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Abstract

I describe a modified Thompson sampling algorithm that jointly learns participant prefer-
ences and treatment effects. In contrast to Lin et al. (2022), I design an incentive compat-
ible mechanism to reveal participant preferences and not those of the experimenter, even
in the presence of strategic behaviour or scepticism of information provided. Finally, by
randomising participants into their preferred choice or alternative choices I can directly
decompose the average treatment effect (ATE) vectors into an average treatment effect on
the treated (ATT) and average treatment effect on the untreated (ATU), which are key
parameters of interest for policymakers.

Keywords: Multi-Objective Decision Making, Participant Preferences, Incentive Com-
patibility, Development Economics, Programme Evaluation, Causal Inference

1. Introduction

Field experiments in development economics often observe multiple, common outcomes
across treatment arms and must identify an optimal arm for a policymaker. However, with-
out knowledge of individual’s preferences they cannot map changes in outcomes to changes
in welfare. Therefore, economists using adaptive trials typically maximise a single outcome
or some standardised index. Taking such a decision seriously implies the economist’s im-
posed utility function reflects participants’ preferences and these preferences only depend
on one feature of the outcome vector. Alternatively, using a standardised index implies par-
ticipants value the marginal value of a variance weighted good equally across outcomes1.
Instead, I propose an algorithm that jointly learns participant preferences and treatment
arm effectiveness whilst also identifying exactly the policy parameters of interest. Rather
than just identifying an average treatment effect (ATE) vector, I can decompose estimates
into an average treatment effect on the treated (ATT) and an average treatment effect on
the untreated (ATU) and finally, estimate the necessary marginal rates of substitution to
aggregate vector valued treatment effects into scalar units of welfare.

My results are most similar to Dewancker et al. (2016); Lin et al. (2022). The latter
seeks to learn a decision maker’s utility function using pairwise comparisons when a time-
consuming or expensive experiment must be run to learn vector valued outcomes. My
setting differs in two key ways: First, it is the participants’ preferences we wish to learn
and not the experimenter’s. That is, an experimenter runs the adaptive trial but wishes
to learn the preferences of the participants or subjects within the trial. Second, instead of

1. For a static example see Ashraf et al. (2010); Blattman et al. (2017); Bandiera et al. (2017)
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simply identifying the ATE, my proposed algorithm identifies both the ATT and the ATU.
These parameters are often more relevant to the policymaker’s decision to implement the
programme considered.

The average treatment effect gives the expected effect of treatment for a randomly se-
lected individual - it averages over the characteristics of individuals within a population.
However, one important distinction a policymaker would like to know is the effect of treat-
ment for those that would choose the treatment versus those that wouldn’t choose the
treatment if the trial were scaled up to a wider population. In a randomised control trial
participants are typically randomised into either treatment or control and have no choice
over their treatment status. However when implementing policy, governments can rarely
enforce perfect compliance. Therefore, they wish to know the ATT, which measures the
effect of treatment for those that choose to takeup the offered policy. On the other hand,
the ATU measures the effect of expanding a programme to target a sub-population that
previously wouldn’t have taken the treatment. Since typically we’d expect individuals to
select into treatment based on perceived gains, we’d expect ATT > ATE > ATU.

Moving from experimenter’s preferences to trial participants’ introduces several compli-
cations. A rich literature in economics, pyschology, and experimental fields more generally
demonstrate the importance of designing mechanisms such that participants are incentivised
to reveal their true preferences (Savage, 1971; Delavande, 2014). When the decision maker
and experimenter are one and the same, incentives are clearly aligned and stated prefer-
ences can be treated as the ground truth. However, when the experimenter must learn
participant preferences he/she must account for the possibility of strategic behaviour and
“cheap talk”. For instance, participants may misreport their preferences in a bid to increase
their expected payoff in response to other participants’ choices, or social desirability bias
may lead to participants stating preferences to match the experimenter’s expectations or
social norms (Brownback and Novotny, 2018). Therefore, my work differs from Lin et al.
(2022) and methods outlined by (Furnkranz and Hullermeier, 2010) by proposing an incen-
tive compatible preference elicitation step. I incentivise participants to tell the truth by
allowing individuals to rank treatment arms and assigning individuals to arms with a prob-
ability concordant with their stated preferences. In some sense, my approach “disciplines”
participants by ensuring stated preferences have consequences and aligning incentives such
that individuals’ dominant strategy is to tell the truth.

Furthermore, whilst Lin et al. (2022) treat output vectors from the surrogate model
as given and elicit preferences across these vectors, development economists face an en-
vironment where information signals are treated with scepticism and both treatment and
preference experimentation/elicitation in the field is costly. Therefore, I propose a second
algorithm with a “structural” model of belief formation that maps posterior signals, which
can be imparted by the experimenter cheaply in the field, to participant posterior beliefs.

Finally, this paper seeks to further embed the principles of the Belmont report, published
in 1979 after numerous human subject research violations, in randomised control trials run
by development economists and other researchers. By enshrining participant preferences
at the center of randomised trials, my proposed algorithm speaks directly to respect for
persons; beneficence; and justice as outlined by the report. Respect for participants and
their preferences, who in development economics often reside in low-income countries, is

2



particularly important in a field dominated by rich, US-based academics (Stansbury and
Schultz, 2022) running trials on those with little agency, income, or human capital.

2. Setup and Method

In this section, I will briefly describe two algorithms. The first assumes a benign enviroment
without budget constraints and elicits posteriors directly. The second focuses on a more
realistic field environment often faced by development economists in low-income countries
where information can be costly to obtain.

The experimenter faces a vector of outcomes Yi =
[
y1i y2i ... yji

]′
, Yi ∈ Rj for indi-

vidual i and must determine the optimal treatment arm k with associated J-length reward

vector µk =
[
µ1k µ2k ... µjk

]′
,µk ∈ Rj . Individuals arrive in waves of size Nt. Indi-

viduals have knowledge about each treatment arm’s expected effectiveness on their own
outcomes. Participant’s utility functions are parametrised using McFadden (1973)’s dis-
crete choice random utility model2: Uk = Vk + εk where Uk corresponds to the utility an
individual receives from choosing treatment arm k with Vk = γ1µ

1
k+γ2µ

2
k+...+γjµ

j
k = µkγ

′.
Therefore, a participant, if offered the choice of treatment arms, will only choose arm l if
εn < (Vl − Vn) + εl, ∀n 6= l where εk ∼ T1EV , i.e. the Gumbel distribution. Note that γj
isn’t indexed by k - individuals must value a marginal gain in outcome j the same in arm
k as arm l 6= k.

Algorithm 1 Treatment and participant preference estimation

Generate a prior (Q0, F0) over (µk,γ)
for t = 1, ..., T do

Elicit participant posterior beliefs µk using a binarized scoring rule
Observe participant rankings, Kt and update Ft(·|Kt,µk(ν

t))
Sample ωt ∼ Ft(·|Kt,µk(ν

t)),νt ∼ Qt−1(·|pt−1k , Y t−1)

Choose pk = 1
Nt

∑Nt
n=1 I{µk(νt)γ(ωt)

′ > µl(νt)γ(ωt)
′}, k 6= l

Assign participants to treatment arm k with probability pk using a strategy proof
mechanism

Observe Yt and update the posterior Qt(·|pt−1k , Y t) over µk.
end for

Each wave the experimenter elicits participant posterior beliefs about treatment arm
effects using a binarized scoring rule (BSR) (Hossain and Okui, 2013). Under a BSR the
participant receives a fixed reward when their prediction error is less than some indepen-
dently generated random number. Since the reward size is fixed the individual is incentivised
to report her true beliefs even under a range of risk preferences - only the probability of
reward is determined by the realised score and not its size. Hossain and Okui (2013) show
that even if a particpant’s decision cannot be rationalised by expected utility theory, pro-
vided participant preferences satisfy a monotonicity condition the BSR will be incentive
compatible and she will report her true beliefs.

2. Any non/semi/fully-parametric choice model could be used here but economists are particularly partial
to the multinomial/rank-ordered logit.
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Next, the experimenter instructs participants to rank their preferred treatment arms.
Again, incentive compatibility is ensured by using a strategy proof mechanism with prob-
ability of arm assignment increasing in participant rankings. One example would be the
random serial dictatorship mechanism whereby participants are randomly ordered from 1
to Nt, assign the first participant their first choice, the next participant their top choice
amongst the remaining choices, and so on. Each treatment arm accepts remaining partic-
ipants until their assignment proportion, pk

3, is reached. Random serial dictatorship is a
commonly used school choice algorithm, partly because of its strategy proofness (Abdulka-
dirolu and Snmez, 2003). With rankings and participant posteriors in hand the experimenter
estimates a rank-ordered logit, updating Ft, where the probability of a given ranking takes
the familiar functional form:

Pr(ri|γ) =
K−1∏
k=1

exp(Virik)∑K
l=k exp(Viril)

To calculate assignment probabilities the experimenter draws from the treatment effect,
Qt−1, and discrete choice model posterior, Ft, to generate µk(νt),γ(ωt) draws. Taking
the linear combination of these draws, µk(νt)γ(ωt)

′, gives posterior arm welfare and pk
is chosen using probability matching in proportion to the probability an arm’s welfare is
highest. Finally, the experimenter assigns participants to treatment arms, observes Yt and
updates their treatment effect posterior, Qt.

2.1 Algorithm 2

In many settings eliciting posteriors directly is uneconomical. Enumerators must be trained
in the application of BSR and administer the test in the field for each subject (Glenner-
ster, 2017). In contrast, information treatments are cheap and easy to administer via text
(Banerjee et al., 2021). Therefore, I propose an alternative algorithm that uses signals, in
the form of treatment effect posterior draws, and a structural model of belief formation to
estimate marginal rates of substitution across outcomes.

In Algorithm 2 the experimenter chooses a subsample to elicit participants’ priors over
treatment arm effectiveness4 and samples Nt draws, or signals, from the joint posterior of
treatment arm effects. Next, the experimenter individually informs participants of a private
signal and asks the individual to rank his/her preferred treatment arms. Estimating a rank-
ordered discrete choice model of rankings on signals and normalising estimated coefficients
by the first signal coefficient gives the marginal rate of substitution across signals about
outcomes. Unfortunately, this complicates identification somewhat as we must disentangle
how much an individual values an additional unit of an outcome from how sceptical they
are about outcome signals. In the interest of brevity I will focus on a conjugate Gaussian
updating model with known variance:

3. I describe pk’s calculation shortly. pk doesn’t need to be known before eliciting rankings, only when
treatment is assigned.

4. Economists typically ask individuals to allocate beans or stones in intervals to generate belief distributions
e.g. see Delavande (2014) for more details.
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Algorithm 2 Treatment and structural participant preference estimation

Generate a prior (Q0, F0,Π0) over
(
µk,γ, (µ0, τ

−1
0 )
)

for t = 1, ..., T do
if ei < αt, ei ∼ U(0, 1) then

Elicit participant priors, µ0, τ
−1
0 , using BRS and update Πt

end if
Sample νt ∼ Qt−1(·|pt−1k , Y t−1) and inform each participant of a single µk(νt) draw
Observe participant rankings, Kt, and update Ft(·|Kt,µk(ν

t)) given Πt

Sample ωt ∼ Ft(·|Kt,µk(ν
t)),νt ∼ Qt−1(·|pt−1k , Y t−1),u ∼ U(0, 1)

Choose pk = 1
Nt

∑Nt
n=1 I{µk(νt)γ(ωt)

′ > µl(νt)γ(ωt)
′}, k 6= l

Assign participants to treatment arm k with probability pk using a strategy proof
mechanism

Observe Yt and update the posterior Qt(·|pt−1k , Y t) over µk.
end for

Si|µi ∼ N
(
µi, τ i,−1

)
µi ∼ N

(
µi0, τ

i,−1
0

)
=⇒ E[µ′i|si] = µi0 + (si − µi0)

τ i

τ i0 + τ i
, i = 1, ..., j

That is, on receiving a signal s for outcome i the participant updates their posterior in

proportion to their prior precision and precision of the signal. Defining λi =
τ i0
τ i

gives:

dsi

dsl
=
λi + 1

λl + 1

dµi

dµl

and estimated participant prior precision and marginal rates of substitution across sig-
nals can be mapped into marginal rates of substitution across outcomes.

Again, the experimenter can now sample from the joint posterior over treatment ef-
fects and marginal rates of substitution, construct each arm’s posterior welfare, and assign
treatment using probability matching in proportion to estimated posterior welfare.

2.2 Policy Relevant Parameters

Finally, the estimated parameter vector µk forms an ATE, typically written as E[Y (1) −
Y (0)] using the Fisher-Neyman-Rubin-Quandt model. The ATE describes a policy coun-
terfactual if random individuals were compelled to take or not take treatment, D. In re-
ality, policymakers typically cannot mandate treatment in a population and must consider
whether to expand or withdraw a programme based on the effects for those who choose,
or don’t choose, to takeup the offered treatment (Heckman, 2010; Heckman and Vytlacil,
2001).

The parameters of interest in this case corresponds to an ATT E[Y (1) − Y (0)|D = k],
and ATU, E[Y (1) − Y (0)|D = k′], k 6= k′. By eliciting preference rankings but randomly
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assigning individuals to treatment arms I can compare outcomes for those that received
their favoured choice and those that don’t and subsequently uncover the ATT and ATU.

Simulation Results and Discussion

Table 1 shows results from 100 Monte Carlo draws using 15 rounds of 100 participants
per wave with four treatment arms and three outcomes to aggregate across. Simulation
parameters are drawn from:

γ ∼ N(0, I3)

µk ∼ N(0, I3), k = 1, ..., 4

ηi ∼ N(0, 1), εki ∼ T1EV

where ηi, εki represent participant-level outcome and ranking errors respectively. Models
are estimated in Stan (Carpenter et al., 2017).

Table 1: Monte-Carlo Results

Assignment Type Pr(Optimal Arm) Mean Welfare Rank

Estimated 0.95 1.28
Random Assignment 0.87 3.06
Equal 0.39 2.74
First 0.30 2.92

Assignment type “Estimated” corresponds to Algorithm 1 outlined above and identifies
the optimal arm by the end of the trial 95% of the time. In contrast, static random assign-
ment only identifes the optimal arm in 87% of draws. “Equal” corresponds to Thompson
sampling maximising a standardised index of the three outcomes whilst “First” only targets
the first element of the outcome vector to maximise. Since I use a closed form solution for
participant utility, using the multinomial logit and generated γ parameters, I calculate av-
erage welfare across participants within a simulated draw and rank each algorithm, denoted
by “Mean Welfare Rank”. As expected, Algorithm 1, which estimates participant pref-
erences directly produces the greatest mean welfare for participants whilst static random
assignment the lowest.

In conclusion, by carefulling incentivising research trial participants, through the use of
binarized scoring rules and a strategy proof mechanism such as random serial dictatorship,
I’ve shown how to estimate participant preferences and aggregate treatment effects across
disparate outcomes into a microfounded estimate of arm arm welfare. When direct poste-
rior elicitation if infeasible or prohibitively expensive, drawing signals from the Thompson
posterior over treatment effects is almost exactly the information we wish to impart to
participants to generate observale variation in choices.
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