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Abstract

High-entropy alloys are solid solutions of multiple principal elements, capable of reaching
composition and feature regimes inaccessible for dilute materials. Discovering those with
valuable properties, however, relies on serendipity, as thermodynamic alloy design rules
alone often fail in high-dimensional composition spaces. Here, we propose an active-learning
strategy to accelerate the design of novel high-entropy Invar alloys in a practically infinite
compositional space, based on very sparse data. Our approach works as a closed-loop,
integrating machine learning with density-functional theory, thermodynamic calculations,
and experiments. After processing and characterizing 17 new alloys (out of millions of
possible compositions), we identified 2 high-entropy Invar alloys with extremely low thermal
expansion coefficients around 2×10−6 K−1 at 300 K. Our study thus opens a new pathway
for the fast and automated discovery of high-entropy alloys with optimal thermal, magnetic
and electrical properties.
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1. Introduction

With the development of high-entropy alloys (HEAs), we have reached a new stage where
multiple elements are used in similar fractions Cantor et al. (2004)Yeh et al. (2004). Con-
sidering only the most used elements of the periodic table, this spans a composition space
of at least 1050 alloy variants, a space so large that it is impossible to tackle it by conven-
tional alloy design methods George et al. (2019). These conventional methods for designing
alloys, which have been applied to small subspaces of the HEAs composition realm, in-
clude the CALculation of PHAse Diagrams (CALPHAD) and Density-Functional Theory
(DFT)Mao et al. (2017)Körmann et al. (2015)Rao et al. (2019). However, CALPHAD pro-
vides equilibrium-phase diagrams only, while DFT is computationally costly and cannot be
readily applied to higher temperatures and disordered alloys Körmann et al. (2015)Huang
et al. (2018).
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To overcome these obstacles, we propose here an active learning framework for composi-
tion discovery of HEAs, which is efficient for very sparse experimental data. The approach
comprises machine learning-based techniques, density-functional theory, mean-field thermo-
dynamic calculations, and experiments. We focus on the design of high-entropy Invar alloys
with low thermal expansion coefficient (TEC), for several reasons: i) there is high demand
for novel Invar alloys, for serving the huge emerging markets for the transport of liquid
hydrogen, ammonia and natural gas; ii) the mechanical properties of the original Fe65Ni35
alloy for which Charles Edouard Guillaume received the 1920 physics Nobel Prize leave
room for improvement; iii) alternative Invar alloys (e.g., intermetallic, amorphous or anti-
ferromagnetic Invar compounds) come at forbiddingly high alloy costs and/or poor ductility
Wassermann and Acet (2005)Shiga (1996); iv) although a few HEAs have the potential to
fill this gap Lin et al. (2021)Rao et al. (2021), the lowest TEC ( 10×10−6 K−1) of HEAs
reported in the literature exceeds the value of the original Fe65Ni35 alloy ( 1.6×10−6 K−1)
Rao et al. (2021).

2. Methods

Figure 1: Approach overview. An active learning framework for the targeted composition
design and discovery of HEAs, which combines machine learning models, DFT calculations,
thermodynamic simulations and experimental feedback. Firstly, The promising candidates
are generated under the HEA-GAD framework consisting of two primary steps: i) Au-
toencoder for composition generation. ii) Stochastic sampling for composition selection.
Secondly, the selected candidates from the HEA-GAD are further processed by the TERM
framework which includes two ensemble models comprised of a multilayer perceptron and
gradient boosting decision tree. In the last step, the most promising compositions are se-
lected by a ranking-based policy. The top 3 candidates are experimentally measured and
fed back to the database. The iteration is repeated until the discovery of Invar alloys.
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Figure 2: (a) A HEA Generative Alloy Design based on a deep generative model. The
encoder takes compositions of alloys as input and the decoder can act as a generator for
suggesting new alloy compositions based on the learned latent z representation. (b) A large-
scale screening with multilayer neural network model and gradient boosting decision tree.
The new synthetic compositions with potentially low-TEC are sampled through the Markov
Chain Monte Carlo method based on the latent z space shown in (a). The screening utilizes
the mean TEC prediction value from 100 models (including 50 multilayer perceptrons and
50 gradient boosting decision trees) as the final prediction, while the corresponding variance
as the uncertainty. A rank-based objective function works as a guide to the final choice.
(c) Physically informed screening model with the integration of DFT and thermodynamic
calculation. The TEC of the top 3 candidates will be experimentally measured by PPMS
and the results will be fed back to the training database for the next active learning iteration.

The active learning framework includes three main steps: targeted composition genera-
tion, physics-informed screening and experimental feedback (as shown in Fig. 1). In the
first step, the Hign-Entropy Alloy Generative Alloy Design (HEA-GAD) employs a gen-
erative model (GM) to probe the 2-dimensional latent space of alloys (see Fig. 2a). GM
has emerged as one of the best models for learning the latent representation of the data
Ghahramani et al. (2014)Goodfellow et al. (2014). Different GMs are compared and ana-
lyzed based on the evaluation metrics. The results show that the wasserstein autoencoder
(WAE) architecture performs better than other models with similar architectures, such as
variational autoencoder (VAE) Tolstikhin et al. (2017)Das et al. (2021). WAE implements
a typical two-neural network (NN) architecture, an encoder and a decoder. Different from
VAE, WAE attempts to minimize a penalized form of the Wasserstein distance (a math-
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ematical term that measures the distance between two probability distributions) between
the encoded data distribution and the target distribution (see Fig. 2a). In the second
step, the Two-stage Ensemble Regression Model (TERM) is used to further investigate the
TEC of the HEA-GAD-generated alloy compositions (in Fig. 2b and 2c). The first stage
concerns composition-based regression models, aiming at fast and large-scale composition
inference. Then, the top 1,000 results with potentially low TEC from the first-stage model
are screened and enter the second-stage model, where DFT and thermodynamic calcula-
tions are included as part of the input, making it a physically informed model. To increase
the robustness of TERM without sacrificing the prediction accuracy, TERM taps into the
advantages of MLP and GBDT by combining both into a single ensemble. The ensemble
models at two stages (in Fig. 2b and 2c) adopts the same basic architecture of TERM.
Such architecture consists of 50 MLPs and 50 GBDTs. Consequently, TERM utilizes the
mean TEC prediction value from 100 models (including 50 MLPs and 50 GBDTs) as the
final prediction, while the corresponding variance as the uncertainty of the final prediction.
Finally, with a ranking strategy the TEC of the top 3 candidates is selected to be exper-
imentally measured by PPMS (in Fig. 2c). The experimental results will augment the
training database for the next active learning iteration.

3. Data Preparation

696 data points are taken from the publications Masumoto (1931)Masumoto (1934)Hakaru
et al. (1954)Hakaru et al. (1955)Hakaru et al. (1957a)Hakaru et al. (1957b). 3 data points
are taken from our previous unpublished work. For training, the initial dataset only occupies
a very small percentage of all possible compositions. For prediction, we have 291 quaternary
and 3 quinary HEAs which make the prediction even more difficult. The step size of 0.1%
is considered as the resolution of the arc-melting furnace casting.

4. Results and discussion

Fig. 3a and 3b illustrate the alloy discovery process in two scenarios. In an ideal world,
the composition-TEC curve is simple and convex, this means that this specific relation is
readily learned and ‘never forgotten’. Even with a small dataset present, the global max-
ima can be easily found regardless of their initial starting points: both Path 1 and Path
2 can lead to the Invar point. However, in the real world, the lowest TEC curve is highly
non-linear due to complex composition-property relations and the composition landscape
remains largely unknown. Both intelligent species and algorithms will have to explore the
unknown territory and accumulate knowledge about the system by making mistakes, not
to mention that the composition axis is multi-dimensional, and the design space is thus
huge. Therefore, the chosen Paths, available data, as well as starting points will signifi-
cantly influence the final results. Path 1 may lead to local minima, while Path 2 is rather
difficult initially, and multiple high TEC non-Invar can be discovered before the eventual
Invar discovery. Fig. 3c and 3d provide the concentration histogram of Cr and Cu in the
current dataset, respectively. We also plotted the observed lowest TEC curve to illustrate
the discovery path in two HEAs. The GAD-TERM framework shows its high efficiency by
quickly identifying the Invar points in the first round (A3, B2). However, the algorithm
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is designed for exploration (as we discussed in the last paragraph). It inevitably discovers
some non-Invar alloys along the path (e.g. A4, A8) (denoted by grey arrow). Fig. 3d
clearly shows that the distribution of Cu in the alloys is extremely imbalanced, i.e., the
vast majority of alloy in the dataset doesn’t contain Cu at all and only a few alloys have
5% Cu. Such distributional difference likely accounts for a significantly different learning
behavior observed in Fig. 3e and 3f. Fig. 4e shows the measured and predicted TEC values
for FeNiCoCr and FeNiCoCrCu HEAs. Fig. 3f shows the Mean Absolute Percentage Error
(MAPE) (between experiments and predictions) versus experimental iteration, with each
exploitation and exploration step being marked in arrows. For FeNiCoCr HEAs, the aver-
age experimental TEC value gradually decreases: 6.49×10−6/K in the first, 5.61×10−6/K
in the second and 3.65×10−6/K in the third iteration (see also Table 1). Exploration and
exploitation take place alternately akin to a natural learning process, such a plot represents
the ‘learning curve’ of the HEA-GAD-TERMmodel. The learning curve indicates a progres-
sive endeavor as the MAPE error decreases significantly (from 1.5 to 0.2). In the second and
third iterations, the standard deviation of the experimental TEC values declines remark-
ably (3.34×10−6/K and 1.46×10−6/K). This demonstrates excellent exploration progress in
which HEA-GAD-TERM converges quickly and can predict TEC with high accuracy after
only three iterations. On the other hand, FeNiCoCrCu shows a different learning behav-
ior. The discovery path shows no significant improvements, from experimentally measured
6.26×10−6/K for the first iteration, to 6.64×10−6/K in the second and 5.67×10−6/K in
the third iteration (more numerical details in Table 1). Such a trend can be attributed to
the lack of Cu-containing FeNiCoCrCu data (only three data points are available at the
beginning, see Fig. 4d). Fig. 4a shows the TEC as a function of temperatures for 2 Invar
alloys (TEC≈2×10−6 K−1) and 2 Kovar alloys (TEC≈5×10−6 K−1) discovered in this work
compared with HEAs and medium entropy alloys (MEAs) Rao et al. (2021)Laplanche et al.
(2018). The alloys discovered in this work show abnormally low TEC compared to HEAs
and MEAs reported before. Fig. 4b shows the configurational entropy against TEC for
different kinds of alloys Schneider et al. (1995)Chanmuang et al. (2008)Fukamichi et al.
(1977)Laplanche et al. (2018). Most HEAs, MEAs, and conventional alloys show high TEC
values. On the contrary, most Invar alloys show a low TEC but also low configurational
entropy. The Invar alloys discovered in this work offer a good combination of low TEC and
high configurational entropy.
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Figure 3: Analysis of the results after 6 iterations in the active learning loop.
(a) and (b) Representation of the alloy discovery process in the ideal and real world. (c)
and (d) Cr and Cu distributions histogram. The Cr histogram has various concentrations
(from 0 to 20%). In contrast, the vast majority (more than 95%) of the compositions have
zero Cu concentration. The lowest known TEC as a change of compositions was plotted
as solid curves while the dashed curves represent the unknown. Grey arrows illustrate the
discovery paths of HEA-GAD-TERM. (e) Experimental TEC of the FeNiCoCr and FeNiC-
oCrCu HEAs. Predictions and experimental results are marked in triangles and rectangles,
respectively. (f) MAPE of active learning. Each exploitation and exploration step was
marked in arrows, and the dots represent the MAPE between experiment and predictions.
Alternations between exploration and exploitation are akin to a natural learning process.

Figure 4: A summary of the excellent properties of the ML-designed HEAs in
this work. (a) The thermal expansion coefficient of the ML-designed HEAs as a change
of temperature. As a comparison, we plot the thermal expansion curve of the HEAs and
MEAs. A3 and A9 FeNiCoCr HEAs show extremely low TECs around 2×10−6 K−1 at
300 K which can be used as Invar alloys. B2 and B4 FeNiCoCrCu HEAs show low TECs
around 5×10−6 K−1 at 300 K which can be used as Kovar alloys. (b) Configurational
entropy plotted against the TEC values for various known alloys and alloys discovered in
this work. ML enables this work to efficiently discover new alloys with excellent properties
(high resistance to thermal cycles) in an infinite phase spectrum (compositionally complex
alloys).
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