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Abstract
We study online learning with bandit feedback across multiple tasks, with the goal of
improving average performance across tasks if they are similar according to some natural
task-similarity measure. As the first to target the adversarial setting, we design a unified
meta-algorithm that yields setting-specific guarantees for two important cases: multi-armed
bandits (MAB) and bandit linear optimization (BLO). For MAB, the meta-algorithm tunes
the initialization, step-size, and entropy parameter of the Tsallis-entropy generalization
of the well-known Exp3 method, with the task-averaged regret provably improving if the
entropy of the distribution over estimated optima-in-hindsight is small. For BLO, we
learn the initialization, step-size, and boundary-offset of online mirror descent (OMD) with
self-concordant barrier regularizers, showing that task-averaged regret varies directly with
a measure induced by these functions on the interior of the action space. Our adaptive
guarantees rely on proving that unregularized follow-the-leader combined with multiplicative
weights is enough to online learn a non-smooth and non-convex sequence of affine functions
of Bregman divergences that upper-bound the regret of OMD.
Keywords: Meta-Learning, Multi-Armed Bandits, Bandit Linear Optimization

1. Introduction

Meta-learning (Thrun and Pratt, 1998) is a popular approach to studying multi-task learning
whose goal is to leverage information from previously-seen tasks in order to achieve better
performance on unseen tasks. While most meta-learning algorithms are designed for tasks
with full information feedback, there is a growing amount of work aiming to design meta-
learning algorithms capable of operating under bandit feedback (c.f. Appendix A). While
this literature has focused on stochastic feedback, where feedback is sampled i.i.d. from some
distribution, we are the first to theoretically study meta-learning under adversarial bandit
feedback, where it is chosen by an adversary possibly trying to harm the learner.

Specifically, we target low regret on average across a sequence of bandit tasks; this regret
should be no worse than the single-task setting in general, and much better when tasks are
related. We design a meta-algorithm based on initializing and tuning bandit methods based
on online mirror descent (OMD), e.g. Exp3 (Auer et al., 2002). Our algorithm is applicable
to both multi-armed bandits (MAB) and bandit linear optimization (BLO), and yields new
meta-learning algorithms with provable guarantees for both. For MAB, its average m-round
regret across T tasks is

oT (1) + 2 min
β∈(0,1]

√
Ĥβdβm/β (1)
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where d is the number of actions and Ĥβ is the Tsallis entropy (Tsallis, 1988) of the empirical
distribution over the estimated optimal actions across tasks. At β = 1 the Tsallis entropy
reduces to the Shannon entropy; both are small if most tasks are estimated to be solved by
the same few arms and large if all are used roughly the same amount, making it a natural
task-similarity notion. The bound of log d ≥ Ĥ1 means that the bound (1) recovers Exp3’s
guarantee in the worst-case of dissimilar tasks. In the important case of s≪ d arms always
being estimated to be optimal we have Ĥβ = O(s), so using β = 1

log d in bound (1) yields
a task-averaged regret of O(

√
sm log d) as T →∞. For s = Od(1) this beats the single-task

lower bound of Ω(
√
dm) (Audibert et al., 2011). We also obtain natural task-averaged regret

bounds for BLO, albeit with different setting-specific notions of task similarity.

Our main technical contributions are as follows:

1. We design a unified meta-algorithm to initialize and tune OMD when using regularizers
used by different bandit algorithms (Algorithm 1). Apart from strong guarantees and gen-
erality, our approach is notable for its adaptivity: we do not need to know anything about
the task-similarity—e.g. the size of the subset of optimal arms—to adapt to similar tasks.

2. We apply our meta-approach to obtain a meta-learning algorithm for adversarial MAB.
In particular, we use OMD with the Tsallis regularizer (Abernethy et al., 2015) as our
within-task algorithm to achieve bounds on task-averaged regret that depend on a natural
notion of task similarity: the Tsallis entropy of the estimated optima-in-hindsight.

3. We adapt Algorithm 1 to the adversarial BLO problem by setting the regularizer to be
a self-concordant barrier function, as in Abernethy et al. (2008). As in MAB, we obtain
task-averaged regret bounds which depend on a natural notion of task similarity based
on the constraints defining the convex action space. We instantiate the BLO result in two
settings: linear bandits over the sphere and an application to the bandit shortest-path
problem (Takimoto and Warmuth, 2003; Kalai and Vempala, 2005).

2. Learning the regularizers of bandit algorithms

We consider the problem of meta-learning across bandit tasks t = 1, . . . , T over some fixed set
K ⊂ Rd. On each round i = 1, . . . ,m of task t we play action xt,i ∈ K and receive feedback
ℓt,i(xt,i) for some function ℓt,i : K 7→ [−1, 1]. Note that all functions we consider will be
linear and so we will also write ℓt,i(x) = ⟨ℓt,i,x⟩. Additionally, we allow each ℓt,i to be chosen
by an oblivious adversary, i.e. an adversary with knowledge of the algorithm that must select
ℓt,i independent of xt,i. We will also denote x(a) to be the ath element of the vector x ∈ Rd,
K to be the convex hull of K, and △n to be the simplex on n elements. Finally, note that
all proofs can be found in the Appendix.

In online learning, the goal on a single task t is to play actions xt,1, . . .xt,m that minimize
the regret

∑m
i=1 ℓt,i(xt,i)− ℓt,i(x

∗
t ), where x∗

t ∈ argminx∈K
∑m

i=1 ℓt,i(x). Lifting this to the
meta-learning setting, our goal as in past work (Khodak et al., 2019; Balcan et al., 2021) will
be to minimize the task-averaged regret 1

T

∑T
t=1

∑m
i=1 ℓt,i(xi,t)−ℓt,i(x

∗
t ). In-particular, we

hope to use multi-task data in order to improve average performance as the number of tasks
T →∞, e.g. by attaining a task-averaged regret of oT (1) + Õ(V

√
m), where V ∈ R≥0 is a

measure of task-similarity that is small if the tasks are similar but still yields the worst-case
single-task performance if they are not.
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In meta-learning we are commonly interested in learning a within-task algorithm or
base-learner, a parameterized method that we run on each task t. A popular approach
(Finn et al., 2017; Nichol et al., 2018) is to learn the initialization of a gradient-based method
such as stochastic gradient descent. The hope is that optimal parameters for each task are
close to each other and thus a meta-learned initialization will result in a strong model after
only a few steps. In this paper we take a similar approach applied to online mirror descent,
which given a strictly convex regularizer ϕ : K 7→ R and step-size η > 0 performs the update

xt,i+1 = argmin
x∈K

Bϕ(x||xt,1) + η
∑
j<i

⟨∇ℓt,j(xt,j),x⟩ (2)

where Bϕ(x||y) = ϕ(x)− ϕ(y)− ⟨∇ϕ(y),x− y⟩ is the Bregman divergence of ϕ. OMD
recovers online gradient descent when ϕ(x) = 1

2∥x∥
2
2; another example is exponentiated

gradient, for which ϕ is the negative Shannon entropy on probability vectors and Bϕ is the
KL-divergence (Shalev-Shwartz, 2011). Mirror descent using loss estimators ℓ̂t,i constructed
using bandit feedback ℓt,i(xt,i) forms an important class of methods for bandit settings (Aber-
nethy et al., 2008; Neu, 2015; Abernethy et al., 2015), including Exp3 (Auer et al., 2002).

Following the average regret-upper-bound analysis (ARUBA) framework of Khodak et al.
(2019), in this paper we learn to initialize and tune OMD by online learning a sequence of
losses Ut(x, θ), each of which is a hyperparameter θ-dependent affine function of a Bregman
divergence from an initialization x ∈ K to some known fixed point in K. We are interested in
learning such functions because the regret after m rounds of OMD initialized at x with step-
size η is usually upper-bounded by 1

ηBϕ(x
∗
t ||x) +O(ηm) for x∗

t , the optimum-in-hindsight on
task t (Shalev-Shwartz, 2011). Unlike past work, we use a parameter ε > 0 to constrain this
optimum to lie in a convex subset Kε ⊂ K whose boundary is ε-away from that of K and which
satisfies Kε ⊂ Kε′ whenever ε ≤ ε′; for example, we use Kε = {x ∈ △d : mina x(a) ≥ ε/d}
for the simplex. Thus, unlike with full-information, the feedback we receive from the within-
task algorithm will be the minimizer OPTε(ℓ̂t) = argminx∈Kε

⟨ℓ̂t,x⟩ of the estimated loss
ℓ̂t =

∑m
i=1 ℓ̂t,i over the ε-constrained subset. This allows us to handle regularizers that

diverge near the boundary. Thus in full generality and for constants Gβ ≥ 1, C ≥ 0 the upper
bounds of interest are the following functions of the initialization x and three parameters:
the step-size η > 0, a parameter β of the regularizer ϕβ , and the boundary offset ε > 0.

Ut(x, (η, β, ε)) =
Bϕβ

(OPTε(ℓ̂t)||x)
η

+ (ηG2
β + Cε)m (3)

The reason to optimize this sequence of upper bounds is because the resulting average
regret directly bounds the task-averaged regret. Furthermore, an affine sum over Bregman
divergences is minimized at the average optimum in hindsight, which leads to natural and
problem specific task-similarity measures V (Khodak et al., 2019); specifically, V is the square
root of the average divergence between optima in hindsight and their mean, which is small if
the tasks are optimized by similar parameters. At a high-level, our meta-algorithm for online
learning these upper bounds learns the initialization by taking the mean of Kε-constrained
estimated optima-in-hindsight—i.e. follow-the-leader over the Bregman divergences in (3)—
while simultaneously tuning OMD via multiplicative weights over a discrete grid Θ over
θ = (η, β, ε). We provide a more detailed description, pseudo-code, and a structural result
showing that such an algorithm can learn the sequence of upper bounds Ut in the Appendix.
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3. Multi-armed bandits

We now turn to our first application: the multi-armed bandits problem. Here at each round
i of task t we take action at,i ∈ [d] and observe loss ℓt,i(at,i) ∈ [0, 1]. We use as a base-learner
a generalization of Exp3 (Auer et al., 2002), which runs multiplicative weights over unbiased
loss estimators. The first generalization is of the regularizer, where we use the negative Tsallis
entropy ϕβ(p) =

1−
∑d

a=1 p
β(a)

1−β for β ∈ [0, 1], which obtains a better dependence on dimension
(Abernethy et al., 2015). Note that ϕβ recovers the Shannon entropy in the limit β → 1, and
also that Bϕβ

(x||·) is non-convex in the second argument, making ours the first known applica-
tion of the online learnability of non-convex Bregman divergences. The second generalization is
in the loss estimators; for γ > 0 we employ ℓ̂t,i(a) =

ℓt,i(a)1at,i=a

xt,i(a)+γ , where xt,i(a) is the probabil-
ity of sampling a on round i of task t, which is critical for high-probability bounds (Neu, 2015).

As ϕβ is non-smooth at the boundary, learning Tsallis divergences requires the tools devel-
oped previously for initializing OMD in the interior of K. We set Kε = {x ∈ △d : mina x(a) ≥
ε/d}, so that the offset optimum x̂

(θ)
t then has the very simple form OPTε(ℓ̂t) = (1− ε)x̂t +

ε1d/d, i.e. it is the mixture of the estimated optimum x̂t with the uniform distribution. Note
that for MAB we will not need to learn ε and can just set it assuming knowledge of the number
of tasks. Thus the method can be summarized as doing the following at each task t > 1:

1. sample θt = (ηt, βt) from a distribution pt over the discretization Θ

2. run OMDβt,ηt using the initialization xt,1 =
1

t−1

∑
s<t x̂

(θt)
t = ε

d1d +
1−ε
t−1

∑
s<t x̂t

3. update pt+1 using multiplicative weights over losses
Bϕβt

(x̂
(ε)
t ||xt,1)+ρ2D2

ηt
+

ηtd
β
t m
βt

The latter regret-upper-bound is derived from the regret of OMD with the Tsallis regularizer,
which is then offset by a factor ρ2D2 ≥ 0 to handle non-Lipschitzness near η = 0, as described
in the Appendix. This procedure achieves the following guarantees on the task-averaged regret:

Theorem 3.1. Suppose OMDη,β is online mirror descent with the Tsallis entropy regularizer
ϕβ over γ-offset loss estimators. For each of the following regimes of β we can specify ε > 0,
ρ2D2 ≥ 0, integer k = Õ(⌈d4

√
mT log 1

ε⌉), and α, η, η ∈ (0,∞) such that running the above
procedure (Algorithm 1) with Θ the product of uniform grids of size k over each non-singleton
dimension of [η, η] × [max{β, 1/ log d}, 1] × {ε} and α the meta-step-size of multiplicative
weights yields w.p. at least 1− δ the listed task-averaged regret.

β = 1 Õ

(
d

3
2 +
√
m

4
√
T

√
m log

4

δ

)
+ 2

√
H1(ˆ̄x)dm (4)

β =
1

2
Õ

dm
√

d log 4
δ

4
√
T

+ 2
√
d+ 2 min

β∈
[
1
2
, log d−1

log d

]
√

Hβ(ˆ̄x)dβm/β (5)

β =
1

log d
Õ

(
d

3
2 +
√
m

6
√
T

√
m log

4

δ

)
+ 2 min

β∈(0,1]

√
Hβ(ˆ̄x)dβm/β +

√
d1β<1

β(1− β)mT
β
3

(6)

Here Hβ = −ϕβ is the Tsallis entropy and ˆ̄x is the mean of the estimated optima x̂t. Note that
below β = 1

log d the upper bound always worsens and so it does not make sense to try β < 1
log d .
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These results show that for all three settings of β, as the meta-learner sees more tasks the
average regret depends directly on the entropy of the estimated optima-in-hindsight, a natural
notion of task-similarity since it is small if most tasks are estimated to be solved by the same
arms and large if all arms are used roughly the same amount. It also demonstrates how our
algorithm’s automatic tuning of the step-size η allows us to set the asymptotic rate optimally
depending on the entropy. The algorithm’s tuning of the entropy itself via β also enables
adaptation to similar tasks; specifically, a smaller β weights the Hβ(ˆ̄x)/η term higher and is
thus beneficial if tasks are similar. As a natural example, suppose a constant s≪ d actions
are always minimizers, i.e. ˆ̄x is s-sparse. Then the last bound (6) implies that Algorithm 1
can achieve task-averaged regret oT (1)+O(

√
sm log d), albeit at the cost of slow convergence.

In-general, for the case of tuning over all β ≥ 1/ log d the speed of the convergence depends
on the optimal β; the algorithm will converge very slowly at rate Õ(1/ 6 log d

√
T ) if the optimal

β is around 1/ log d, but for β near 1 the rate will be Õ(1/ 4
√
T ). Note that we show in the

intermediate case of tuning only as low as β = 1/2 that we can still achieve Õ(1/ 4
√
T ) at the

cost of a fast 2
√
d term per-task. Finally, note that because the entropy is bounded by d1−β

we do asymptotically recover worst-case guarantees in all three cases if the tasks are dissimilar.
To put these results in context, we can compare them to Azizi et al. (2022), who achieve

task-averaged regret bounds of the form Õ(1/
√
T +
√
sm) in the stochastic MAB setting,

where s is an unknown subset of optimal actions. Unlike their result, we study the harder
adversarial setting and do not place restrictions on how the tasks are related; despite this
greater generality, our bounds are asymptotically comparable if the estimated and true optima-
in-hindsight are roughly equivalent, as we also have Õ(

√
sm) average regret as T →∞. On

the other hand, the rate in the number of tasks of Azizi et al. (2022) is much better, albeit
at a cost of runtime exponential in s. Apart from generality, we believe a great strength of
our result is its adaptiveness; unlike this work, we do not need to know how many optimal
arms there are or their entropy in order to improve task-averaged regret with task-similarity.

4. Bandit linear optimization

Our second general application is to bandit linear optimization, in which at each round i of
task t we play a vector xt,i ∈ K for some convex set K and observe loss ⟨ℓt,i,xt,i⟩ ∈ [−1, 1]. We
will again use a variant of mirror descent on top of estimated losses, this time setting ϕ to be a
self-concordant barrier function with specialized loss estimators as in Abernethy et al. (2008).
This is generally applicable to any convex domain K via the construction of such barriers and
its regret has optimal dependence on the number of rounds m. Note that our ability to handle
non-smooth regularizers is even more important here, as the barrier functions are infinite
at the boundaries. Indeed, in this section we will no longer learn a β parameterizing the
regularizer and instead focus on learning an offset ε > 0 away from the boundary. For each
such offset define Kε = {x ∈ Rd : πx1,1(x) ≤ 1/(1 + ε)} ⊂ K, where x1,1 = argminx∈K ϕ(x)
and πx1,1(x) = infλ≥0,x1,1+(x−x1,1)/λ∈K λ is the Minkowski function. As before we obtain the
ε-restricted optima-in-hindsight via the primitive OPTε(ℓ̂t) = argminx∈Kε

⟨ℓ̂t,x⟩. With this
specified, we can again adapt our meta-approach, roughly summarized for BLO as doing the
following at each task t > 1:
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1. sample θt = (ηt, εt) from a distribution pt over the discretization Θ

2. run OMDηt using the initialization xt,1 =
1

t−1

∑
s<t x̂

(θt)
t = 1

t−1

∑
s<tOPTεt(ℓ̂t)

3. update pt+1 using multiplicative weights with losses Bϕ(x̂
(εt)
t ||xt,1)+ρ2D2

ηt
+(32d2ηt+εt)m

Note that this algorithm is very similar to that for MAB, with both being special cases of the
meta-algorithm for optimizing upper bounds (3), with the main difference being the different
upper bound passed to multiplicative weights. The procedure has the following guarantee:

Theorem 4.1. Suppose OMDη,β is online mirror descent with a self-concordant barrier ϕ
as a regularizer and loss estimators specified as in Abernethy et al. (2008). Then for
every ε ∈ [1/m, 1/

√
m] and ε ∈ [1/m, ε] there exists an integer k = O(dm⌈

√
mT ⌉) and

α, η, η ∈ (0,∞) such that the above procedure with Θ the product of uniform grids of size k over
each dimension of [η, η]× [ϵ, ϵ] and α the meta-step-size yields the expected task-averaged regret

E
1

T

T∑
t=1

m∑
i=1

⟨ℓt,i,xt,i − x∗
t ⟩ ≤ Õ

(
dm2

4
√
T

)
+ min

1
m≤ε≤ 1√

m

4dV̂ε

√
2m+ εm (7)

where we call V̂ 2
ε = minx∈K E 1

T

∑T
t=1Bϕ(OPTε(ℓ̂t)||x) the barrier-divergence at level ε.

As before, this shows that as the number of tasks T →∞ the average regret improves with
a notion of task-similarity V̂ε that decreases if the estimated task-optima are close together.
Roughly speaking, if tasks have barrier-divergence V̂ε then the average regret will beO(V̂ε

√
m+

εm), which can be a significant improvement over the single-task case, e.g. if V̂ 1
m

is small. In-
particular, our analysis removes explicit dependence on the square root of the self-concordance
constant of ϕ in the single-task case (Abernethy et al., 2008); as an example, this constant
is equal to the number of constraints if K is defined by linear inequalities, as in the bandit
shortest-path application below. Note that the use of ε-constrained optima is necessary for
this problem due to the regularizers being infinite at the boundaries, where all true optima lie.

To make the above result and task-similarity notion more concrete, consider the following
corollary for BLO over the unit sphere K = {x ∈ Rd : ∥x∥2 ≤ 1}:

Corollary 4.1. Let K be the unit sphere with the self-concordant barrier ϕ(x) = − log(1−
∥x∥22). Then the above procedure attains expected task-averaged regret bounded by

Õ
(
dm2

4
√
T

)
+ min

1
m≤ε≤ 1√

m

4dE

√√√√2m log

(
1− ∥ˆ̄ℓ(ε)∥22
2ε− ε2

)
+ εm (8)

for ˆ̄ℓ(ε) = 1
T

∑T
t=1OPTε(ℓ̂t) =

ε−1
T

∑T
t=1

ℓ̂t
∥ℓ̂t∥2

the average over normalized estimated optima.

Thus in this setting if all tasks have similar estimated losses then ˆ̄ℓ(ε) will be an average
over similar vectors and thus have large Euclidean norm close to 1− ε, making the term in
the logarithm above close to 1. In this case V̂ε is close to zero and so the average regret is εm
as T →∞; setting ε = 1/m yields constant asymptotic averaged regret. This demonstrates
the usefulness of the barrier-divergence as a measure of task-similarity. We show another
novel notion that it yields for sets defined by linear constraints in the Appendix, where we
apply our meta-BLO result to the shortest-path problem in online optimization (Takimoto
and Warmuth, 2003; Kalai and Vempala, 2005).
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Appendix A. Related work

While we are the first to consider meta-learning under adversarial bandit feedback, many
have studied meta-learning in various stochastic bandit settings (Sharaf and Hal Daumé,
2021; Simchowitz et al., 2021; Kveton et al., 2020; Cella et al., 2020; Kveton et al., 2021;
Basu et al., 2021; Azizi et al., 2022; Lazaric et al., 2013). Kveton et al. (2021), Basu et al.
(2021), and Simchowitz et al. (2021) study meta-learning algorithms for the Bayesian bandit
setting. Kveton et al. (2020) and Sharaf and Hal Daumé (2021) consider meta-learning for
contextual bandits, although they allow their algorithms to have offline access to a set of
training tasks for which full feedback is available. Cella et al. (2020) and Moradipari et al.
(2022) provide algorithms based on OFUL (Abbasi-Yadkori et al., 2011) for meta-learning
in stochastic linear bandits under various assumptions on how the bandit learning tasks
are generated. Azizi et al. (2022) study a setting in which a meta-learner faces a sequence
of stochastic multi-armed bandit tasks. While the sequence of tasks may be adversarially
designed, the adversary is constrained to choose the optimal arm for each task from a smaller
but unknown subset of arms. In contrast to Cella et al. (2020); Moradipari et al. (2022);
Azizi et al. (2022), we make no assumptions about how the sequence of tasks is generated
and our guarantees adapt to a natural measure of similarity between tasks.

Theoretically our analysis draws on the average regret-upper-bound analysis (ARUBA)
framework of Khodak et al. (2019), which was designed for meta-learning under full informa-
tion. While the general approach is not restricted by convexity (Balcan et al., 2021) and has
been combined with bandit algorithms on the meta-level (Khodak et al., 2021), the existing
results cannot be applied to OMD methods for within-task learning under bandit feedback
because the associated regularizers are non-Lipschitz or sometimes even unbounded near the
boundaries of the action space. We thus require a specialized analysis for the bandit setting.
Denevi et al. (2019) also study an OMD-based algorithm for meta-learning in the online
setting, but their results are also only applicable in the full information setting.
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Appendix B. Description and guarantee for the meta-algorithm

The algorithm assumes two primitives: (1) the base-learner OMDη,β that outputs an estimated
cumulative loss ℓ̂t ∈ Rd after running online mirror descent over the m losses ℓt,1, . . . , ℓt,m
of task t, and (2) an optimizer OPTε that, given a vector c ∈ Rd, finds the minimum of
⟨c, ·⟩ over Kε. Algorithm 1 maintains a categorical distribution pt over a finite set Θ ⊂ R3

containing triples θ = (η, β, ε), each with its own associated initialization x
(θ)
t ; at each

task t it samples θt = (ηt, βt, εt) from Θ using pt and runs OMDηt,βt from initialization
x
(θt)
t , obtaining a loss estimate ℓ̂t. Then for each θ = (η, β, ε) in Θ the method updates

the corresponding initialization x
(θ)
t by taking the average of the ε-constrained optima-in-

hindsight OPTε(ℓ̂1), . . . ,OPTε(ℓ̂t) seen so far. Finally, the algorithm updates the distribution
pt using multiplicative weights over the following modification of the regret-upper-bound (3)
above for some ρ > 0:

U
(ρ)
t (x, θ) =

Bϕβ
(x̂

(θ)
t ||x) + ρ2D2

η
+ (ηG2

β + Cε)m (9)

Note that given ρ > 0 this function is fully defined after running OMDηt,βt on task t to obtain
loss estimates ℓ̂t and then computing the ε-constrained optimum-in-hindsight x̂(θ)

t = OPTε(ℓ̂t)
for each θ = (η, β, ε). This allows us to use full-information multiplicative weights for θ.
ρ > 0 is necessary for learning η, as if its optimum is near zero then Ut will not be Lipschitz
near the optimum. Theorem B.1 shows a sublinear regret guarantee for Algorithm 1 over
the unmodified regret-upper-bounds (9) w.r.t. all elements in K and in a continous set of
hyperparameters Θ∗ ⊂ R3.

Theorem B.1. Let Θ∗ = (0,∞)× [β, β]× [ε, ε] for 0 ≤ β ≤ β ≤ 1 and 0 ≤ ε ≤ ε ≤ 1 be the
set of hyperparameters (η, β, ε) of interest. Then there exists integer k = O(⌈

√
mT ⌉) and

α, η, η ∈ (0,∞) such that running Algorithm 1 with Θ the product of uniform grids of size k

over each non-singleton dimension of [η, η]× [β, β]× [ε, ε] and α the meta-step-size yields
regret

E
T∑
t=1

Ut(x
(θt)
t , θt)− min

x∈K,θ∈Θ∗

T∑
t=1

Ut(x, θ)

≤
(
C
√
m+ 2DG

(
1

ρ
+M

))√
6mT log k +

8SK2G
√
m

ρD
(1 + log T ) + ρDGT

√
m

(10)

for G = maxβ Gβ ≥ 1, M = G
minβ Gβ

, D2 = maxβ,ε,x,y∈Kε Bϕβ
(x||y) ≥ 1, L the maximum

Lipschitz constant of ϕβ(OPTε(ℓ)) w.r.t. (β, ε) over ℓ ∈ Rd, S = maxβ,ε,x∈Kε ∥∇2ϕβ(x)∥2,
K = maxx,y∈K ∥x−y∥2, and the expectation is over sampling θt ∼ pt. The result without the

expectation holds w.p. 1− δ at the cost of an additional
(
C
√
m+ 2DG

(
1
ρ +M

))√
T
2 log 1

δ

term.
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Algorithm 1: Algorithm for tuning an online mirror descent (OMD) base-learner
OMDη,β with parameterized regularizer ϕβ : K 7→ R and step-size η > 0 that runs
OMD on loss estimators ℓ̂t,1, . . . , ℓ̂t,m from an initialization x ∈ K and returns
estimated loss ℓ̂t =

∑m
i=1 ℓ̂t,i ∈ Rd. Then for every ε > 0 the constrained optimizer

OPTε(ℓ̂) = argminx∈Kε
⟨ℓ̂,x⟩ returns the minimizer of the estimated loss over the

constrained subset Kε ⊂ K (set OPTε(0d) = argminx∈K ϕ(x)).

Input: compact K ⊂ Rd, meta-hyperparameters α, ρ > 0, finite Θ ⊂ R3 over (η, β, ε),
base-learner OMDη,β : K 7→ Rd, constrained linear minimizer OPTε : Rd 7→ Kε

for θ = (η, β, ε) ∈ Θ do
x
(θ)
1 ← argminx∈K ϕ(x) // maintain an initialization for each θ ∈ Θ

p1 ← 1|Θ|/|Θ| // multiplicative weights (MW) initialization
for task t = 1, . . . , T do

sample θt = (ηt, βt, εt) ∼ pt from Θ
ℓ̂t ← OMDηt,βt(x

(θt)) // run bandit OMD within-task
for θ = (η, β, ε) ∈ Θ do

x
(θ)
t+1 ← 1

t

∑t
s=1OPTε(ℓ̂s) // update all initializations

pt+1(θ)← pt+1(θ) exp
(
−αU (ρ)

t (x
(θ)
t , θ)

)
// MW update using loss in (9)

pt+1 ← pt+1/∥pt+1∥1

Note that we keep details of the dependence on values like Lipschitz constants because
they are important in applying this result; however, in general setting ρ = 1/ 4

√
T in (10)

yields Õ(T
3
4 )-regret. While a slow rate, note that Algorithm 1 is learning a sequence of

affine functions of Bregman divergences that are non-smooth and non-convex in-general.
Theorem B.1 is an important structural result; our main contributions to multi-armed
and linear bandits follow by applying its instantiations for specific regularizers ϕ and
hyperparameter sets Θ∗. We also believe Theorem B.1 may be of independent interest as
it holds for any choice of Bregman divergence beyond those we consider, and unlike past
work (Khodak et al., 2019) allows for explicit control of non-smooth regularizers near the
boundaries. The theorem allows tuning the hyperparameters over user-specified intervals
for β and ε and over an infinite interval for the step-size η > 0. Note that a similar result
is straightforward to show for β outside [0, 1] or for discrete rather than continuous set of
hyperparameters.
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Appendix C. Learning to parameterize a bandit-shortest-path algorithm

As a final application, we apply our meta-BLO result to the shortest-path problem in online
optimization (Takimoto and Warmuth, 2003; Kalai and Vempala, 2005). In its bandit variant
(Awerbuch and Kleinberg, 2004; Dani et al., 2008), at each time step i = 1, . . . ,m the player
must choose a path pi from a fixed source u ∈ V to a fixed sink v ∈ V in a directed graph
G(V,E). At the same time the adversary chooses edge weights ℓi ∈ R|E| and the player
suffers the sum

∑
e∈pt ℓi(e) of the weights in their chosen path pt. This can be transformed

into BLO over vectors x in a convex set K ⊂ [0, 1]|E| defined by a set C of O(|E|) linear
constraints (a, b) s.t. ⟨a,x⟩ ≤ b enforcing flows from u to v; paths from u to v can then be
sampled from any x ∈ K in an unbiased manner (Abernethy et al., 2008, Proposition 1). In
the single-task case the BLO method of Abernethy et al. (2008) yields an O(|E|

3
2
√
m)-regret

algorithm for this problem.
In the multi-task case consider a sequence of t = 1, . . . , T shortest path instances, each

consisting of m edge loss vectors ℓt,i selected by an adversary. The goal is to minimize average
regret across instances. Note that our setup may be viewed as learning a prediction of the
optimal path in a manner similar to the algorithms with predictions paradigm in beyond-worst-
case-analysis (Mitzenmacher and Vassilvitskii, 2021); in-particular, we have incorporated pre-
dictions into the algorithm of Abernethy et al. (2008) via the meta-initialization approach and
now present the learning-theoretic result for an end-to-end guarantee (Khodak et al., 2022).

Corollary C.1. Let K = {x ∈ [0, 1]|E| : ⟨a,x⟩ ≤ b ∀ (a, b) ∈ C} be the set of flows from u
to v on a graph G(V,E), where C ⊂ R|E| × R is a set of O(|E|) linear constraints. Suppose
we see T instances of the bandit online shortest path problem with m timesteps each. Then
sampling from probability distributions over paths from u to v returned by running Algorithm 1
with regularizer ϕ(x) = −

∑
a,b∈C log(b− ⟨a,x⟩) attains the following expected average regret

across instances:

Õ
(
|E|m2

4
√
T

)
+ min

1
m
≤ε≤ 1√

m

4|E|E

√√√√√2m
∑
a,b∈C

log

 1
T

∑T
t=1 b− ⟨a, x̂

(ε)
t ⟩

T

√∏T
t=1 b− ⟨a, x̂

(ε)
t ⟩

+ εm (11)

Here x̂
(ε)
t = OPTε(ℓ̂t) is the ε-constrained estimated optimal flow for instance t.

Corollary C.1 shows that the average regret on the T bandit shortest-path problems scales
with the sum across all constraints a, b ∈ C of the log of the ratio between the arithmetic and
geometric mean of the distances b− ⟨a, x̂(ε)

t ⟩ from the estimated optimum flow x̂
(ε)
t to the

constraint boundary. Since the arithmetic and geometric mean are equal exactly when all
entries are equal—and otherwise the former is larger—this means that the regret is small when
the estimated optimal flows x̂

(ε)
t for each task are at similar distances from the constraints.
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Appendix D. Proof of Theorem B.1

Proof We define η = ρD
G
√
m

, η = 2DM
G
√
m

, number of grid points k = Ω(⌈(4D2M2LG+C)
√
mT ⌉),

Θ =
{
η + j

k (η − η)
}k

j=0
×{β+ j

k (β−β)}
k1β>β

j=0 ×{ε+ j
k (ε− ε)}k1ε>ε

j=0 , and meta-step-size α =

1
DG/ρ+2DMG+C

√
m

√
3 log k
2Tm . Note that ρD

G
√
m
≤ argminη>0minx∈Kε,β,ε

∑T
t=1 Ũt(x, (η, β, ε)) ≤

DM
G

√
1+ρ2

m ≤ 2DM
G
√
m

so maxt∈[T ] U
(ρ)
t (x

(θt)
t , θt) ≤ DG

√
m

ρ + 2DMG
√
m + Cm. Therefore ap-

plying the regret guarantee for exponentiated gradient (Shalev-Shwartz, 2011, Corollary 2.14)
followed by the regret of follow-the-leader on a sequent of Bregman divergences (Lemma D.1)
yields

E
T∑
t=1

Ut(x
(θt)
t , θt)

≤ E
T∑
t=1

U
(ρ)
t (x

(θt)
t , θt)

≤
(
C
√
m+DG

(
1

ρ
+ 2M

))√
2mT log |Θ|+min

θ∈Θ
E

T∑
t=1

U
(ρ)
t (x

(θ)
t , θ)

≤
(
C
√
m+DG

(
1

ρ
+ 2M

))√
2mT log |Θ|

+ min
(η,β,ε)∈Θ

8SK2

η
(1 + log T ) + min

x∈Kε

E
T∑
t=1

Bϕβ
(x̂

(ε)
t ||x) + ρ2D2

η
+ (ηG2

β + Cε)m

≤
(
C
√
m+DG

(
1

ρ
+ 2M

))√
2mT log |Θ|+ 8SK2G

√
m

ρD
(1 + log T )

+ min
(η,β,ε)∈Θ

ηG2
βmT + CεmT +

ρ2D2T

η
+ E

T∑
t=1

ϕβ(x̂
(ε)
t )− ϕβ(ˆ̄x

(ε))

η

≤
(
C
√
m+DG

(
1

ρ
+ 2M

))√
2mT log |Θ|+ 8SK2G

√
m

ρD
(1 + log T ) + ρDGT

√
m

+

(
4D2M2 +

(
C
√
m+

2LG

ρD

)
(ε− ε)

√
m+ 2

(
2M

G
+

G

ρ

)
DL
√
m(β − β)

)
T

k

+ min
(η,β,ε)∈Θ

ηG2
βmT + CεmT + E

T∑
t=1

ϕβ(x̂
(ε)
t )− ϕβ(ˆ̄x

(ε))

η

≤
(
C
√
m+DG

(
1

ρ
+ 2M

))√
6mT log k + (4D2M2LG+ C)

Tm

ρk

+
8SK2G

√
m

ρD
(1 + log T ) + ρDGT

√
m+ min

x∈K,θ∈Θ∗
E

T∑
t=1

Ut(x, θ)

(12)

where the fourth inequality follows by Claim D.1, the fifth by Lipschitzness of 1/η on
η ≥ ρD

G
√
m

and of ϕβ(x̂
(ε)
t ||·) on Kε, and the sixth by simplifying and substituting the lower
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bound for k. The w.h.p. version of the bound follows by applying Cesa-Bianchi and Lugosi
(2006, Lemma 4.1) when obtaining the second inequality.

Lemma D.1. Let ϕ : K 7→ R≥0 be a strictly-convex function with maxx∈K ∥∇2ϕ(x)∥2 ≤ S
over a convex set K ⊂ Rd with maxx∈K ∥x∥2 ≤ K. Then for any points x1, . . . ,xT ∈ K the
actions y1 = argminx∈K ϕ(x) and yt =

1
t−1

∑
s<t xs have regret

T∑
t=1

Bϕ(xt||yt)−Bϕ(xt||yT+1) ≤
T∑
t=1

8SK2

2t− 1
≤ 8SK2(1 + log T ) (13)

Proof Note that

∇yBϕ(x||y) = −∇ϕ(y)−∇y⟨∇ϕ(y),x⟩+∇y⟨∇ϕ(y),y⟩ = diag(∇2ϕ(y))(y − x) (14)

so Bϕ(xt||y) is 2SK-Lipschitz w.r.t. the Euclidean norm. Applying Khodak et al. (2019,
Proposition B.1) yields the result.

Claim D.1. Let ϕ : K 7→ R be a strictly-convex function over a convex set K ⊂ Rd containing
points x1, . . . ,xT . Then their mean x̄ = 1

T

∑T
t=1 xt satisfies

T∑
t=1

Bϕ(xt||x̄) =
T∑
t=1

ϕ(xt)− ϕ(x̄) (15)

Proof

T∑
t=1

Bϕ(xt||x̄) =
T∑
t=1

ϕ(xt)− ϕ(x̄)− ⟨∇ϕ(x̄),xt − x̄⟩

=
T∑
t=1

ϕ(xt)− ϕ(x̄)− ⟨∇ϕ(x̄),
T∑
t=1

xt − x̄⟩

=
T∑
t=1

ϕ(xt)− ϕ(x̄)

(16)
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Appendix E. Proof of Theorem 3.1

Proof Since ε is constant we use the shorthand x̂
(ε)
t = x̂

(θ)
t ∀ θ ∈ Θ. Note that we use search

space Θ =

[
ρ√
m
, 2
√

d log d
em

]
×
[
max

{
1

log d , β
}
, 1
]
× {ε}. We have the constants D ≤

√
d,

G ≤
√
d, M ≤

√
d log d

e , S ≤
(
d
ε

)2−β, and K = 1. Note that the second term d1−βm/β is
decreasing on β < 1/ log d, so since ϕβ is always increasing in β we know that the optimal β
is in [1/ log d, 1]. Note that by Lemma E.2 we have that L = d log d

ε . We thus have

T∑
t=1

m∑
i=1

ℓt,i(at,i)− ℓt,i(a
∗
t )

≤
T∑
t=1

m∑
i=1

⟨ℓ̂t,i,xt,i − ℓt,i(a
∗
t )⟩+ γ

d∑
a=1

ℓ̂t,i(a)

≤
T∑
t=1

Bϕβt
(x̂

(ε)
t ||xt,1)

ηt
+

m∑
i=1

⟨ℓ̂t,i, x̂(ε)
t,i ⟩ − ℓt,i(a

∗
t ) +

ηt
βt

d∑
a=1

x2−βt

t,i (a)ℓ̂2t,i(a) + γ
d∑

a=1

ℓ̂t,i(a)

≤ εmT

γd
+

T∑
t=1

Bϕβt
(x̂

(ε)
t ||xt,1)

ηt
+

m∑
i=1

ℓ̂t,i(a
∗
t )− ℓt,i(a

∗
t )

+
T∑
t=1

ηt
βt

m∑
i=1

d∑
a=1

x1−βt

t,i (a)ℓ̂t,i(a) + γ
d∑

a=1

ℓ̂t,i(a)

≤ εmT

γd
+

1 + η
β + γ

2γ
log

4

δ
+

T∑
t=1

Bϕβt
(x̂

(ε)
t ||xt,1)

ηt

+
T∑
t=1

ηt
βt

m∑
i=1

d∑
a=1

x1−βt

t,i (a)ℓt,i(a) + γ
d∑

a=1

ℓt,i(a)

≤ εmT

γd
+

1 +

√
d log3 d
em

γ
log

4

δ
+ γdmT +

T∑
t=1

Bϕβt
(x̂

(ε)
t ||xt,1)

ηt
+

ηtd
βtm

βt

≤ εmT

γd
+

1 +

√
d log3 d
em

γ
log

4

δ
+ γdmT + min

x∈△d,η>0,β∈[β,1]

T∑
t=1

Bϕβ
(x̂

(ε)
t ||x)
η

+
ηdβm

β

+ 2d

(
1

ρ
+

√
d log d

e

)√
6mT log

4k

δ
+

8d2−β√m
ρε2−β

(1 + log T ) + ρdT
√
m

≤
(

ε

γd
+ γd

)
mT +

1 +

√
d log3 d
em

γ
log

4

δ
+ T min

η>0,β∈[β,1]

Hβ(ˆ̄x)

η
+

ηdβm

β
+

εβd1−β1β<1

(1− β)η

+ 2d

(
1

ρ
+

√
d log d

e

)√
6mT log

4k

δ
+

8d2−β√m
ρε2−β

(1 + log T ) + ρdT
√
m

(17)
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where the second inequality follows by Lemma E.1, the third by Hölder’s inequality and the
definitions ℓ̂t,i and x̂

(ε)
t,i , the fourth by Neu (2015, Lemma 1), the fifth by the definition of

ℓt,i, the sixth by Theorem B.1, and the last by the derivation below for β < 1 (otherwise it
holds by joint convexity of the KL-divergence) followed by Claim D.1 combined with the fact
that the entropy of optima-in-hindsight is zero.

−ϕβ((1− ε)x+ ε1d/d) =

∑d
a=1((1− ε)x(a) + ε/d)β − 1

1− β

≤
εβd1−β + (1− ε)β

∑d
a=1 x

β(a)− 1

1− β
≤ εβd1−β

1− β

(18)

Lemma E.1. Suppose we play OMDβ,η with regularizer ϕβ the negative Tsallis entropy and
initialization x1 ∈ △d on the sequence of linear loss functions ℓ1, . . . , ℓT ∈ [0, 1]d. Then for
any x∗ ∈ △d we have

T∑
t=1

⟨ℓt,xt − x∗⟩ ≤
Bϕβ

(x∗||x1)

η
+

η

β

d∑
a=1

x2−β
t (a)ℓ2t (a) (19)

Proof Note that the following proof follows parts of the course notes by Luo (2017), which we
reproduce for completeness. The OMD update at each step t involves the following two steps:
set yt+1 ∈ △d s.t. ∇ϕβ(yt+1) = ∇ϕβ(xt)−ηℓt and then set xt+1 = argminx∈△d

Bϕβ
(x,yt+1)

(Hazan, 2015, Algorithm 14). Note that by Hazan (2015, Equation 5.3) and nonnegativity of
the Bregman divergence we have

T∑
t=1

⟨ℓt,xt − x∗⟩ ≤
Bϕβ

(x∗||x1)

η
+

1

η

T∑
t=1

Bϕβ
(xt||yt+1) (20)

To bound the second term, note that when ϕβ is the negative Tsallis entropy we have

Bϕβ
(xt||yt+1)

=
1

1− β

d∑
a=1

(
yβ
t+1(a)− xβ

t (a) +
β

y1−β
t+1 (a)

(xt(a)− yt+1(a)

)

=
1

1− β

d∑
a=1

(
(1− β)yβ

t+1(a)− xβ
t (a) + β

(
1

x1−β
t (a)

+
1− β

β
ηℓt(a)

)
xt(a)

)

=
d∑

a=1

(
yβ
t+1(a)− xβ

t (a) + ηxt(a)ℓt(a)
)

(21)
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Plugging the following result, which follows from (1+x)α ≤ 1+αx+α(α−1)x2 ∀ x ≥ 0, α < 0,
into the above yields the desired bound.

yβ
t+1(a) = xβ

t (a)

(
yβ−1
t+1 (a)

xβ−1
t (a)

) β
β−1

= xβ
t (a)

(
1 +

1− β

β
ηx1−β

t (a)ℓt(a)

) β
β−1

≤ xβ
t (a)

(
1− ηx1−β

t (a)ℓt(a) +
η2

β
x2−2β
t (a)ℓt(a)

2

)
= xβ

t (a)− ηxt(a)ℓt(a) +
η2

β
x2−β
t (a)ℓt(a)

2

(22)

Lemma E.2. For any ρ ∈ (0, 1/d] and x ∈ △d s.t. x(a) ≥ ρ ∀ a ∈ [d] the β-Tsallis entropy

Hβ(x) = −
1−

∑d
a=1 x

β(a)
1−β is d log 1

ρ -Lipschitz w.r.t. β ∈ [0, 1].

Proof Let logβ x = x1−β−1
1−β be the β-logarithm function and note that by Yamano (2002,

Equation 6) we have logβ x− log x = (1− β)(∂b logβ x+ logβ x log x) ≥ 0 ∀ β ∈ [0, 1]. Then
we have for β ∈ [0, 1) that

|∂βHβ(x)| =

∣∣∣∣∣−Hβ(x)−
∑d

a=1 x
β(a) logx(a)

1− β

∣∣∣∣∣
=

1

1− β

∣∣∣∣∣
d∑

a=1

xβ(a)(logβ x(a)− logx(a))

∣∣∣∣∣
=

1

1− β

d∑
a=1

xβ(a)(logβ x(a)− logx(a))

≤ 1

1− β

(
d∑

a=1

x(a)

)β ( d∑
a=1

(logβ x(a)− logx(a))
1

1−β

)1−β

≤ 1

1− β

d∑
a=1

logβ x(a)− logx(a)

≤ d

1− β
(logβ ρ− log ρ)

≤ −d log ρ

(23)

where the fourth line follows by Hölder’s inequality, the fifth by subadditivity of xa for
a ∈ (0, 1], the sixth by the fact that ∂x(logβ x− log x) = x−β − 1/x ≤ 0 ∀ β, x ∈ [0, 1), and

the last line by substituting β = 0 since ∂β

(
logβ ρ−log ρ

1−β

)
= 2(ρ−ρβ)−(1−β)(ρβ+ρ) log ρ

ρβ(1−β)3
≤ 0 ∀ β ∈

[0, 1), ρ ∈ (0, 1/d]. For β = 1, applying L’Hôpital’s rule yields

lim
β→1

∂βHβ(x) = −
1

2
lim
β→1

d∑
a=1

xβ(a) log2 x(a)(1− (1− β) logx(a)) = −1

2

d∑
a=1

x(a) log2 x(a)

(24)
which is bounded on [−2d/e2, 0].
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Appendix F. Proof of Theorem 4.1

Proof Applying Theorem B.1 with constants D = Dε, G = 4d
√
2, M = 1, S = Sε, and

K = K yields

E
T∑
t=1

m∑
i=1

⟨ℓt,i,xt,i − x∗
t ⟩

≤ E
T∑
t=1

εtm+

m∑
i=1

⟨ℓt,i,xt,i −OPTεt(ℓt)⟩

= E
T∑
t=1

εtm+
m∑
i=1

⟨ℓ̂t,i,xt,i −OPTεt(ℓt)⟩

≤ E
T∑
t=1

εtm+
m∑
i=1

⟨ℓ̂t,i,xt,i − x̂
(θt)
t ⟩

≤ E
T∑
t=1

Bϕ(x̂
(θt)
t ||x

(θt)
t,1 )

ηt
+ (ηtG

2 + εt)m

≤
(√

m+
4DεG

ρ

)√
6mT log k +

8SεK
2G
√
m

ρDε
(1 + log T ) + ρDεGT

√
m

+ min
x∈K,η>0,ε∈[ε,ε]

E
T∑
t=1

Bϕ(OPTε(ℓ̂t)||x)
η

+ (ηG2 + ε)m

≤ 72d
√
m

4
√
T

(
Dε

√
mT log k +

SεK
2

Dε
(1 + log T )

)
+ min

x∈K,η>0,ε∈[ε,ε]
E

T∑
t=1

Bϕ(OPTε(ℓ̂t)||x)
η

+ (32ηd2 + ε)m

(25)

where the third inequality follows from Lemma F.1.

Lemma F.1. Let K ⊂ Rd be a convex set and ϕ be a self-concordant barrier. Suppose
ℓ1, . . . , ℓT are a sequence of loss functions satisfying |⟨ℓt,x⟩| ≤ 1 ∀ x ∈ K. Then if we run
OMD with step-size η > 0 as in Abernethy et al. (2008, Algorithm 1) on the sequence of
estimators ℓ̂t our estimated regret w.r.t. any x∗ ∈ Kε for ε > 0 will satisfy

T∑
t=1

⟨ℓ̂t,xt − x∗⟩ ≤
Bϕ(x

∗||x1)

η
+ 32d2ηT (26)

Proof The result follows from Abernethy et al. (2008) by stopping the derivation on the
second inequality below Equation 10.
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