We summarize the licenses on table 4.
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