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Abstract
In vitro cellular experimentation with genetic interventions, using for example CRISPR
technologies, is an essential step in early-stage drug discovery and target validation that
serves to assess initial hypotheses about causal associations between biological mechanisms
and disease pathologies. With billions of potential hypotheses to test, the experimental
design space for in vitro genetic experiments is extremely vast, and the available experi-
mental capacity - even at the largest research institutions in the world - pales in relation
to the size of this biological hypothesis space. Machine learning methods, such as active
and reinforcement learning, could aid in optimally exploring the vast biological space by
integrating prior knowledge from various information sources as well as extrapolating to
yet unexplored areas of the experimental design space based on available data. However,
there exist no standardised benchmarks and data sets for this challenging task and lit-
tle research has been conducted in this area to date. Here, we introduce GeneDisco, a
benchmark suite for evaluating active learning algorithms for experimental design in drug
discovery. GeneDisco contains a curated set of multiple publicly available experimental
data sets as well as open-source implementations of state-of-the-art active learning policies
for experimental design and exploration.
Keywords: Active Learning, Genetic Intervention, Counterfactual inference

1. Introduction

The discovery and development of new therapeutics is one of the most challenging human
endeavours with success rates of around 5% (Hay et al., 2014; Wong et al., 2019), time-
lines that span on average over a decade (Dickson and Gagnon, 2009, 2004), and monetary
costs exceeding two billion United States (US) dollars (DiMasi et al., 2016; Berdigaliyev and
Aljofan, 2020). The successful discovery of drugs at an accelerated pace is critical to satisfy
current unmet medical needs (Rawlins, 2004; Ringel et al., 2020), and, with thousands of
potential treatments currently in development (informa PLC, 2018), increasing the prob-
ability of success of new medicines by establishing causal links between drug targets and
diseases (Nelson et al., 2015) could introduce an additional hundreds of new and potentially
life-changing therapeutic options for patients every year.

However, given the current estimate of around 20 000 protein-coding genes (Pertea et al.,
2018), a continuum of potentially thousands of cell types and states under a multitude of
environmental conditions (Trapnell, 2015; MacLean et al., 2018; Worzfeld et al., 2017),
and tens of thousands of cellular measurements that could be taken (Hasin et al., 2017;
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Figure 1: In the setting considered in this work, counterfactual estimators of experimental outcomes
(step 1, left) are used to propose experimental hypotheses (step 2, center) for validation in in
vitro experiments with genetic interventions (step 3, right), such as CRISPR knockouts, in order
to discover potential causal associations between biological entities that could be relevant for the
development of novel therapeutics. The trained counterfactual estimators can be used to direct the
experimental search towards the space of biological interest, and thus more efficiently explore the
vast space of genetic interventions. After every cycle, experimental data are generated that could
lead to mechanistic scientific discoveries forming the basis for new therapeutics development, and
guide subsequent experiment cycles with enhanced counterfactual estimators.

Chappell et al., 2018), the combinatorial space of biological exploration spans hundreds
of billions of potential experimental configurations, and vastly exceeds the experimental
capacity of even the world’s largest research institutes. Machine learning methods, such as
active and reinforcement learning, could potentially aid in optimally exploring the space of
genetic interventions by prioritising experiments that are more likely to yield mechanistic
insights of therapeutic relevance (Figure 1), but, given the lack of openly accessible curated
experimental benchmarks, there does not yet exist to date a concerted effort to leverage the
machine learning community for advancing research in this important domain.

To bridge the gap between machine learning researchers versed in causal inference and the
challenging task of biological exploration, we introduce GeneDisco, an open benchmark suite
for evaluating batch active learning algorithms for experimental design in drug discovery.
GeneDisco consists of several curated datasets, tasks and associated performance metrics,
open implementations of state-of-the-art active learning algorithms for experimental design,
and an accessible open-source code base for evaluating and comparing new batch active
learning methods for biological discovery. Concretely, the contributions presented in this
work are as follows:

• We introduce GeneDisco, an open benchmark suite for batch active learning for drug
discovery that provides curated datasets, tasks, performance evaluation and open
source implementations of state-of-the-art algorithms for experimental exploration.

• We perform an extensive experimental baseline evaluation that establishes the relative
performance of existing state-of-the-art methods on all the developed benchmark set-
tings using a total of more than 20 000 central processing unit (CPU) hours of compute
time.

• We survey and analyse the current state-of-the-art of active learning for biological
exploration in the context of the generated experimental results, and present avenues
of heightened potential for future research based on the developed benchmark.
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2. Related Work

Background. Drug discovery is a challenging endeavour with (i) historically low probabili-
ties of successful development into clinical-stage therapeutics (Hay et al., 2014; Wong et al.,
2019), and, for many decades until recently (Ringel et al., 2020), (ii) declining industry pro-
ductivity commonly referred to as “Eroom’s law” (Scannell et al., 2012). Seminal studies by
Nelson et al. (2015) and King et al. (2019) respectively first reported and later independently
confirmed that the probability of clinical success of novel therapeutics increases up to three-
fold if a medicine’s molecular target is substantiated by high-confidence causal evidence from
genome-wide association studies (GWAS) Visscher et al. (2017). With the advent of molec-
ular technologies for genetic perturbation, such as Clustered Regularly Interspaced Short
Palindromic Repeats (CRISPR) (Jehuda et al., 2018), there now exist molecular tools for
establishing causal evidence supporting the putative mechanism of a potential therapeutic
hypothesis by means of in vitro experimentation beyond GWAS early on during the target
identification and target validation stages of drug discovery (Rubin et al., 2019; Itokawa
et al., 2016; Harrer et al., 2019; Vamathevan et al., 2019). Among other applications (Chen
et al., 2018; Ekins et al., 2019; Mak and Pichika, 2019), machine learning methods, such as
active and reinforcement learning, could potentially aid in discovering the molecular targets
with the highest therapeutic potential faster.

3. Methodology

Problem Setting. We consider the setting in which we are given a dataset consisting
of covariates X ∈ Rp with input feature dimensionality p ∈ N and treatment descriptors
T ∈ Rq with treatment descriptor dimensionality q ∈ N+ that indicate similarity between
interventions. Our aim is to estimate the expectation of the conditional distribution of an
unseen counterfactual outcome Yt ∈ R given observed covariates X = x and intervention
do(T = t), ŷt = ĝ(X = x, do(T = t)) ≈ E[Y | X = x, do(T = t)]. This setting corresponds
to the Rubin-Neyman potential outcomes framework (Rubin, 2005) adapted to the context
of genetic interventions with a larger number of parametric interventions. In the context of a
biological experiment with genetic interventions, yt is the experimental outcome relative to
a non-interventional control (e.g., change in pro-inflammatory effect) that is measured upon
perturbation of the cellular system with intervention t, x is a descriptor of the properties of
the model system and/or cell donor (e.g., the immuno-phenotype of the cell donor), and t
is a descriptor of the genetic intervention (e.g., a CRISPR knockout on gene STAT1) that
indicates similarity to other genetic interventions that could potentially be applied.

Batch Active Learning. Our overall aim is to leverage the counterfactual estimator ĝ
trained on the available dataset to simulate future experiments with the aim of maximising
an objective function L in the next iteration with as few interventions as possible.

Acquisition Function. An acquisition function Dk = α(g(t),Dk
avail) takes the model

and the set of all available interventions Dk
avail in cycle k as input and outputs the set of

interventions Dk that are most informative after the kth experimental cycle with cycle index
k ∈ [K] = [0 . . K] where K ∈ N+ is the maximum number of cycles that can be run.
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4. Datasets, Metrics & Baselines

The GeneDisco benchmark curates and standardizes two types of datasets: three stan-
dardized feature sets describing interventions t (inputs to counterfactual estimators; Ap-
pendix D.1), and four different in vitro genome-wide CRISPR experimental assays (predicted
counterfactual outcomes; Appendix E.2), each measuring a specific outcome yt following pos-
sible interventions T . We perform an extensive evaluation across these datasets, leveraging
two different model types and nine different acquisition functions (Section 4.1). Since all
curated assay datasets contained only outcomes for only one model system, we used the
empty covariate set X = x0 for all evaluated benchmark configurations. The metrics used
to evaluate the various experimental conditions (acquisition functions and model types) in-
clude model performance (Figure 2) and the ratio of discovered interesting hits (Figure 3)
as a function of number of samples queried.

4.1 Models and Acquisition Functions

We use Bayesian Neural Networks (BNNs) and Random Forests as predictive models. Please
see Appendix B.1 for details on the employed models. We included a diverse set of the ex-
isting active learning methods to serve as an informative set of baselines for comparison and
intuition activation for future improvements. Each one of the employed acquisition functions
(Random, BADGE, BALD (topuncertain and softuncertain)), Coreset, Margin Sample
(Margin), Adversarial Basic Iteractive Method (AdvBIM), k-means Sampling (kmeansdata
and kmeansembed)) included in the benchmark are described in detail in Appendix F.

5. Experimental Evaluation

Setup. In order to assess current state-of-the-art methods on the GeneDisco benchmark, we
perform an extensive baseline evaluation of 9 acquisition functions, 6 acquisition batch sizes
and 4 experimental assays using in excess of 20 000 CPU hours of compute time. Due to the
space limit, we include the results for 3 batch sizes in the main text and present the results
for all batch sizes in the appendix. The employed counterfactual estimator ĝ is a multi-layer
perceptron (MLP) that has one hidden layer with ReLU activation and a linear output
layer. The size of the hidden layer is determined at each active learning cycle by k-fold cross
validation against 20% of the acquired batch. At each cycle, the model is trained for at most
100 epochs but early stopping may interrupt training earlier if the validation error does not
decrease. Each experiment is repeated with 5 random seeds to assess experimental variance.
To choose the number of active learning cycles, we use the following strategy: the number
of cycles are bounded to 40 for the acquisition batches of sizes 16, 32 and 64 due to the
computational limits. For larger batch sizes, the number of cycles are reduced proportionally
so that the same total number of data points are acquired throughout the cycles. At each
cycle, the model is trained from scratch using the data collected up to that cycle, i.e. a
trained model is not transferred to the future cycles. The test data is a random 20% subset
of the whole data that is left aside before the active learning process initiates, and is kept
fixed across all experimental settings (i.e., for different datasets and different batch sizes) to
enable a consistent comparison of the various acquisition functions, counterfactual estimator
and treatment descriptor configurations.
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Figure 2: The evaluation of the model trained with STRING treatment descriptors at each active
learning cycle for 4 datasets and 3 acquisition batch sizes. In each plot, the x-axis is the active
learning cycles multiplied by the acquisition bath size that gives the total number of data points
collected so far. The y-axis is the test MSE error evaluated on the test data.

Results. The model performance based on the STRING treatment descriptors for dif-
ferent acquisition functions, acquisition batch sizes and datasets are presented in Figure 2.
The same metrics in the Achilles and CCLE treatment descriptors are provided in Ap-
pendix G. To showcase the effect of the model class, we additionally repeat the experiments
using a random forest model as an uncertainty aware ensemble model with a reduced set of
acquisition functions that are compatible with non-differentiable models (Appendix G). The
random forest model is also used in another set of experiments with other datasets (Sanchez
et al., 2021; Zhu et al., 2021) which are fully postponed to the appendix due to the space
constraint. To investigate the types of genes chosen by different acquisition functions, we
defined a subset of potentially interesting genes as the top 5% with the largest absolute
target value. These are the genes that could potentially be of therapeutic value due to
their outsized causal influence on the phenotype of interest. The hit ratio out of the set
of interesting genes chosen by different acquisition functions are presented in Figure 3 for
the STRING treatment descriptors, and in Appendix G for Achilles and CCLE. Bench-
mark results of interest include that model-independent acquisition methods using diversity
heuristics (random, kmeansdata) perform relatively better in terms of model improvement
than acquisition functions based on model uncertainty (e.g., topuncertain, softuncertain)
when using lower batch acquisition sizes than in regimes with larger batch acquisition sizes
potentially due to diversity being inherently higher in larger batch acquisition regimes due
to the larger set of included interventions in an intervention space with a limited amount of
similar interventions. Notably, while diversity-focused, model-independent acquisition func-
tions, such as random and kmeansdata, perform well in terms of model performance, they
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Figure 3: The hit ratio of different acquisition for BNN model, different target datasets, and different
acquisition batch sizes. We use STRING treatment descriptors here. The x-axis shows the number
of data points collected so far during the active learning cycles. The y-axis shows the ratio of the
set of interesting genes that have been found by the acquisition function up until each cycle.

underperform in terms of interesting hits discovered as a function of acquired interventional
samples (Figure 3). Based on these results, there appears to be a trade-off between model
improvement and hit discovery in experimental exploration with counterfactual estimators
that may warrant research into approaches to manage this trade-off to maximize long-term
discovery rates.

6. Discussion and Conclusion
GeneDisco addresses the current lack of standardised benchmarks for developing batch ac-
tive learning methods for experimental design in drug discovery. GeneDisco consists of
several curated datasets for experimental outcomes and genetic interventions, provides open
source implementations of state-of-the-art acquisition functions for batch active learning,
and includes a thorough assessment of these methods across a wide range of hyperparam-
eter settings. We aim to attract the broader active learning community with an interest
in causal inference by providing a robust and user-friendly benchmark that diversifies the
benchmark repertoire over standard vision datasets. New models and acquisition functions
for batch active learning in experimental design are of critical importance to realise the
potential of machine learning for improving drug discovery. As future research, we aim to
expand GeneDisco to enable multi-modal learning and support simultaneous optimization
across multiple output phenotypes of interest.
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Appendix A. Notations

Here is the list of notations used in this manuscript.

• Dpool: The pool of unlabeled data.

• Dk
acq: Acquired data at k-th AL cycle.

• Dk
train: Cumulative training data after k-th cycle of AL.

• Dval: Validation data.

• Dtest: Held-out test data.

• b: Acquisition batch size.

• K: Total number of AL cycles.

• k = [1, 2, . . . ,K]: Index of the AL cycle.

• [K] = [1, 2, . . . ,K].

• e ∈ E : Inherent noise (aleatoric uncertainty).

• T ∈ T : Treatment variable.

• E[Y | X = x, do(T = t)]: The conditional expected outcomes.

• ĝ(t;ω): The model parameterised by ω ∈ Ω to estimate E[Y | X = x, do(T = t)].

• X: random variable X with distribution X ∼ F (X) and density f(x).

Appendix B. Related work

Here is the continuation of the related work section that we had to remove from the main
text due to the space limit.

Machine Learning for Drug Discovery. There exist a number of studies that pro-
posed, advanced or evaluated the use of machine learning algorithms for drug discovery:
Costa et al. (2010) used decision tree meta-classifier to identify genes associated with morbid-
ity using protein-protein, metabolic, transcriptional, and sub-cellular interactions as input.
Jeon et al. (2014) used a support vector machine (SVM) on protein expressions to pre-
dict target or non-target for breast pancreatic or ovarian cancers, and Ament et al. (2018)
used least absolute shrinkage and selection operator (LASSO) regularised linear regression
on transcription factor binding sites and transcriptome profiling to predict transcriptional
changes associated with Huntington’s disease. In the domain of human muscle ageing,
Mamoshina et al. (2018) used a SVM on deep features extracted from gene expression sig-
natures in tissue samples from young and old subjects to discover molecular targets with
putative involvement in muscle ageing. More recently, Stokes et al. (2020) utilised deep
learning to discover Halicin as a repurposed molecule with antibiotic activity in mice.

Reinforcement and Active Learning. The use of deep reinforcement learning for
de novo molecular design has been extensively studied (Olivecrona et al., 2017; Popova
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et al., 2018; Putin et al., 2018; Lim et al., 2018; Blaschke et al., 2020; Gottipati et al., 2020;
Horwood and Noutahi, 2020). Active learning for de novo molecular design has seen less
attention (Dixit et al., 2016; Green et al., 2020), however, active learning for causal inference
has seen increasing application toward causal-effect estimation (Deng et al., 2011; Schwab
et al., 2018; Sundin et al., 2019; Schwab et al., 2020; Bhattacharyya et al., 2020; Parbhoo
et al., 2021; Qin et al., 2021; Jesson et al., 2021; Chau et al., 2021), and causal graph
discovery (Ke et al., 2019; Tong and Koller, 2001; Murphy, 2001; Hauser and Bühlmann,
2014; Ghassami et al., 2018; Ness et al., 2017; Agrawal et al., 2019; Lorch et al., 2021;
Annadani et al., 2021; Scherrer et al., 2021).

B.1 Models

Parametric or non-parametric models can be used to model the conditional expected out-
comes, E[Y | X = x, do(T = t)]. Parametric models assume that the outcome Y has density
f(y | t, ω) conditioned on the intervention t and the parameters of the model ω (we drop
x0 for compactness). A common assumption for continuous outcomes is a Gaussian distri-
bution with density f(y | t, ω) = N (y | ĝ(t;ω), σ2), which assumes that y is a deterministic
function of ĝ(t;ω) with additive Gaussian noise scaled by σ2.

In this work we use Bayesian Neural Networks (BNNs) to approximate the posterior over
model parameters. A BNN gives ĝk−1(t) = 1

m

∑m
j=1 ĝ(t;ω

k−1
j ), where ĝ(t;ωk−1

j ) is a unique
functional estimator of E[Y | X = x, do(T = t)] induced by ωk−1

j ∼ q(ω | Dk−1
cum): a sample

from the approximate posterior over parameters given the cumulative data at acquisition
step k − 1.

We also use non-parametric, non-Bayesian, Random Forest Regression (Breiman, 2001).
A Random Forest gives ĝk−1(t) = 1

m

∑m
j=1 ĝ

k−1
j (t), where ĝk−1

j (t) is a unique functional
estimator of E[Y | X = x, do(T = t)] indexed by the jth sample in the ensemble of m trees
trained on Dk−1

cum).

Appendix C. Acquisition Functions

• Random: Random acquisition function is an integral part of whatever baseline set in
active learning’s performance criteria.

• Uncertainty-based acquisition functions: These categories are popular because of their
easy-to-develop and low-computational properties while having great performance.
Uncertainty-based functions usually are employed in the shallow models that some
sense of intrinsic uncertainty exists for them, e.g., random forests. Here, we adapted
some of them to our notion of uncertainty (based on our regression task). These
functions include topuncertain and Margin Sample.

• Deep Bayesian Active Learning acquisition functions: One way to bridge between
classical uncertainty-based algorithms and deep active learning methods is to leverage
deep bayesian active learning. Bayesian Active Learning by Disagreement (BALD)
calculates mutual information between samples and model parameters as a definition
for uncertainty.
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• Density-based acquisition functions: These functions try to select a sample that is the
best representative of the whole dataset in terms of diversity. Based on different repe-
sentativee power measures various methods exist that here Coreset and kmeansdata
are covered.

• Adversarial learning attacks: By choosing adversarial samples as nominated samples
for active learning, one may use most of the adversarial learning algorithms as acqui-
sition functions. We implemented AdvBIM as a compelling example of this category.

• Hybrid acquisition functions: These methods take into account both sample diversity
and also prediction uncertainty of the model. In other words, they increase the diver-
sity of data samples according to model properties. BADGE considers the gradient
of the loss function w.r.t weights of the final layer while kmeansembed looks at the data
from their embeddings in the last layer of the deep learning model.

Appendix D. Data

D.1 Treatment Descriptors

The treatment descriptors T characterize a genetic intervention and generally should corre-
spond to data sources that are informative as to a genes’ functional similarity - i.e. defining
which genes if acted upon, would potentially respond similarly to perturbation. The treat-
ment descriptor T is the input to the model described in Section 3 for a fixed vector of
covariates x. Any dataset considered for use as a treatment descriptor must be available
for all potentially available interventions Dpool in the considered experimental setting. In
GeneDisco, we provide three standardised gene descriptor sets for genetic interventions,
and furthermore enable users to provide custom treatment descriptors via a standardised
programming interface:

Achilles. The Achilles project generated dependency scores across cancer cell lines by
assaying 808 cell lines covering a broad range of tissue types and cancer types (Dempster
et al., 2019). The genetic intervention effects are based on interventional CRISPR screens
performed across the included cell lines. When using the Achilles treatment descriptors,
each genetic intervention is summarized using a gene representation T with q = 808 corre-
sponding to the dependency scores measured in each cell line. In Achilles, after processing
and normalisation (see Dempster et al. (2019)), the final dependency scores provided are
such that the median negative control (non-essential) gene effect for each cell line is 0, and
the median positive control (essential) gene effect for each cell line is -1. The rationale for
using treatment descriptors based on the Achilles dataset is that genetic effects measured
across the various tissues and cancer types in the 808 cell line assays included in (Dempster
et al., 2019) could serve as a similarity vector in functional space that may extrapolate to
other biological contexts due to its breadth.

Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) Net-
work Embeddings. The STRING (Szklarczyk et al., 2021) database collates known and
predicted protein-protein interactions (PPIs) for both physical as well as for functional asso-
ciations. In order to derive a vector representation suitable to serve as a genetic intervention
descriptor T , we utilised the network embeddings of the PPIs contained in STRING as pro-
vided by Cho et al. (2016, 2015) with dimensionality q = 799. PPI network embeddings

16



could be an informative descriptor of functional gene similarity since proteins that function-
ally interact with the same network partners may serve similar biological functions (Vazquez
et al., 2003; Saha et al., 2014).

Cancer Cell Line Encyclopedia (CCLE). The CCLE (Nusinow et al., 2020) project
collected quantitative proteomics data from thousands of proteins by mass spectrometry
across 375 diverse cancer cell lines. The generated protein quantification profiles with dimen-
sionality q = 420 could indicate similarity of genetic interventions since similar expression
profiles across a broad range of biological contexts may indicate functional similarity.

Custom Treatment Descriptors. Additional, user-defined treatment descriptors can
be evaluated in GeneDisco by implementing the standardised dataset interface provided
within.

Appendix E. Data

In this section, we provide the detailed explanation of the input (treatment descriptors) and
output (assays) that were dropped from the main text due to limited space.

E.1 Assays

As ground-truth interventional outcome datasets, we leverage various genome-wide CRISPR
screens, primarily from the domain of immunology, that evaluated the causal effect of inter-
vening on a large number of genes in cellular model systems in order to identify the genetic
perturbations that induce a desired phenotype of interest. In connection with the problem
formulation in Section 3, the CRISPR screens are the random variables whose realized values
are the outcome of the interventional experiments. In the following, we add more details
about four CRISPR screens.

E.1.1 Regulation of Human T cells proliferation

Experimental setting. This assay is based on Shifrut et al. (2018). After isolating CD8+

T cells from human donors, Shifrut et al. (2018) performed a genome-wide loss-of-function
screen to identify genes that impact the proliferation of T cells following stimulation with
T cell receptors.
Measurement. The measured outcome is the proliferation of T cells in response to T
cell receptor stimulation. Cells were labeled before stimulation with CFSE (a fluorescent
cell staining dye). Proliferation of cells is measured 4 days following stimulation by FACS
sorting (a flow cytometry technique to sort cells based on their fluorescence).
Importance. Human T cells play a central role in immunity and cancer immunotherapies.
The identification of genes driving T cell proliferation could serve as the basis for new
preclinical drug candidates or adoptive T cell therapies that help eliminate cancerous tumors.

E.1.2 Interleukin-2 production in primary human T cells

Experimental setting. This dataset is based on a genome-wide CRISPR interference
(CRISPRi) screen in primary human T cells to uncover the genes regulating the production
of Interleukin-2 (IL-2). CRISPRi screens test for loss-of-function genes by reducing their
expression levels. IL-2 is a cytokine produced by CD4+ T cells and is a major driver of
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T cell expansion during adaptive immune responses. Assays were performed on primary T
cells from 2 different donors. The detailed experimental protocol is described in Schmidt
et al. (2021).
Measurement. Log fold change (high/low sorting bins) in IL-2 normalized read counts
(averaged across the two biological replicates for robustness). Sorting was done via flow
cytometry after intracellular cytokine staining.
Importance. IL-2 is central to several immunotherapies against cancer and autoimmunity.

E.1.3 Interferon-γ production in primary human T cells

Experimental setting. This data is also based on Schmidt et al. (2021), except that this
experiment was performed to understand genes driving production of Interferon-γ (IFN-γ).
IFN-γ is a cytokine produced by CD4+ and CD8+ T cells that induces additional T cells.
Measurement. Log fold change (high/low sorting bins) in IFN-γ normalized read counts
(averaged across the two biological replicates for robustness).
Importance. IFN-γ is critical to cancerous tumor killing and resistance to IFN-γ is one
escape mechanism for malignant cells.

E.1.4 Vulnerability of Leukemia cells to NK cells

Experimental setting. This genome-wide CRISPR screen was performed in the K562
cell line to identify genes regulating the sensitivity of leukemia cells to cytotoxic activity of
primary human NK cells. Detailed protocol is described in Zhuang et al. (2019).
Measurement. Log fold counts of gRNAs in surviving K562 cells (after exposition to NK
cells) compared to control (no exposition to NK cells). Gene scores are normalized fold
changes for all gRNAs targeting this gene.
Importance. Better understanding and control over the genes that drive the vulnerability
of leukemia cells to NK cells will help improve anti-cancer treatment efficacy for leukemia
patients, for example by preventing relapse during hematopoeitic stem cell transplantation.

E.2 Assays

As ground-truth interventional outcome datasets, we leverage various genome-wide CRISPR
screens, primarily from the domain of immunology, that evaluated the causal effect of inter-
vening on a large number of genes in cellular model systems in order to identify the genetic
perturbations that induce a desired phenotype of interest. In connection with the problem
formulation in Section 3, the CRISPR screens are the random variables whose realized values
are the outcome of the interventional experiments. In the following, we add more details
about four CRISPR screens.

E.2.1 Regulation of Human T cells proliferation

Experimental setting. This assay is based on Shifrut et al. (2018). After isolating CD8+

T cells from human donors, Shifrut et al. (2018) performed a genome-wide loss-of-function
screen to identify genes that impact the proliferation of T cells following stimulation with
T cell receptors.
Measurement. The measured outcome is the proliferation of T cells in response to T
cell receptor stimulation. Cells were labeled before stimulation with CFSE (a fluorescent
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cell staining dye). Proliferation of cells is measured 4 days following stimulation by FACS
sorting (a flow cytometry technique to sort cells based on their fluorescence).
Importance. Human T cells play a central role in immunity and cancer immunotherapies.
The identification of genes driving T cell proliferation could serve as the basis for new
preclinical drug candidates or adoptive T cell therapies that help eliminate cancerous tumors.

E.2.2 Interleukin-2 production in primary human T cells

Experimental setting. This dataset is based on a genome-wide CRISPR interference
(CRISPRi) screen in primary human T cells to uncover the genes regulating the production
of Interleukin-2 (IL-2). CRISPRi screens test for loss-of-function genes by reducing their
expression levels. IL-2 is a cytokine produced by CD4+ T cells and is a major driver of
T cell expansion during adaptive immune responses. Assays were performed on primary T
cells from 2 different donors. The detailed experimental protocol is described in Schmidt
et al. (2021).
Measurement. Log fold change (high/low sorting bins) in IL-2 normalized read counts
(averaged across the two biological replicates for robustness). Sorting was done via flow
cytometry after intracellular cytokine staining.
Importance. IL-2 is central to several immunotherapies against cancer and autoimmunity.

E.2.3 Interferon-γ production in primary human T cells

Experimental setting. This data is also based on Schmidt et al. (2021), except that this
experiment was performed to understand genes driving production of Interferon-γ (IFN-γ).
IFN-γ is a cytokine produced by CD4+ and CD8+ T cells that induces additional T cells.
Measurement. Log fold change (high/low sorting bins) in IFN-γ normalized read counts
(averaged across the two biological replicates for robustness).
Importance. IFN-γ is critical to cancerous tumor killing and resistance to IFN-γ is one
escape mechanism for malignant cells.

E.2.4 Vulnerability of Leukemia cells to NK cells

Experimental setting. This genome-wide CRISPR screen was performed in the K562
cell line to identify genes regulating the sensitivity of leukemia cells to cytotoxic activity of
primary human NK cells. Detailed protocol is described in Zhuang et al. (2019).
Measurement. Log fold counts of gRNAs in surviving K562 cells (after exposition to NK
cells) compared to control (no exposition to NK cells). Gene scores are normalized fold
changes for all gRNAs targeting this gene.
Importance. Better understanding and control over the genes that drive the vulnerability
of leukemia cells to NK cells will help improve anti-cancer treatment efficacy for leukemia
patients, for example by preventing relapse during hematopoeitic stem cell transplantation.

Appendix F. Acquisition Functions cont.

Random. As a baseline we look at random acquisition. Random acquisition at cycle k can
be seen as uniformly sampling data from Dk

avail:

αRandom(ĝk−1(t),Dk
avail) = {t1, . . . tb} ∼

{
ti;

1

navail

}navail

i=1

. (1)
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Here, the acquisition function samples b elements without replacement from the set of navail
elements. The set element (ti) is on the left of the semicolon, and the probability of the
element being acquired ( 1

navail
) is on the right of the semicolon. This convention will be used

again below.
BADGE. BADGE looks to maximize the diversity of acquired samples, but, in contrast

to Coreset, it additionally takes the uncertainty of the prediction into account (Ash et al.,
2019). If the true label y were observed, BADGE would proceed by maximizing the diversity
of samples based on the gradient of the loss function l with respect to the weights of the final
layer of the most recently trained model w̃k−1: ∂

∂ω̃k−1 l(y, ĝ(t;ω)). Intuitively, it asks how
much would our parameters change if we observed the labeled outcome for this example?
However, the true label y is not yet observed. Ash et al. (2019) explore BADGE in the
classification setting. For a two class problem, where f(y | t, ω) = Bernoulli(y | ĝ(t;ω)), they
propose using the class with the highest predicted probability, ŷ = argmaxy∈0,1 f(y | t, ω),
to approximate the gradient as ∂

∂ω̃k−1 l(ŷ, ĝ(t;ω)). This does not directly translate to the
regression setting, as under our modelling assumptions the y with the highest predicted
likelihood corresponds exactly to ĝ(t;ω), which would lead to a loss of zero, and gradients
of zero. As a starting point, we instead take ŷ as a random sample from f(y | t, ω) =
N (y | ĝ(t;ω), σ2). We then use the same k-means++ algorithm as Ash et al. (2019) to
approximate:

αBADGE(ĝ
k−1(t),Dk

avail)

= argmin
{t1,...tb}∈Dk

avail

argmax
ti∈Dk

avail

argmin
tj∈Dk

avail∪D
k−1
cum

∆

(
∂l(ŷ, ĝ(ti;ω

k−1))

∂ω̃k−1
,
∂l(ŷ, ĝ(tj ;ω

k−1))

∂ω̃k−1

)
(2)

where ∆ is again the Euclidean distance.
Bayesian Active Learning by Disagreement (BALD). Given an uncertainty aware

model, such as a BNN or Random Forest we can now take an information theoretic approach
to selecting interventions from the pool data. Houlsby et al. (2011) frame active learning
as looking to maximize the information gain about the model parameters if we observe the
outcome Y = y given model inputs. Formally, the information gain is given by the mutual
information between the random variables Y and Ω given the intervention t and acquired
training data Dk−1

cum up until acquisition step k:

I(Y ; Ω | t,Dk−1
cum) = H(Y | t,Dk−1

cum)−H(Y | Ω, t,Dk−1
cum)

= H(Y | t,Dk−1
cum)− Ef(ω|Dk−1

cum )H(Y | ω, t).
(3)

Under the assumed model we have

I(Y ; Ω | t,Dk−1
cum) =

1

2
log

(
σ2 + Ef(ω|Dk−1

cum )

[
ĝ(t;ω)2

]
− Ef(ω|Dk−1

cum ) [ĝ(t;ω)]
2

σ2

)
, (4)

which leads to the following estimator setting σ2 = 1

Î(Y ; Ω | t,Dk−1
cum) =

1

2
log

1 +
1

m

m∑
j=1

ĝ(t;ωk−1
j )− 1

m

m∑
j=1

ĝ(t;ωk−1
j )

2
. (5)
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We look at two acquisition functions for BALD. First, we consider the naive batch acquisition
αBALD proposed by Gal et al. (2017) which acquires the the top b examples from Dk

avail:

αBALD(ĝk−1(t),Dk
avail) = argmax

{t1,...tb}∈Dk
avail

b∑
i=1

Î(Y ; Ω | ti,Dk−1
cum). (6)

This method will be referred to as topuncertain in the plots later. And second, we con-
sider αSoftBALD which randomly samples b interventions from Dk

avail weighted by a tempered
softmax function (Kirsch et al., 2021):

αSoftBALD(ĝk−1(t),Dk
avail) = {t1, . . . tb} ∼

ti;
exp

(
1

Temp Î(Y ; Ω | ti,Dk−1
cum)

)
∑navail

l=1 exp
(

1
Temp Î(Y ; Ω | tl,Dk−1

cum)
)


navail

i=1

, (7)

where Temp > 0 is a user defined constant. This method will be referred to as softuncertain
in the plots. As Temp → ∞, αSoftBALD will behave more like αRandom. And as Temp → 0,
αSoftBALD will behave more like αBALD.

Coreset. Coreset acquisition looks to maximize the diversity of acquired samples. This is
done by finding the data points in Dk

avail that are furthest from the labelled data points in
Dk−1

cum. The robust K-centers algorithm of Sener and Savarese (2017) approximates a solution
to:

αCORESET(ĝ
k−1(t),Dk

avail) = argmin
{t1,...tb}∈Dk

avail

argmax
ti∈Dk

avail

argmin
tj∈Dk

avail∪Dk−1
cum

∆(ti, tj). (8)

Euclidean distances, ∆(ti, tj), are calculated between the output of the penultimate layer of
ĝ(t;ω).

Margin Sample. Margin sampling is designed for classifiers where selection is based on
the distance of a sample from the classifiers decision boundary (Roth and Small, 2006).
As a proxy, the difference between the predicted probability of the most and second most
probable classes is used. The distance between the most probable and the second most
probable classes for a multi-class classification problem can be seen as how confident the
model is about the label of that class. However, The concept of a decision boundary is
ill-defined for regression tasks. One option to approximate margin sampling could be to
model the aleatoric uncertainty of the model by predicting the conditional variance of the
outcome σ2(t;ω) and select data based on the magnitude of this value. Here, we instead
look at the difference in the maximum and minimum values of the predicted outcome as
a measure of the model’s confidence and select data based on the magnitude of this value.
Formally, we have

M̂(Y ; Ω | ti,Dk−1
cum) = max

j∈{1,...m}
(ĝ(t;ωk−1

j ))− min
j∈{1,...m}

(ĝ(t;ωk−1
j )), (9)

and the acquisition function:

αMargin(ĝ
k−1(t),Dk

avail) = argmax
{t1,...tb}∈Dk

avail

b∑
i=1

M̂(Y ; Ω | ti,Dk−1
cum). (10)

Note that this approximation is similar to BALD under the assumption of a uniformly
distributed outcome: f(y | t, ω) = U(y | ĝ(t;ω)).
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Adversarial Basic Iteractive Method (AdvBIM). Some of the adversarial algorithms
can act as active learning acquisition functions by nominating the adversarial samples. Here,
we extended the famous Adversarial BIM method for our regression task as an example.
BIM was introduced by (Kurakin et al., 2016) to iteratively perturb adversarial samples to
maximize the cost function J subject to an lp norm constraint as

t̂(0) = t, t̂(i) = clipt,e(t̂
(i−1) + sign(∇t̂(i−1)J(θ, t̂(i−1), y))) (11)

(intermediate results are clipped to stay in e-neighbourhood of the primary data point t).
This technique bypasses the intractable problem of finding the distance from the decision
boundary by iteratively perturbing the features until crossing the boundary (Tramèr et al.,
2017). In our regression task, we perturb the features in the gradients’ direction to increase
the conditional variance of the outcome, i.e.,

t̂(0) = t, t̂(i) = clipt,e(t̂
(i−1) + sign(∇t̂(i−1)Varω(ĝ(t, ω)))) for i = {1, . . . ,m}, (12)

where ||t̂i − t||2 < γ ∗ ||t||2 with the hyperparameter γ. After creating adversarial samples
for each data point in Dk

avail, αAdversarialBIM acquires the samples by

αAdversarialBIM(ĝk−1(t),Dk
avail) =

⋃
ti∈Dk

avail

argmin
tj∈Dk

avail

∆(t̂
(m)
i , tj), (13)

where ∆ is the euclidean distance.

k-means Sampling. This method nominates samples by returning the closest sample to
each center of the unlabeled data clusters. In order to do so, one may run Kmeans++
clustering algorithm with the number of clusters equal to b over either the unlabeled data
points Dk

avail or the output of the penultimate layer of ĝ(t;ω). We refer to the former as
kmeansdata and to the latter as kmeansembed in the experiments. Assuming {µ1, . . . , µb}
are the centers of the clustering, we have

αKmeans(ĝ
k−1(t),Dk

avail) =
b⋃

i=1

argmin
tj∈Dk

avail

∆(µi, tj), (14)

where ∆ is euclidean distance over the data points or the penultimate layer of ĝ(t;ω).

Appendix G. Detailed experimental results

G.1 Bayesian Neural Network (BNN) Model

We provide here detailed experimental results across all hyperparameter settings. The result
of fig. 2 that was presented for 3 batch sizes are provided for 6 batch sizes in fig. 4. Similarly,
the results of fig. 3 are provided for additional batch sizes in fig. 7. In addition, both fig. 2
and fig. 3 report the results for the STRING treatment descriptors. All experiments are
repeated for two other sets of input treatment descriptors (Achilles and CCLE) whose results
are provided in figs. 5, 6, 8 and 9.

22



G.2 Random Forest Model

In addition to the BNN model, we carried out thorough analyses for a different model class.
The experiments are repeated for the random forest as an uncertainty aware ensemble model.
The uncertainty in random forests, similar to other ensemble methods, is originated from
the prediction made by each model instance in the ensemble. We use the random forest
implementation in the Scikit-learn package (Pedregosa et al., 2011) with 100 trees and set
the option max_depth=None so that the depth of the trees are determined automatically.
The performance of the model trained over the active learning cycles can be seen in fig. 10
for different acquisition functions, different batch sizes, different target datasets, and the
STRING treatment descriptors. Similarly, the hit ratio of the interesting genes for a random
forest model is reported in fig. 12. The same experiment was repeated for CCLE treatment
descriptors whose results are provided in fig. 11 and fig. 13. Notice that random forest
experiments are done with a reduced set of acquisition functions that could be adjusted to
the random forest model.

G.3 In-depth Description of the Hit Ratio Experiment

Here we elaborate more on the purpose and the message of the hit ratio experiment whose
results are reported in figs. 7 to 9, 12 and 13 for various settings. The purpose of these
experiments is to compare the performance of different acquisition functions in different
settings of batch sizes and input/output datasets to hit the gene targets that are known to
be interesting by genomics experts. To choose the set of interesting genes, we sort them
based on their absolute target values. Then we choose the top 5% of this list that corresponds
to both extremes of positive and negative values (both extremes are considered to be good
targets by experts.) The experiments are repeated for 5 different random seeds to obtain
the error bars.

23



Appendix H. Additional datasets

We tested the GeneDisco pipeline on two additional datasets which are included in this
appendix due to space constraints. The relative performance of the random forest model
with the acquisition functions that are compatible wit this model class are shown in Figure 14
for the predictive accuracy task and Figure 15 for the hit ratio task.

H.1 Modulation of Tau proteins in neurons

Experimental setting. This assay is based on Sanchez et al. (2021) in which authors have
conducted genome-wide CRISPR screens in two SH-SY5Y neuroblastoma cell lines to iden-
tify genes that, when knocked out, either increased or decreased expression of endogenous
tau proteins.
Measurement. After editing (for 21 or 30 days), cells are FACS sorted based on low
tau expression (low quartile 25%) and high tau expression (high quartile 25%). Statistical
significance of gRNA enrichment is determined via a redundant siRNA activity (RSA; log
p-value) analysis. RSA up scores were used to find genes enriched in the 25% of cells with
highest tau protein, while RSA down scores were used to find genes enriched in the 25% of
cells with the lowest tau protein.
Importance. While the exact mechanism leading to the buildup of Tau proteins is un-
known, their accumulation is correlated with several neurodegenerative pathologies (eg.,
Alzheimer’s disease, progressive supranuclear palsy, and frontotemporal dementia). The
genes identified in this screen may therefore help gaining a better understanding of the
underlying disease pathways as well as leading to potential treatments.

H.2 Regulation of endosomal entry in cells for SARS-CoV-2

Experimental setting. This dataset is based on the genome-wide CRISPR screen de-
scribed in Zhu et al. (2021). The assay was designed to identify endosomal entry-specific
regulators of SARS-CoV-2 virions in A549-ACE2 cells.
Measurement. The top candidates from the CRISPR screen were determined according
to their MAGeCK score (- log10).
Importance. The endosomal pathway is one of the two pathways (along with fusion at
the plasma membrane) used by SARS-CoV-2 to infect cells. A better understanding of
mechanisms underpinning this pathway may help identify targets for the development of
new SARS-CoV-2 antiviral therapeutics.

24



80 160 320 480 640
Number of Samples (N)

0.15

0.20

0.25

0.30

0.35

0.40

0.45

M
S

E

Comparison of Acquisition Functions (Shifrut et al. 2018)

random
topuncertain
softuncertain
kmeansdata
kmeansembed
margin
coreset
badge
advBIM

80 160 320 480 640
Number of Samples (N)

0.2

0.3

0.4

0.5

0.6

M
S

E

Comparison of Acquisition Functions (Schmidt et al. 2021 (IFNg))

random
topuncertain
softuncertain
kmeansdata
kmeansembed
margin
coreset
badge
advBIM

80 160 320 480 640
Number of Samples (N)

0.20

0.25

0.30

0.35

0.40

0.45

M
S

E

Comparison of Acquisition Functions (Schmidt et al. 2021 (IL-2))

random
topuncertain
softuncertain
kmeansdata
kmeansembed
margin
coreset
badge
advBIM

80 160 320 480 640
Number of Samples (N)

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

M
S

E

Comparison of Acquisition Functions (Zhuang et al. 2019)

random
topuncertain
softuncertain
kmeansdata
kmeansembed
margin
coreset
badge
advBIM

160 320 640 960 1280
Number of Samples (N)

0.15

0.20

0.25

0.30

0.35

0.40

0.45

M
S

E

Comparison of Acquisition Functions (Shifrut et al. 2018)

random
topuncertain
softuncertain
kmeansdata
kmeansembed
margin
coreset
badge
advBIM

160 320 640 960 1280
Number of Samples (N)

0.20

0.25

0.30

0.35

0.40

0.45

M
S

E

Comparison of Acquisition Functions (Schmidt et al. 2021 (IFNg))

random
topuncertain
softuncertain
kmeansdata
kmeansembed
margin
coreset
badge
advBIM

160 320 640 960 1280
Number of Samples (N)

0.20

0.25

0.30

0.35

0.40

0.45

M
S

E

Comparison of Acquisition Functions (Schmidt et al. 2021 (IL-2))

random
topuncertain
softuncertain
kmeansdata
kmeansembed
margin
coreset
badge
advBIM

160 320 640 960 1280
Number of Samples (N)

1.4

1.5

1.6

1.7

1.8

1.9

M
S

E

Comparison of Acquisition Functions (Zhuang et al. 2019)

random
topuncertain
softuncertain
kmeansdata
kmeansembed
margin
coreset
badge
advBIM

320 640 1280 1920 2560
Number of Samples (N)

0.15

0.20

0.25

0.30

0.35

0.40

0.45

M
S

E

Comparison of Acquisition Functions (Shifrut et al. 2018)

random
topuncertain
softuncertain
kmeansdata
kmeansembed
margin
coreset
badge
advBIM

320 640 1280 1920 2560
Number of Samples (N)

0.20

0.25

0.30

0.35

0.40

0.45

M
S

E

Comparison of Acquisition Functions (Schmidt et al. 2021 (IFNg))

random
topuncertain
softuncertain
kmeansdata
kmeansembed
margin
coreset
badge
advBIM

320 640 1280 1920 2560
Number of Samples (N)

0.20

0.25

0.30

0.35

0.40

0.45

M
S

E

Comparison of Acquisition Functions (Schmidt et al. 2021 (IL-2))

random
topuncertain
softuncertain
kmeansdata
kmeansembed
margin
coreset
badge
advBIM

320 640 1280 1920 2560
Number of Samples (N)

1.50

1.55

1.60

1.65

1.70

1.75

M
S

E

Comparison of Acquisition Functions (Zhuang et al. 2019)

random
topuncertain
softuncertain
kmeansdata
kmeansembed
margin
coreset
badge
advBIM

640 1280 1920 2560 3200
Number of Samples (N)

0.15

0.20

0.25

0.30

0.35

0.40

M
S

E

Comparison of Acquisition Functions (Shifrut et al. 2018)

random
topuncertain
softuncertain
kmeansdata
kmeansembed
margin
coreset
badge
advBIM

640 1280 1920 2560 3200
Number of Samples (N)

0.20

0.25

0.30

0.35

0.40

M
S

E

Comparison of Acquisition Functions (Schmidt et al. 2021 (IFNg))

random
topuncertain
softuncertain
kmeansdata
kmeansembed
margin
coreset
badge
advBIM

640 1280 1920 2560 3200
Number of Samples (N)

0.20

0.25

0.30

0.35

0.40

M
S

E

Comparison of Acquisition Functions (Schmidt et al. 2021 (IL-2))

random
topuncertain
softuncertain
kmeansdata
kmeansembed
margin
coreset
badge
advBIM

640 1280 1920 2560 3200
Number of Samples (N)

1.50

1.55

1.60

1.65

1.70

1.75

M
S

E

Comparison of Acquisition Functions (Zhuang et al. 2019)

random
topuncertain
softuncertain
kmeansdata
kmeansembed
margin
coreset
badge
advBIM

0 1024 2048 3072 4096 5120
Number of Samples (N)

0.15

0.20

0.25

0.30

0.35

0.40

M
S

E

Comparison of Acquisition Functions (Shifrut et al. 2018)

random
topuncertain
softuncertain
kmeansdata
kmeansembed
margin
coreset
badge
advBIM

0 1024 2048 3072 4096 5120
Number of Samples (N)

0.20

0.25

0.30

0.35

0.40

M
S

E

Comparison of Acquisition Functions (Schmidt et al. 2021 (IFNg))

random
topuncertain
softuncertain
kmeansdata
kmeansembed
margin
coreset
badge
advBIM

0 1024 2048 3072 4096 5120
Number of Samples (N)

0.20

0.25

0.30

0.35

0.40

M
S

E

Comparison of Acquisition Functions (Schmidt et al. 2021 (IL-2))

random
topuncertain
softuncertain
kmeansdata
kmeansembed
margin
coreset
badge
advBIM

0 1024 2048 3072 4096 5120
Number of Samples (N)

1.525

1.550

1.575

1.600

1.625

1.650

1.675

M
S

E

Comparison of Acquisition Functions (Zhuang et al. 2019)

random
topuncertain
softuncertain
kmeansdata
kmeansembed
margin
coreset
badge
advBIM

0 1024 2048 3072 4096
Number of Samples (N)

0.175

0.200

0.225

0.250

0.275

0.300

0.325

M
S

E

Comparison of Acquisition Functions (Shifrut et al. 2018)

random
topuncertain
softuncertain
kmeansdata
kmeansembed
margin
coreset
badge
advBIM

0 1024 2048 3072 4096
Number of Samples (N)

0.200

0.225

0.250

0.275

0.300

0.325

0.350

0.375

0.400

M
S

E

Comparison of Acquisition Functions (Schmidt et al. 2021 (IFNg))

random
topuncertain
softuncertain
kmeansdata
kmeansembed
margin
coreset
badge
advBIM

0 1024 2048 3072 4096
Number of Samples (N)

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

M
S

E

Comparison of Acquisition Functions (Schmidt et al. 2021 (IL-2))

random
topuncertain
softuncertain
kmeansdata
kmeansembed
margin
coreset
badge
advBIM

0 1024 2048 3072 4096
Number of Samples (N)

1.52

1.54

1.56

1.58

1.60

1.62

1.64

1.66

M
S

E

Comparison of Acquisition Functions (Zhuang et al. 2019)

random
topuncertain
softuncertain
kmeansdata
kmeansembed
margin
coreset
badge
advBIM

ba
tc

h
si

ze
=

16
ba

tc
h

si
ze

=
32

ba
tc

h
si

ze
=

64
ba

tc
h

si
ze

=
12

8
ba

tc
h

si
ze

=
25

6
ba

tc
h

si
ze

=
51

2

Shifrut et al. 2018 Schmidt et al. 2021 (IFNg) Schmidt et al. 2021 (IL-2) Zhuang et al. 2019

Figure 4: The evaluation of the model trained with STRING treatment descriptors at each
active learning cycle for 4 datasets and 6 acquisition batch sizes. In each plot, the x-axis is
the active learning cycles multiplied by the acquisition bath size that gives the total number
of data points collected so far. The y-axis is the test MSE error evaluated on the test data.
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Figure 5: The evaluation of the model trained with Achilles treatment descriptors at each
active learning cycle for 4 datasets and 6 acquisition batch sizes. In each plot, the x-axis is
the active learning cycles multiplied by the acquisition bath size that gives the total number
of data points collected so far. The y-axis is the test MSE error evaluated on the test data.
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Figure 6: The evaluation of the model trained with CCLE treatment descriptors at each
active learning cycle for 4 datasets and 6 acquisition batch sizes. In each plot, the x-axis is
the active learning cycles multiplied by the acquisition bath size that gives the total number
of data points collected so far. The y-axis is the test MSE error evaluated on the test data.
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Figure 7: The hit ratio of different acquisition for BNN model, different target datasets, and
different acquisition batch sizes. We use STRING treatment descriptors here. The x-axis
shows the number of data points collected so far during the active learning cycles. The
y-axis shows the ratio of the set of interesting genes that have been found by the acquisition
function up until each cycle.
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Figure 8: The hit ratio of different acquisition for BNN model, different target datasets,
and different acquisition batch sizes. We use Achilles treatment descriptors here. The x-axis
shows the number of data points collected so far during the active learning cycles. The
y-axis shows the ratio of the set of interesting genes that have been found by the acquisition
function up until each cycle.
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Figure 9: The hit ratio of different acquisition for BNN model, different target datasets,
and different acquisition batch sizes. We use CCLE treatment descriptors here. The x-axis
shows the number of data points collected so far during the active learning cycles. The
y-axis shows the ratio of the set of interesting genes that have been found by the acquisition
function up until each cycle.
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Figure 10: The evaluation of the random forest model trained with STRING treatment
descriptors at each active learning cycle for 4 datasets and 6 acquisition batch sizes. In each
plot, the x-axis is the active learning cycles multiplied by the acquisition bath size that gives
the total number of data points collected so far. The y-axis is the test MSE error evaluated
on the test data.
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Figure 11: The evaluation of the random forest model trained with CCLE treatment de-
scriptors at each active learning cycle for 4 datasets and 6 acquisition batch sizes. In each
plot, the x-axis is the active learning cycles multiplied by the acquisition bath size that gives
the total number of data points collected so far. The y-axis is the test MSE error evaluated
on the test data.
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Figure 12: The hit ratio of different acquisition for random forest model, different target
datasets, and different acquisition batch sizes. We use STRING treatment descriptors here.
The x-axis shows the number of data points collected so far during the active learning
cycles. The y-axis shows the ratio of the set of interesting genes that have been found by
the acquisition function up until each cycle.
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Figure 13: The hit ratio of different acquisition for random forest model, different target
datasets, and different acquisition batch sizes. We use CCLE treatment descriptors here.
The x-axis shows the number of data points collected so far during the active learning
cycles. The y-axis shows the ratio of the set of interesting genes that have been found by
the acquisition function up until each cycle.
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Figure 14: The evaluation of the random forest model trained with CCLE and STRING
treatment descriptors at each active learning cycle for the datasets (Sanchez et al., 2021)
and (Zhu et al., 2021) and also for 5 acquisition batch sizes. In each plot, the x-axis is the
active learning cycles multiplied by the acquisition bath size that gives the total number of
data points collected so far. The y-axis is the test MSE error evaluated on the test data.
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Figure 15: The hit ratio of different acquisition for random forest model, different target
datasets, and different acquisition batch sizes. We use STRING and CCLE treatment de-
scriptors here. The x-axis shows the number of data points collected so far during the active
learning cycles. The y-axis shows the ratio of the set of interesting genes that have been
found by the acquisition function up until each cycle.
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