
ICML2022 Workshop on Adaptive Experimental Design and Active Learning in the Real World

Movement Penalized Bayesian Optimization
with Application to Wind Energy Systems

Shyam Sundhar Ramesh∗ shramesh@student.ethz.ch
Pier Giuseppe Sessa∗ sessap@ethz.ch
Andreas Krause∗ krausea@ethz.ch

Ilija Bogunovic+ i.bogunovic@ucl.ac.uk
ETH Zurich∗,UCL+

Abstract
Contextual Bayesian optimization (CBO) is a powerful framework for sequential decision-
making given side information, with important applications, e.g., in wind energy systems.
In this setting, the learner receives context (e.g., weather conditions) at each round, and
has to choose an action (e.g., turbine parameters). Standard algorithms assume no cost for
switching their decisions at every round. However, in many practical applications, there is
a cost associated with such changes, which should be minimized. We introduce the episodic
CBO with movement costs problem and, based on the online learning approach for metrical
task systems of Coester and Lee [9], propose a novel randomized mirror descent algorithm
that makes use of Gaussian Process confidence bounds. We compare its performance
with the offline optimal sequence for each episode and provide rigorous regret guarantees.
We further demonstrate our approach on the important real-world application of altitude
optimization for Airborne Wind Energy Systems. In the presence of substantial movement
costs, our algorithm consistently outperforms standard CBO algorithms.

1. Introduction
Bayesian optimization (BO) is a well-established framework for sequential black-box function
optimization that relies on Gaussian Process (GP) models [18] to sequentially learn and
optimize the unknown objective. In many practical scenarios, however, one wants to
additionally use available contextual information when making decisions. In this setting, at
each round, the learner receives a context from the environment and has to choose an action
based upon it. Prior works have developed contextual BO algorithms [16, 7, 15, 17], with
various applications, e.g., vaccine design, nuclear fusion, database tuning, etc.

A potential practical issue with such algorithms is that they assume no explicit costs for
switching between their actions at every round. Frequent action changes can be extremely
costly in many applications. This work is motivated by the problem of real-time altitude
control of an airborne wind energy (AWE) system.1 In AWE systems, the wind speed
is often only measurable at the system’s altitude, and determining the optimal operating
altitude of an AWE system as the wind speed varies represents a challenging problem.
Another fundamental challenge is that frequent altitude adjustments are costly as it requires
additional energy. Consequently, this work is motivated by the following question: How can
we efficiently learn to optimize the AWE system’s operating altitude despite varying wind
conditions while minimizing the energy cost associated with altitude changes?

In this work, we formalize the movement penalized contextual BO problem. When the
switching cost is a metric (distance function), we propose a novel algorithm that effectively

1. AWE system is a wind turbine with a rotor supported in the air without a tower that can benefit from
the persistence of wind at different high altitudes [12].

1

combines ideas from BO with the online learning strategies proposed in [9] for solving the
so-called metrical task system (MTS) problem [5]. Furthermore, our algorithm relies solely
on noisy point evaluations (i.e., bandit feedback), allows for arbitrary context sequences, and
besides the standard exploration-exploitation trade-off, it also balances the movement costs.
As a result, it outperforms the standard movement-cost-agnostic contextual BO algorithms
as well as movement-conservative baselines.

2. Problem Statement

Let f : X × E → R+ be an unknown cost function defined over X × E ⊂ Rp, where X is a
finite set of actions, i.e., |X | = n, and E represents convex and compact space of contexts.
We denote the known metric of X as d(·, ·), and assume that the target cost function f
belongs to a reproducing kernel Hilbert space (RKHS) Hk of functions (defined on X × E),
that corresponds to a known kernel k : (X × E)× (X × E) → R+ with k((x, e), (x′, e′)) ≤ 1
for any action-context pair. In particular, we assume that for some known B > 0, the target
cost f has a bounded RKHS norm, i.e., f ∈ Fk = {f ∈ Hk : ∥f∥k ≤ B}. Also, we assume
that the diameter of X (maxx,x′∈X d(x, x

′)) is bounded and denote it by ψ.
We consider an episodic setting, wherein each episode runs over a finite time horizon

H. Let the initial state of the system in the first episode correspond to action x0,1 ∈ X . At
the end of every episode, the system resets to a new given initial action x0,m ∈ X where
m ∈ {1, 2, . . . , Nep} denotes the episode index. In each episode m and at every time step
h ∈ {1, 2, . . . ,H}, the environment reveals the context eh,m ∈ E to the learner. We make no
assumptions on the context sequence (i.e., it can be arbitrary and different across episodes).
The learner then chooses xh,m ∈ X and observes the noisy function value:

yh,m = f(xh,m, eh,m) + ξh,m, (1)

where ξh,m ∼ N (0, σ2) with known σ, and independence over time steps. The goal of the
learner is to minimize the cost incurred over the rounds in every episode, but at the same time
to minimize the distance between its subsequent decisions as measured by d(xh−1,m, xh,m).

Let Dm = {x1,m, x2,m, . . . , xH,m} denote the set of actions chosen by the learner over H
rounds in episode m. We recall that each action xh,m ∈ Dm is chosen after observing the
corresponding context eh,m. The objective is to minimize the cumulative episodic cost for
each episode m,

costm(Dm) =

H∑
h=1

f(xh,m, eh,m)︸ ︷︷ ︸
Sm(Dm)

+

H∑
h=1

d(xh,m, xh−1,m)︸ ︷︷ ︸
Mm(Dm)

, (2)

where we refer to the two terms in Eq. (2) as service cost Sm and movement cost Mm.
When f is known, the problem can be seen as a MTS instance as detailed in Section 2.2.

Even in such a case, we cannot hope to solve this problem optimally, and nearly-optimal
approximate algorithms were recently proposed (see Coester and Lee [9]). Hence, the learner’s
performance in episode m is measured via (α, β)-approximate regret:

rα,βm = costm(Dm)− α · costm(D∗
m)− β, (3)

where D∗
m := argminD⊂X , |D|=H costm(D) is the offline optimal action sequence obtained

assuming the knowledge of the true sequence of contexts {eh,m}Hh=1 in advance, and α and β

2

are approximation constants (independent of Nep). In contrast, in our setting, the learner
only gets to see the current context when making a decision and has no knowledge about the
future ones. After Nep episodes, the total cumulative regret is defined as

Rα,β
Nep

=

Nep∑
m=1

rα,βm . (4)

We seek an algorithm whose total cumulative regret grows sublinearly in Nep, so that
limNep→∞Rα,β

H,Nep
/Nep = 0, for any set of initial states {x0,m}Nep

m=1 ⊂ X .

2.1 Gaussian Process Model

A Gaussian Process GP (µ(·), k(·, ·)) over the input domain X × E , is a collection of random
variables (f(x, e))x∈X ,e∈E where every finite number of them (f(xi, ei))

n
i=1, n ∈ N, is jointly

Gaussian with mean µ(xi, ei) and covariance k((xi, ei), (xj , ej)) for every 1 ≤ i, j ≤ n.
BO algorithms typically use zero-mean GP priors to model uncertainty in f , i.e., f ∼

GP (0, k(·, ·)), and Gaussian likelihood models for the observed data. As more data points
are observed, GP (Bayesian) posterior updates are performed in which noise variables are
assumed to be drawn independently across t from N (0, λ). Here, λ is a hyperparameter that
might be different from the true noise variance σ2. More precisely, given the queried points
and their noisy observations the posterior is again Gaussian with mean and variance:
µt(x, e) = kt(x, e)

T (Kt + λIt)
−1Yt σ2

t (x, e) = k((x, e), (x, e))− kt(x, e)
T (Kt + λIt)

−1kt(x, e), (5)

where Yt := [y1, . . . , yt] denotes a vector of observations, Kt = [k((xs, es), (xs′ , es′)]s,s′≤t is the
corresponding kernel matrix, and kt(x, e) = [k((x1, e1), (x, e)), . . . , k((xt, et), (x, e))]

T ∈ Rt×1.
Maximum Information Gain. In standard BO, the main quantity that characterizes

the complexity of optimizing the target cost function is the maximum information gain [19]
defined at time t as:

γt = max
{(xi,ei)}ti=1

I(Yt; f), (6)

where I(Yt; f) denotes the mutual information between random observations Yt and GP
model f given by I(Yt; f) = 1

2 log det(It + λ−1Kt). This quantity is kernel-specific and for
compact and convex domains γt is sublinear in t for various classes of kernel functions [19]
as well as for kernel compositions.

Lemma 1 ([19, 1, 8]) Assume the σ-sub-Gaussian noise model as in Eq. (1), and let f belong
to Fk. Then, the following holds with probability at least 1− δ simultaneously over all t ≥ 1
and x ∈ X , e ∈ E: |µt(x, e) − f(x, e)| ≤ βtσt(x, e), where βt = σ

λ1/2

√
2 ln(1/δ) + 2γt + B,

and µt and σt are defined in Eq. (5) with λ > 0.
Based on Lemma 1, we define the lower confidence bound for every x ∈ X , e ∈ E as:

lcbt(x, e) := µt(x, e)− βtσt(x, e). (7)
We use lcbm(x, e) when it is computed based on data collected before episode m.

2.2 Relation to Metrical Task Systems (MTS)

When f is known, our optimization objective in Eq. (2) can be seen as a particular type
of MTS problem, where f(·, eh,m) is the MTS service cost that changes for every h and m.
Compared to a standard MTS, our problem formulation is more challenging since the learner
can only learn about f from previously observed data. The approach proposed in this paper
builds on the algorithm by Coester and Lee [9] for standard MTS problems. However, to

3

Algorithm 1 GP-MD

1: Require: Action space X , kernel function k(·, ·), metric d(·, ·)
2: Run FRT(X , d(·, ·)) and obtain τ -HST T = (V,E) with leaves L = X
3: for m = 1, . . . , Nep do
4: Receive x0,m and initialize z0,m, conditional prob. q0 = ∆−1(z0,m) as in Eq. (11)
5: for h = 1, . . . ,H do
6: Observe context eh,m and initialize costs: lcbm(v, eh,m) = 0, ∀v ∈ V \L
7: for u ∈ OD(V \L) do
8: Update vertex prob. q(u)h from q

(u)
h−1 and lcbm(·, eh,m) via Mirror Descent (Eq. (10))

9: Update cost for vertex u:

lcbm(u, eh,m) = ⟨q(u)h , lcbm(·, eh,m)⟩ =
∑

ν∈C(u)

qh,ν · lcbm(ν, eh,m)

10: end for
11: Compute prob. vector zh,m = ∆(qh) (Eq. (11)) and leaves’ prob. l(zh,m) (Eq. (8))
12: Estimate optimal coupling ζh−1,h,m between l(zh−1,m) and l(zh,m) as in Eq. (9)
13: Sample action xh,m ∼ ζh−1,h,m(·|xh−1,m) and observe yh,m = f(xh,m, eh,m) + ξh,m
14: end for
15: Update µm+1(·, ·) and σm+1(·, ·) as per Eq. (5)
16: end for

cope with the aforementioned challenge, our approach exploits the regularity assumptions
regarding f and utilizes the constructed lower confidence bounds Eq. (7) to hallucinate
information about the unavailable service cost at each round. Before presenting our overall
approach, we describe a preliminary step proposed by [9], which consists of representing our
metric space (X , d) by a Hierarchically Separated Tree (HST) metric space.

HST metric space. Consider a tree T = (V,E) with root r, leaves L ⊂ V and non-
negative weights wv, for each v ∈ V , which are non-increasing along root-leaf paths. Let
dT (l, l

′) denote a distance metric between any two leaves l, l′ ∈ L given as the sum of the
encountered weights on the path from l to l′. (L, dT) is a HST metric space, and τ -HST
metric space if the weights are exponentially decreasing, i.e., wu ≤ wv/τ , with v being the
parent of u. Similarly to [9], we use the algorithm from [13] (FRT) to approximate the given
metric space (X , d) by a τ -HST one with leaves L corresponding to actions in X .

3. The GP-MD Algorithm
In this section, we introduce GP-MD, a novel algorithm for the contextual BO problem

with movement costs defined in Section 2. At each episode m and round h, the state of
GP-MD can be summarized by a vector of probabilities zh,m ∈ KT over the vertices of T ,
where KT :=

{
z ∈ R|V |

+ : zr = 1, zu =
∑

ν∈C(u)
zν ∀u ∈ V \L

}
, and C(u) denotes the children

of u. Each entry zν represents the probability that the selected action xh,m belongs to the
leaves of the subtree rooted at ν, i.e., zν = P(xh,m ∈ L(ν)). Moreover, given any z ∈ KT ,

l(z) := [zl, l ∈ L] ∈ [0, 1]n, (8)

defines a probability distribution over the leaves L, and hence the actions X . As in [9], given
probability vectors zh,m and zh−1,m, GP-MD computes the minimal distance distribution

4

ζh−1,h,m = arg inf
ζ∈Π(l(zh−1,m),l(zh,m))

Eζ [dT (Uh−1,m, Uh,m)], (9)

where Uh−1,m and Uh are random variables having marginals l(zh−1,m) and l(zh,m) respectively.
Finally, action xh,m is sampled from the conditional minimal distance distribution xh,m ∼
ζh−1,h,m(·|xh−1,m) (Line 13 in Algorithm 1). At the end of each episode m, the newly
observed data are then used to update cost function’s posterior mean and variance.

Finally, to compute zh,m (Lines 8–12 in Algorithm 1) we follow the recursive Mirror Descent
(MD) procedure proposed by [9], with the important difference that we are dealing with an
unknown context-dependent cost function. Hence, we make use of the GP model and Eq. (7).
To obtain probabilities zh,m, we consider conditional probability vectors q ∈ QT , where QT is
the set of valid conditional probabilities QT :=

{
q ∈ R|V \r|

+ :
∑

ν∈C(u)
qν = 1 ∀u ∈ V \L

}
. For

each vertex ν with parent u, qν represents the conditional probability P(xh,m ∈ L(ν)|xh,m ∈
L(u)). Moreover, given qh ∈ QT we define the vector q(u)h := [qh,ν , ν ∈ C(u)] as the conditional
distribution over children of u, and let Q(u)

T be the set of all valid distributions q(u)h . In
each episode m, qh for round h is obtained recursively, from leaves to root, as a function
of qh−1, the observed context eh,m, and the current estimate about the cost associated to
each particular vertex. More precisely, let OD(V \L) be a topological ordering of the internal
vertices V \L so that every child in T occurs before its parent. Then, for each u ∈ OD(V \L)
conditional probabilities q(u)h are obtained via the Mirror Descent update:

q
(u)
h = argmin

p∈Q(u)
T

{
D(u)(p∥q(u)h−1) + ⟨p, lcb(u)

m (·, eh,m)⟩
}
. (10)

Function D(u) is the Bregman divergence with respect to a suitable potential function,
while lcb(u)

m (·, eh,m) := [lcbm(ν, eh,m), ∀ν ∈ C(u)] is a lower confidence bound estimate of
the costs corresponding to children of vertex u. For v ∈ L, lcbm(ν, eh,m) are obtained by
the GP-regression techniques outlined in Section 2.1, while for internal vertices these are
computed recursively from their children nodes as: lcbm(u, eh,m) :=

∑
ν∈C(u)

qh,ν lcbm(ν, eh,m) .

Once qh ∈ QT is updated, we can obtain zh,m via the mapping ∆ : QT → KT such that:
z = ∆(q) ⇒ zν = zuqν ∀u ∈ V \L, ν ∈ C(u). (11)

Theorem 1 (informal) The regret of GP-MD over Nep episodes is bounded w.h.p. by

Rα,β
Nep

= O
(
βNep

√
NepγHNep

)
,

with α = O
(
(log n)2

)
and β = O(1).

We observe that the obtained regret bound is sublinear inNep and hence limNep→∞Rα,β
Nep

/Nep =
0 and is independent of n. These imply that GP-MD approaches α-competitive ratio perfor-
mance of the MTS algorithm by [9], while learning about the service cost from noisy point
evaluations (i.e., bandit feedback) only. Finally, we note that H is treated as constant.

4. Experiments
This section provides numerical results on synthetic and real-world data. We compare the
performance of our GP-MD algorithm with the following baselines:

• Stationary selects the stationary strategy xh = x0 for all h,
• CGP-LCB [16] neglects the movement cost and sets xh = argmin

x
lcbh(x, eh) for all h,

5

(a) Lat. = 53,Long. = −10 (b) Total Energy (ρ = 4) (c) Service Cost (ρ = 4)

(d) Movement Cost (ρ = 4) (e) Movement Cost (ρ = 1)
Figure 1: AWE altitude optimization task; Fig. 1a: GP-MD outperforms previously used CGP-LCB (that
optimizes for service costs only) for a range of ρ values that favor the service against the movement cost.
Fig. 1b: The average total generated energy. Figs. 1c and 1d: The service and movement costs for ρ = 4.
Fig. 1e: The movement costs for ρ = 1. The movement energy loss is slightly lower for GP-MD as compared
to ρ = 4 due to higher importance towards movement cost reduction.

• MinC-Known assumes f(·) is known and chooses xh = argminx f(x, eh), and
• MD-Known assumes f(·) is known and runs mirror descent from [9] on f(·, eh).

MD-Known and MinC-Known unrealistically assume that f(·) is known and can be seen
as upper-bound for the achievable performance of GP-MD and CGP-LCB, respectively.
Altitude Optimization in AWE Systems: In AWE systems, the turbine’s operating
altitude can be changed depending on the wind pattern. We follow the setup of Baheri et al.
[2] that applied CGP-LCB [16] which ignores movement-costs, to learn this control task. In
this section, we use a dataset from [4] which contains wind-speed information over various
locations in Europe. Our goal is to maximize the generated energy, while taking into account
the energy loss due to altitude change. We consider 25 different altitudes (ranging from 10m
to 1600m) as the action space and the context space to be hours in the day (i.e., 24 values).
We define f(x, t) = maxx′(ES(x

′, t))−ES(x, t) where ES(x, t) denotes the energy generated
based on the windspeed at altitude x and time t. We run the algorithms for different ρ
for 960 timesteps, where ρ is used to multiply ES . Based on this we plot the total energy
generated w.r.t. varying ρ in Fig. 1a. Our algorithm outperforms CGP-LCB for a range of
ρ values. As ρ keeps increasing, we observe that MinC-Known closes the performance gap
to MD-Known, and the same is happening with CGP-LCB w.r.t. GP-MD. In Fig. 1b, we
focus on a particular ρ = 4, and notice that GP-MD performs better than CGP-LCB and
Stationary algorithm. In Fig. 1c, we plot the service cost and observe that both learning
algorithms GP-MD and CGP-LCB have lower service cost than the Stationary baseline.
We also note that due to the implicit service cost definition, the MinC-Known baseline
achieves zero service cost. From Figs. 1d and 1e, it is evident that ρ = 1 results in slightly
lower GP-MD movement energy loss due to the tradeoff shifting towards the movement cost.

6

References

[1] Abbasi-Yadkori. Online learning for linearly parametrized control problems. 2013.

[2] Ali Baheri, Shamir Bin-Karim, Alireza Bafandeh, and Christopher Vermillion. Real-time
control using Bayesian optimization: A case study in airborne wind energy systems.
Control Engineering Practice, 2017.

[3] Yair Bartal. Probabilistic approximation of metric spaces and its algorithmic applications.
Proceedings of 37th Conference on Foundations of Computer Science, 1996.

[4] Philip Bechtle, Mark Schelbergen, Roland Schmehl, Udo Zillmann, and Simon Watson.
Airborne wind energy resource analysis. Renewable energy, 2019.

[5] Allan Borodin, Nathan Linial, and Michael E Saks. An optimal on-line algorithm for
metrical task system. Journal of the ACM (JACM), 1992.

[6] Sébastien Bubeck, Michael B Cohen, James R Lee, and Yin Tat Lee. Metrical task
systems on trees via mirror descent and unfair gluing. SIAM Journal on Computing,
2021.

[7] Ian Char, Youngseog Chung, Willie Neiswanger, Kirthevasan Kandasamy, Andrew O
Nelson, Mark Boyer, Egemen Kolemen, and Jeff Schneider. Offline contextual Bayesian
optimization. Conference on Neural Information Processing Systems (NeurIPS), 2019.

[8] Sayak Ray Chowdhury and Aditya Gopalan. On kernelized multi-armed bandits. Inter-
national Conference on Machine Learning (ICML), 2017.

[9] Christian Coester and James R Lee. Pure entropic regularization for metrical task
systems. Conference on Learning Theory (COLT), 2019.

[10] Christian Coester and James R Lee. Pure entropic regularization for metrical task
systems. arXiv preprint arXiv:1906.04270, 2019.

[11] Thomas Desautels, Andreas Krause, and Joel W Burdick. Parallelizing exploration-
exploitation tradeoffs in Gaussian process bandit optimization. Journal of Machine
Learning Research (JMLR), 2014.

[12] Dave Elliot. Flights of fancy: airborne wind turbines, 2014.

[13] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating
arbitrary metrics by tree metrics. Journal of Computer and System Sciences, 2004.

[14] Johannes Kirschner and Andreas Krause. Information directed sampling and bandits
with heteroscedastic noise. Conference On Learning Theory (COLT), 2018.

[15] Johannes Kirschner, Ilija Bogunovic, Stefanie Jegelka, and Andreas Krause. Distribu-
tionally robust Bayesian optimization. International Conference on Artificial Intelligence
and Statistics (AISTATS), 2020.

7

[16] Andreas Krause and Cheng Soon Ong. Contextual Gaussian process bandit optimization.
Conference on Neural Information Processing Systems (NeurIPS), 2011.

[17] Jinkyoo Park. Contextual Bayesian optimization with trust region (cbotr) and its
application to cooperative wind farm control in region 2. Sustainable Energy Technologies
and Assessments, 2020.

[18] C. E. Rasmussen and C. K. Williams. Gaussian processes for machine learning. volume
1. MIT press Cambridge, 2006.

[19] N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger. Gaussian process optimization
in the bandit setting: No regret and experimental design. International Conference on
Machine Learning (ICML), 2010.

8

Supplementary Material
Movement Penalized Bayesian Optimization
with Application to Wind Energy Systems

Appendix A. Metrical Task Systems (MTS)

Let (X , d) be a finite metric space with |X | = n > 1 as defined in Section 2. Henceforth,
we denote the points in X as {x1, . . . , xn}. The MTS problem runs over a single episode
of horizon T . At every time instant 1 ≤ t ≤ T , the learner receives a non-negative cost
function over X , ct : X → R+ corresponding to each point in X . The goal of any online
optimization algorithm in this setting is to choose xt ∈ X such that both the cost incurred
over the rounds and sum over the distances between its subsequent decisions as measured by
d(xt, xt−1) is minimized. We do not include episode m in the variables’ subscripts as it runs
over a single episode and instead include the time horizon T . Hence, DT = {x1, x2, . . . , xT }
denotes the action sequence of length T outputted by an algorithm and ST (DT) and MT (DT)
(Eq. (2)) denote the corresponding service and movement costs respectively. Then the total
cost incurred by such an algorithm for initial state x0 up to a time horizon T is

costT (DT) =
T∑
t=1

ct(xt) + d(xt, xt−1).

Next, we recall some notions about competitive ratio for MTS from [9] which are useful to
prove our regret guarantees in Appendix E. Here, D∗

T denotes the offline optimal sequence
which minimizes costT (DT). Here we note that this offline optimal sequence D∗

T depends on
the initial state x0.
Competitive Ratio: If there exist constants α, β such that for every cost sequence (ct)

T
t=1,

arbitrary initial state x0 ∈ X and distance metric d(·, ·),

costT (DT) ≤ αcostT (D
∗
T) + β,

then the algorithm is α-competitive.
Refined Competitive Ratio Guarantees: If there exist constants α, α′, β, β′ such that
for every cost sequence (ct)

T
t=1, arbitrary initial state x0 ∈ X and distance metric d(·, ·),

ST (DT) ≤ αcostT (D
∗
T) + β, (12)

MT (DT) ≤ α′costT (D
∗
T) + β′, (13)

then the algorithm is α-competitive for service costs and α′-competitive for movement costs.

Appendix B. Hierarchically Separated Tree (HST) Metric

We define the tree T = (V,E) with the root vertex being r and weight corresponding to
each vertex v ∈ V being wv. Let L denote the set of leaves in this tree T . Consider the case
when the weights are non-increasing while moving from root to any leaf. We assign the edge
from any vertex u to its parent par(u) the weight wu.

9

r

l1

wl1

wpar(l1)

l2

wl2

wpar(l2)

Figure 2: dT (l1, l2) = wl1 + wpar(l1) + wl2 + wpar(l2).

Distance Function: We define the distance metric dT (l, l′) between any two leaves l, l′ in
the tree as the weighted length of the path from l to l′. For example, as shown in Fig. 2,
Then the space with states L and distance metric dT is defined as the HST metric space
denoted by (L, dT) ([9]).

B.1 τ-HST Metric

In an HST Metric space if the weights are exponentially decreasing, i.e., wu ≤ wpar(u)/τ then
we call it a τ -HST Metric. Such metric spaces are of particular interest due to a result from
[3] which states that any online algorithm which is O(g(n))-competitive for τ -HST metric
space is O(g(n) log n)-competitive for arbitrary n-point metric spaces where g(n) is some
function on n.

B.2 FRT Algorithm

The FRT algorithm from [13] is a randomized algorithm and outputs a tree T whose leaves
correspond to points in X but the tree distance between any two points (leaves) xi, xj ∈ X
(or L) is dT (xi, xj) and satisfies for any xi, xj ∈ X

P[dT (xi, xj) ≥ d(xi, xj)] = 1, (14)

ET
[
dT (x

i, xj)
]
≤ O(log n)d(xi, xj), (15)

where d(·, ·), is the original metric and expectation is w.r.t. the random tree T generated by
the FRT algorithm [13].

Appendix C. Action Representation

This section is intended to explain in detail about the randomized algorithm setup for MTS
as elucidated in [9] and [6]. But instead of using the cost sequence (ct)

T
t=1, we explain in

terms of f(·, et) which is more relevant to our setting. In our proof, we only consider episodic
expectation (see Eq. (31)) and want to understand how the randomized algorithm evolves
within a single episode. Hence similar to MTS setup from Coester and Lee [9] we detail this
randomization section for a single episode.

10

C.1 Action Randomization

Let P(X) be the set of probability measures supported on X . For µ, ν ∈ P(X) denote W1(µ, ν)
as the Wasserstein-1-distance between µ and ν defined based on d(·, ·). A randomized online
algorithm at time t outputs a random action xt ∼ pt where probability distribution pt ∈ P(X).
As defined earlier, we denote this random output sequence as DT = {x1, x2, . . . , xT }. In this
randomized setting it is more intuitive to consider the expected cost.

The expected movement cost for distance metric d(·, ·) is defined as follows:

E [MT (DT)] = E

[
T∑
t=1

d(xt−1, xt)

]
=

T∑
t=1

E[d(xt−1, xt)].

Here note that each term in the sum E[d(xt−1, xt)] is expectation w.r.t. a joint distribution of
(xt−1, xt). Under certain assumptions on the sampling process (described in Appendix C.2),
the joint distribution becomes

E [MT (DT)] =
T∑
t=1

W1(pt−1, pt), (16)

And the expected service cost is then,

E [ST (DT)] = E

[
T∑
t=1

f(xt, et)

]
=

T∑
t=1

⟨f(·, et), pt⟩, (17)

E [costT (DT)] =

T∑
t=1

W1(pt−1, pt) +

T∑
t=1

⟨f(·, et), pt⟩. (18)

An randomized online algorithm is said to be α-competitive if for all x0 ∈ X and any f , it
outputs a sequence DT whose expected cost for some β > 0 satisfies the following condition
w.r.t. the offline optimal sequence D∗

T for some metric d(·, ·):

E [costT (DT)] ≤ αcostT (D
∗
T) + β.

C.2 Sampling from Joint Distribution

Since our goal is to minimize the total cost we choose a joint distribution ζt ∈ Π(pt−1, pt)
which minimizes the expected cost as follows:

Eζt [d(xt−1, xt)] = inf
ζ∈Π(pt−1,pt)

Eζ [d(Ut−1, Ut)],

where Π(pt−1, pt) denotes the set of all random variables (Ut−1, Ut) whose marginals are pt−1

and pt, respectively. By the definition of Wasserstein-1 distance where the Wasserstein cost
function is assumed to be d(·, ·) we have,

inf
ζ∈Π(pt−1,pt)

Eζ [d(Ut−1, Ut)] = W1(pt−1, pt). (19)

11

Hence, we want to ensure that the subsequent actions in algorithm 1 (xt−1, xt) follows the
distribution ζt making our total movement cost

E [MT (DT)] =
T∑
t=1

W1(pt−1, pt). (20)

In order to achieve this, we take the following steps. We first note that the initial action
x0 is given. Hence, after obtaining p1 using Mirror Descent procedure as done in Line-11 of
Algorithm 1, we estimate ζ1, then calculate the conditional distribution ζ1(U1|U0 = x0), and
sample x1 from this conditional distribution. At any future time instant t, after obtaining
pt, we repeat this process and calculate the conditional distribution ζt(Ut|Ut−1 = xt−1) and
sample xt from it (Line 12 of Algorithm 1). In this way we ensure that at each time instant t,
(xt−1, xt) is sampled from ζt and hence attaining the movement cost as sum of Wasserstein-1
distances.

C.3 Randomized Action Representation in τ-HST

In this section, we explain the randomized action representation in τ -HST space introduced
in Section 3 in further detail. Also, we show the Wasserstein-1 distance (Eq. (19)) can be
simplified in the dT -metric when the actions are leaves of T as done in [6] and [9].

From the analysis in the previous section, in order to calculate the movement cost, we need
to compute the Wasserstein-1 distances between 2 probability distributions over the leaves of
the constructed tree. As we now consider τ -HST metric space, the distance metric is dT and
Wasserstein-1 distance is denoted as W1

T (·, ·). We first recall the following representation
of the randomized action described in Section 3 from [6]. This will be useful in both the
Wasserstein-1 distance calculation and in Algorithm 1.

Let T = (V,E) be a tree with vertices V , edges E, root r and leaves L. We define a
convex polytope on the space RV

+

KT :=
{
z ∈ R|V |

+ : zr = 1, zu =
∑

ν∈C(u)

zν ∀u ∈ V \L
}
,

where C(u) denotes the children of u. Note that by the above definition for any z ∈ KT , it
holds that ∑

l∈L
zl = 1.

And the Wasserstein-1 distance between 2 random actions in (L, dT) specified by the
probability distributions l(z) and l(z′) is as follows:

W1
T (l(z), l(z

′)) :=
∑
u∈V

wu|zu − z′u| = ||z − z′||l1(w). (21)

where wu are the weights of the edges from u to par(u) in T . Hence the total cost w.r.t.
dT (·, ·)-metric denoted by costTT (DT) (Eq. (18)) now becomes

E
[
costTT (DT)

]
=

T∑
t=1

||zt−1 − zt||l1(w) +

T∑
t=1

⟨f(·, et), l(zt)⟩. (22)

12

Hence, for the τ -HST metric space (L, dT), where leaves correspond to actions, z defines a
probability distribution over all the states. Each entry zu represents the probability that the
selected action x belongs to the leaves of the subtree rooted at u, i.e., zu = P(x ∈ L(u)). Also,
We note that z is completely defined when all zl ∈ L is provided. And for a deterministic
state x ∈ X , the corresponding state in KT is

zl =

{
1, for l = x
0, for l ̸= x

}
∀l ∈ L, zu =

{
1, for x ∈ L(u)
0, for x /∈ L(u)

}
∀u ∈ V \L (23)

We can visualize this polytope with the example figure:
z(r) = 1

z1 + z2 + z3 + z4

z1 + z2

z1 z2

z3 + z4

z3 z4

z5 + z6 + z7 + z8

z5 + z6

z5 z6

z7 + z8

z7 z8

C.4 Action Representation using Conditional Probabilities

In Section 3, we provided an intutive understanding of how the algorithm works based on the
calculation of q(u) corresponding to each internal vertex u (Eq. (10)). We also discussed how
this can be viewed as a conditional probability P(x ∈ L(ν)|x ∈ L(u)) for ν ∈ C(u) (children of
u) and how it can be used to calculate the actual probabilities over the actions-l(z) (Eq. (11)).

We first begin with a visualization of this q based on the visualization in Appendix C.3
and Eq. (11):

z1 + z2 + z3 + z4

z1+z2
z1+z2+z3+z4

z1
z1+z2

z2
z1+z2

z3+z4
z1+z2+z3+z4

z3
z3+z4

z4
z3+z4

z5 + z6 + z7 + z8

z5+z6
z5+z6+z7+z8

z5
z5+z6

z6
z5+z6

z7+z8
z5+z6+z7+z8

z7
z7+z8

z8
z7+z8

We explain why working in terms of q rather than z is beneficial. The Bregman diver-
gence D(u) in the mirror descent update (Eq. (10)) uses a potential function and the authors
of [9] observed that the conditional probability based potential function imitates the weighted
entropy of the probability distribution over the leaves of a τ -HST tree. The intuition for the
above statement from [9] is described next.

13

We first recall QT and Q(u)
T from Section 3. QT is the set of valid conditional probabilities

QT :=
{
q ∈ R|V \r|

+ :
∑

ν∈C(u)

qν = 1 ∀u ∈ V \L
}
. (24)

Moreover, given q ∈ QT we define the vector q(u) := [qν , ν ∈ C(u)] as the conditional
distribution over children of u, and let Q(u)

T be the set of all valid distributions q(u).
We define the potential function Φ(u) used for Bregman Divergence D(u) in the mirror

descent update (Eq. (10)) for q ∈ QT and the corresponding q(u) ∈ Q
(u)
T for a particular

vertex u ∈ V as follows:

Φ(u)(q(u)) :=
1

κ

∑
ν∈C(u)

wν

ην
(q(u)ν + δν) log(q

(u)
ν + δν), (25)

where

θu :=
|L(u)|

|L(par(u))|
,

ηu := 1 + log(1/θu),

δu :=
θu
ηu
,

κ ≥ 1 (fixed constant for all u).

Appendix D. Algorithm

In this section we first provide some insights from [10, Sectiom 2.1] to solve the optimization
problem in Eq. (10). Then we proceed to practically illustrate the flow of the algorithm from
leaves to root w.r.t. q ∈ QT calculations using Eq. (10).

D.1 Divergence and Optimization Calculations

In order to solve the optimization problem Eq. (10), we first need to calculate the Bregman
Divergence D(u). The Bregman Divergence for some potential function Φ(·) is defined as
follows:

DΦ(y||x) := Φ(y)− Φ(x)− ⟨∇Φ(x), y − x⟩. (26)

In our case, Bregman Divergence D(u)(·||·) calculates the divergence between two conditional
probability vectors q(u), q′(u) ∈ Q

(u)
T defined over the children of vertex u w.r.t. the potential

function Φ(u). Here q, q′ ∈ QT (Eq. (24)) and potential function Φ(u) is as defined in Eq. (25).
Hence we have,

D(u)(q(u)||q′(u)) := 1

κ

∑
ν∈C(u)

wν

ην

[
(qν + δν) log(

qν + δν
q′ν + δν

) + q′ν − qν

]
.

Now the authors of [9] use KKT conditions and Lagrange multipliers to solve Eq. (10) by
substituting the definition of Bregman Divergence in Eq. (26). It yields that the solution to
Eq. (10) for q′(u) = q

(u)
h , q(u) = q

(u)
h−1 and e = eh,m satisfies

∇Φ(u)(q′(u)) = ∇Φ(u)(q(u))− lcb(u)
m (·, e)− β(u) − α(u). (27)

14

Here β(u) and α(u) are the Lagrange multipliers for the constraints in Q(u)
T to ensure that

for any q(u) ∈ Q
(u)
T , q(u) is actually a probability vector and comprises of the following 2

constraints, ∑
ν∈C(u)

q(u)ν = 1 and q(u)ν ≥ 0 for ν ∈ C(u).

Now calculating the gradient of the potential function in Eq. (25) we have,(
∇Φ(u)(q(u))

)
ν
=

1

κ

wν

ην
(1 + log(qν + δν)).

Substituting this in Eq. (27), the solution to Eq. (10) for q′(u) = q
(u)
h , q(u) = q

(u)
h−1 and

e = eh,m will be

q′(u)ν = (q(u)ν + δν) exp{κ
ην
wν

(β(u) − (lcb(u)
m (ν, e)− αν))} − δν . (28)

Eq. (28) can be solved in polynomial time using interior point methods. But for practical
purposes, we use projected gradient descent w.r.t. α to solve this problem.

Appendix E. Proof of Theorem 1

The first step in the proof of Theorem 1 is to rewrite the cumulative episodic regret (Eq. (4))
as a sum of expected episodic regret conditioned w.r.t. data observed till the previous episode.

In particular, the main idea is to upper bound Rα,β
Nep

=
Nep∑
m=1

rα,βm by
Nep∑
m=1

Em[rα,βm |Fm−1]. To

do this, we make use of [14, Lemma 13] as we explain below. Here, the expectation Em is
w.r.t. the actions in episode m, Dm = (xh,m)Hh=1 outputted by Algorithm 1, and Fm denotes
the data collected by Algorithm 1 during the first m episodes, i.e.,

Fm = {(xh,i, eh,i, yh,i)Hh=1}mi=1. (29)

We note that in the episodic regret

rα,βm =
H∑

h=1

f(xh,m, eh,m) +
H∑

h=1

d(xh,m, xh−1,m)− α · costm(D∗
m)− β,

the term α·costm(D∗
m)−β is constant w.r.t. the expectation Em as it is independent of the ac-

tions (xh,m)Hh=1. Also, the episodic cost costm(Dm) =
H∑

h=1

f(xh,m, eh,m)+
H∑

h=1

d(xh,m, xh−1,m)

is trivially upper bounded by H(B + ψ). This is because f(x, e) ≤ B (follows from our
assumptions ∥f∥k ≤ B and k(·, ·) ≤ 1) and d(x, x′) ≤ ψ as detailed in Section 2.

Then, according to [14, Lemma 13], with probability at least 1− δ the cumulative regret
from Eq. (4) is bounded as:

Rα,β
Nep

=

Nep∑
m=1

rα,βm (30)

≤
Nep∑
m=1

Em[rα,βm |Fm−1] + 4H(B + ψ) log
(4π2N2

ep

3δ

(
log(Nep) + 1

))
. (31)

15

Above, we have applied [14, Lemma 13] to the cumulative sum of the stochastic process
rα,βm and used the fact that each episodic cost costm(Dm) is bounded by 0 ≤ costm(Dm) ≤
H(B + ψ).

In what follows, we focus on bounding

Nep∑
m=1

Em[rα,βm |Fm−1] =

Nep∑
m=1

Em[costm(Dm)− α · costm(D∗
m)− β|Fm−1]. (32)

Recall that, Em[costm(Dm)|Fm−1] = Em[Sm(Dm)|Fm−1] + Em[Mm(Dm)|Fm−1]. In the
following sections we bound this sum of expected episodic costs using results from [9] and [11].
We begin by explicitly writing the episodic service costs in terms of the actions’ distributions.

E.1 Costs in Terms of Conditional Distribution

Recall in Algorithm 1 the sequence of decisions Dm = {x1,m, . . . , xH,m} is sampled from
conditional optimal coupling distribution denoted as ζh−1,h,m(Uh,m = x|Uh−1,m = xh−1,m)
as stated in Algorithm 1, Line 13. Here (Uh−1,m, Uh,m) is a joint random variable whose
marginal distributions are l(zh−1,m) and l(zh,m), respectively, and are computed as stated in
Algorithm 1, Line 11.

Hence, the expected service cost of the algorithm w.r.t. lcbm(·, eh,m) given xh−1,m

becomes

H∑
h=1

E[lcbm(xh,m, eh,m)|xh−1,m,Fm−1] =

H∑
h=1

⟨lcbm(·, eh,m), ζh−1,h,m(·|xh−1,m)⟩.

Here the expectation E is w.r.t. the random variable xh,m whose probability distribution
is ζh−1,h,m(Uh,m = x|Uh−1,m = xh−1,m) when conditioned on xh−1,m. We note that the first
state of each episode is sampled from l(z1,m) (as there is no randomness in the initial state
x0,m

2). Also, within any given episode, lcbm(·, ·) in GP-MD is fixed and does not get
updated. Hence, by taking the total expectation over the whole episode and by using the
law of total expectation 3, we arrive at:

Em

[H∑
h=1

⟨lcbm(·, eh,m), ζh−1,h,m(·|xh−1,m)⟩|Fm−1

]
=

H∑
h=1

⟨lcbm(·, eh,m), l(zh,m)⟩. (33)

On the other hand, the actual service cost for episode m is

Sm(Dm) =
H∑

h=1

f(xh,m, eh,m) where xh,m ∼ ζh−1,h,m(·|xh−1,m).

2. The optimal coupling conditional distribution minimizing Eq. (19) for h = 1 will be trivially satisfied by
l(z1,m) as the random variable U0,m is fixed at x0,m

3. Ex1,m,x2,m [lcbm(x2,m, e2,m)] =
∑
y∈X

∑
x∈X

lcbm(x, eh,m)ζ1,2,m(x|y)l(z1,m)(y)] =∑
x∈X

lcbm(x, eh,m)
∑
y∈X

ζ1,2,m(x, y) =
∑
x∈X

lcbm(x, eh,m)l(z2,m)(x) (can be similarly proved for any

h using an inductive argument)

16

Hence, we can write

E[f(xh,m, eh,m)|xh−1,m,Fm−1] = ⟨f(·, eh,m), ζh−1,h,m(·|xh−1,m)⟩,

and
H∑

h=1

E[f(xh,m, eh,m)|xh−1,m,Fm−1] =

H∑
h=1

⟨f(·, eh,m), ζh−1,h,m(·|xh−1,m)⟩.

Moreover, conditioning on the event of Lemma 1, the cumulative cost above can be
bounded in terms of its lower confidence bound as

H∑
h=1

⟨f(·, eh,m), ζh−1,h,m(·|xh−1,m)⟩ ≤
H∑

h=1

⟨lcbm(·, eh,m), ζh−1,h,m(·|xh−1,m)⟩

+
H∑

h=1

⟨2βmσm(·, eh,m), ζh−1,h,m(·|xh−1,m)⟩.

(34)

Also, by using the similar argument that led to Eq. (33), we have,

Em[Sm(Dm)|Fm−1] = Em

[H∑
h=1

⟨f(·, eh,m), ζh−1,h,m(·|xh−1,m)⟩|Fm−1

]
=

H∑
h=1

⟨f(·, eh,m), l(zh,m)⟩.

(35)
Then, combining Eq. (33), Eq. (34) and Eq. (35) we obtain

H∑
h=1

⟨f(·, eh,m), l(zh,m)⟩ ≤
H∑

h=1

⟨lcbm(·, eh,m), l(zh,m)⟩

+ Em[

H∑
h=1

⟨2βmσm(·, eh,m), ζh−1,h,m(·|xh−1,m)⟩|Fm−1].

(36)

By summing over all episodes (note that Lemma 1 holds uniformly over all episodes), we
arrive at

Nep∑
m=1

H∑
h=1

⟨f(·, eh,m), l(zh,m)⟩ ≤
Nep∑
m=1

H∑
h=1

⟨lcbm(·, eh,m), l(zh,m)⟩

+

Nep∑
m=1

Em[
H∑

h=1

⟨2βmσm(·, eh,m), ζh−1,h,m(·|xh−1,m)⟩|Fm−1].

(37)

Now we define the offline optimal sequence for the cost sequence provided to Algorithm 1
in episode m {lcbm(·, e1,m), . . . , lcbm(·, eH,m)} as {bx∗1,m, . . . , bx∗H,m} which will be useful in

the analysis to bound
Nep∑
m=1

H∑
h=1

⟨lcbm(·, eh,m), l(zh,m)⟩. Note that this offline optimal sequence

is different from D∗
m as it is calculated for the cost sequence {lcbm(·, e1,m), . . . , lcbm(·, eH,m)}

and not {f(·, e1,m), . . . , f(·, eH,m)}.

17

In Algorithm 1, we use the mirror descent approach as proposed in [9] with input
as the cost sequence {lcbm(·, e1,m), . . . , lcbm(·, eH,m)} to output the actions Dm. Since
Algorithm 1 uses lcbm(·, eh,m) rather than f(·, eh,m) the guarantees provided in [9] for ac-
tion sequence Dm will hold only w.r.t. {bx∗1,m, . . . , bx∗H,m} (the offline optimal sequence
w.r.t. {lcbm(·, e1,m), . . . , lcbm(·, eH,m)}). Hence we can invoke Coester and Lee [9, Corol-
lary 4], for the probability vector sequence {l(z1,m), . . . , l(zH,m)} to guarantee that the
sequence is 1-competitive in service costs (w.r.t. {lcbm(·, e1,m), . . . , lcbm(·, eH,m)}) and
O((log n)2)−competitive for movement costs w.r.t. the offline optimal sequence {bx∗1,m, . . . , bx∗H,m}.
Using the definition of refined competitive ratio guarantees Eq. (12) and Eq. (13) we have,

H∑
h=1

⟨lcbm(·, eh,m), l(zh,m)⟩ ≤ O(1) +
H∑

h=1

(
lcbm(bx∗h,m, eh,m) + d(bx∗h,m, bx

∗
h−1,m)

)
, (38)

Em[Mm(Dm)|Fm−1] ≤ O(1)

+O((log n)2)
H∑

h=1

(
lcbm(bx∗h,m, eh,m) + d(bx∗h,m, bx

∗
h−1,m)

)
.

(39)

Focusing on
Nep∑
m=1

H∑
h=1

⟨lcbm(·, eh,m), l(zh,m)⟩ in Eq. (37) and by using Eq. (38), we have

Nep∑
m=1

H∑
h=1

⟨lcbm(·, eh,m), l(zh,m)⟩ ≤
Nep∑
m=1

(
O(1) +

H∑
h=1

(
lcbm(bx∗h,m, eh,m) + d(bx∗h,m, bx

∗
h−1,m)

))
.

(40)

Since D∗
m = {x∗1,m, . . . , x∗H,m} is not optimal w.r.t. lcbm(·, eh,m), it will incur more cost

than {bx∗1,m, . . . , bx∗H,m} w.r.t. lcbm(·, eh,m), i.e,

H∑
h=1

(
lcbm(bx∗h,m, eh,m) + d(bx∗h,m, bx

∗
h−1,m)

)
≤

H∑
h=1

(
lcbm(x∗h,m, eh,m) + d(x∗h,m, x

∗
h−1,m)

)
.

(41)

Hence, by plugging Eq. (41) in Eq. (40) we have ,

Nep∑
m=1

H∑
h=1

⟨lcbm(·, eh,m), l(zh,m)⟩ ≤
Nep∑
m=1

(
O(1) +

H∑
h=1

(
lcbm(x∗h,m, eh,m) + d(x∗h,m, x

∗
h−1,m)

))
(42)

≤
Nep∑
m=1

(
O(1) +

H∑
h=1

(
f(x∗h,m, eh,m) + d(x∗h,m, x

∗
h−1,m)

))
, (43)

where the last equation Eq. (43) holds because we have conditioned on the event that
confidence bounds hold true simultaneously for all episodes.

18

We can now use the above results to bound the cumulative service cost as

Nep∑
m=1

Em[Sm|Fm−1]
(i)
=

Nep∑
m=1

H∑
h=1

⟨f(·, eh,m), l(zh,m)⟩ (44)

(ii)
≤

Nep∑
m=1

H∑
h=1

⟨lcbm(·, eh,m), l(zh,m)⟩

+

Nep∑
m=1

Em[

H∑
h=1

⟨2βmσm(·, eh,m), ζh−1,h,m(·|xh−1,m)⟩|Fm−1].

(45)

(iii)
≤

Nep∑
m=1

(
O(1) +

H∑
h=1

(
f(x∗h,m, eh,m) + d(x∗h,m, x

∗
h−1,m)

))

+

Nep∑
m=1

Em[

H∑
h=1

⟨2βmσm(·, eh,m), ζh−1,h,m(·|xh−1,m)⟩|Fm−1].

(46)

Here (i) follows from Eq. (35), (ii) from Eq. (37) and (iii) from Eq. (43). Finally, we focus on
bounding movement cost by using Eq. (39) and Eq. (43):

Nep∑
m=1

Em

[
Mm(Dm)|Fm−1

]
=

Nep∑
m=1

Em

[H∑
h=1

d(xh,m, xh−1,m)|Fm−1

]
(47)

≤
Nep∑
m=1

(
O(1) +O((log n)2)

H∑
h=1

(
lcbm(bx∗h,m, eh,m) + d(bx∗h,m, bx

∗
h−1,m)

))
(48)

≤
Nep∑
m=1

(
O(1) +O((log n)2)

H∑
h=1

(
f(x∗h,m, eh,m) + d(x∗h,m, x

∗
h−1,m)

))
.

(49)

E.2 Bounding Learning Error

As a last step, we focus on bounding the second term in Eq. (37) that we refer to as the

learning error, i.e.,
Nep∑
m=1

Em

[H∑
h=1

⟨2βmσm(·, eh,m), ζh−1,h,m(·|xh−1,m)⟩|Fm−1

]
. After that, we

can finally bound the cumulative regret using the previously obtained bounds on service and
movement costs (Eq. (46)and Eq. (49), respectively).

Consider the stochastic process,

∆m =
H∑

h=1

σ2m(xh,m, eh,m).

Here σm(·, ·) is constructed from the data up to m− 1 episodes defined earlier as Fm−1. Now,
using a similar argument that led to Eq. (33) (fixed σm(·, ·) for any given episode and law of

19

total expectation), the conditional mean of ∆m given is Fm−1

Em[∆m|Fm−1] =
H∑

h=1

⟨σ2m(·, eh,m), l(zh,m)⟩.

Now in order to bound this sum of conditional means of posterior variance
Nep∑
m=1

Em[∆m|Fm−1],

by observed posterior variance
Nep∑
m=1

∆m we use [14, Lemma 3]. Note that σ2m(x, e) ≤ 1 by our

assumption k(·, ·) ≤ 1 in Section 1 and the stochastic process ∆m can be bounded as follows

∆m =

H∑
h=1

σ2m(xh,m, eh,m) ≤
H∑

h=1

(1) ≤ H.

Hence applying [14, Lemma 3] with probability at least 1− δ,

Nep∑
m=1

Em[∆m|Fm−1] ≤ 2
(Nep∑

m=1

(∆m)
)
+ 4H log(1/δ) + 8H log(4H) + 1,

This implies,

Nep∑
m=1

H∑
h=1

⟨σ2m(·, eh,m), l(zh,m)⟩ ≤ 2

Nep∑
m=1

H∑
h=1

σ2m(xh,m, eh,m) + 4H log(1/δ) + 8H log(4H) + 1.

(50)
Now note that Eq. (50) cannot be directly bounded using bounds for sum of observed pos-

terior variance as done in [19] and [8]. This is because σm(·, ·) is not updated continuously and

is constant within any given episode m. Hence we first need to bound
Nep∑
m=1

H∑
h=1

σ2m(xh,m, eh,m)

by
Nep∑
m=1

H∑
h=1

σ2h,m(xh,m, eh,m) where σh,m(·, ·) is constructed based on all {(xh,m, eh,m, yh,m)}

observed up to the round h in the m-th episode. To do this we use [11, Proposition 1],
which bounds the ratio σm(x,e)

σh,m(x,e) by the mutual information between f(x, e) and observed
function values upto round h in episode m ({y1,m, . . . , yh,m}) conditioned on all function
values observed upto episode m−1 ({(yh,i)h=1}m−1

i=1). For I(·; ·) denoting mutual information
this can be written as follows,

σm(x, e)

σh,m(x, e)
= exp

(
I(f(x, e); y1,m:h,m|y1,1:1,m)

)
. (51)

Further by Equations (11), (12), and (13) from [11], this conditional mutual information can
be bounded as follows,

I(f(x, e); y1,m:h,m|y1,1:1,m) ≤ γH−1. (52)

20

Now, by using Eq. (51) and Eq. (52) we have
Nep∑
m=1

H∑
h=1

σ2m(xh,m, eh,m) ≤
Nep∑
m=1

(
exp (γH−1)

(H∑
h=1

σ2h,m(xh,m, eh,m)
))

(53)

≤ exp (γH)

Nep∑
m=1

H∑
h=1

σ2h,m(xh,m, eh,m) (54)

≤ exp (γH)

Nep∑
m=1

H∑
h=1

2 log(1 + σ2h,m(xh,m, eh,m) (55)

≤ 2 exp (γH)γNepH (56)

Here the last inequality follows from [8, Lemma 3]. Now, we are in position to focus on the
learning error. It turns out that the learning error can be simplified by using the similar
arguments as in Eq. (33), i.e.,
Nep∑
m=1

Em

[H∑
h=1

⟨2βmσm(·, eh,m), ζh−1,h,m(·|xh−1,m)⟩
∣∣∣Fm−1

]
=

Nep∑
m=1

H∑
h=1

2βm⟨σm(·, eh,m), l(zh,m)⟩.

(57)

As βm is a non-decreasing sequence as stated in Lemma 1, we have
Nep∑
m=1

H∑
h=1

2βm⟨σm(·, eh,m), l(zh,m)⟩ ≤ 2βNep

Nep∑
m=1

H∑
h=1

⟨σm(·, eh,m), l(zh,m)⟩ (58)

≤ 2βNep

√√√√NepH

Nep∑
m=1

H∑
h=1

(⟨σm(·, eh,m), l(zh,m)⟩)2 (59)

≤ 2βNep

√√√√NepH

Nep∑
m=1

H∑
h=1

⟨σ2m(·, eh,m), l(zh,m)⟩. (60)

We obtain Eq. (59) using Cauchy-Schwartz inequality and Eq. (60) using Jensen’s inequality
since l(zh,m) is a probability distribution. Finally, the learning error will be bounded by

Nep∑
m=1

Em

H∑
h=1

⟨2βmσm(·, eh,m), ζh−1,h,m(·|xh−1,m)⟩|Fm−1]

(i)
≤ 2βNep

√√√√NepH

Nep∑
m=1

H∑
h=1

⟨σ2m(·, eh,m), l(zh,m)⟩

(61)

(ii)
≤ 2βNep

√√√√2NepH

Nep∑
m=1

H∑
h=1

σ2m(xh,m, eh,m) + 4H log(1/δ) + 8H log(4H) + 1 (62)

(iii)
≤ O

(
βNep

√
NepH(exp (γH)γNepH + 4H log(1/δ) + 8H log(4H) + 1)

)
. (63)

Here (i) follows from Eq. (60), (ii) from Eq. (50) and (iii) from Eq. (56).

21

E.3 Bounding the regret

To bound the cumulative regret, recall our initial goal in Eq. (32) to bound

Nep∑
m=1

Em[costm(Dm)|Fm−1] =

Nep∑
m=1

Em[Sm(Dm) +Mm(Dm)|Fm−1].

By using Eq. (63) in Eq. (46), we bound the service costs
Nep∑
m=1

Em[Sm(Dm)|Fm−1] as

Nep∑
m=1

Em[Sm(Dm)|Fm−1] ≤
Nep∑
m=1

(
O(1) +

H∑
h=1

(
f(x∗h,m, eh,m) + d(x∗h,m, x

∗
h−1,m)

))
+O

(
βNep

√
NepH(exp (γH)γNepH + 4H log(1/δ) + 8H log(4H) + 1)

)
.

(64)

Also, Eq. (49) bounds movement costs as follows:

Nep∑
m=1

Em[Mm(Dm)|Fm−1] ≤
Nep∑
m=1

(
O(1) +O((log n)2)

H∑
h=1

(
f(x∗h,m, eh,m) + d(x∗h,m, x

∗
h−1,m)

))
.

Combining this we obtain,
Nep∑
m=1

Em[costm(Dm)|Fm−1] =

Nep∑
m=1

Em[Sm(Dm) +Mm(Dm)|Fm−1] (65)

≤
Nep∑
m=1

(
O(1) +O((log n)2)

H∑
h=1

(
f(x∗h,m, eh,m) + d(x∗h,m, x

∗
h−1,m)

))
+O

(
βNep

(
NepH(exp (γH)γNepH + 4H log(1/δ) + 8H log(4H))

) 1
2

)
(66)

≤
Nep∑
m=1

(
O(1) +O((log n)2) · costm(D∗

m)
)

+O
(
βNep

(
NepH(exp (γH)γNepH + 4H log(1/δ) + 8H log(4H))

) 1
2

)
.

(67)

Thus, by setting set α = O((log n)2) and β = O(1) the expected regret
Nep∑
m=1

Em[Rα,β
m |Fm−1]

from Eq. (31) can be bounded using Eq. (67) as

Nep∑
m=1

Em[rα,βm |Fm−1] =

Nep∑
m=1

Em[costm(Dm)−O((log n)2) · costm(D∗
m)−O(1)|Fm−1] (68)

≤ O
(
βNep

(
NepH(exp (γH)γNepH + 4H log(1/δ) + 8H log(4H))

) 1
2

)
.

(69)

22

Now, for the final step of the regret guarantees is to ensure that Eq. (69) holds with
probability at least 1 − δ. For this, we take the union bound over the events such that
Lemma 1, Eq. (50) and Eq. (31) hold. This effectively replaces δ by δ/3 in each of the
statements. Hence we get the required regret guarantee with probability at least 1− δ as
stated in Theorem 1:

Rα,β
Nep

≤ O
(
βNep

(
NepH exp (γH)γHNep +H log(Hδ)

) 1
2 +H(B + ψ) log

(Nep log(Nep)
δ

))
. (70)

Appendix F. Synthetic Experiments

Synthetic experiments. Here the objective function is a random GP sample. The
considered action space X is a subset of [0, 1]2 consisting of 400 points that form the uniform
grid, while the context space E consists of 40 contexts that are uniformly sampled from
(0, 1). We sample objective function (i.e., actual cost) f : X × E → R from a GP (0, k),
where k is a squared exponential kernel with lengthscale parameter set to l = 0.2. We use
the Euclidean distance as the movement cost. Fig. 3a shows the algorithms’ performance
(for known kernel parameters) when run for 800 timesteps for varying importance of the
service and movement costs by multiplying with ρ/(1 + ρ) and 1/(1 + ρ), respectively. The
performance of GP-MD is generally close to MD-Known, which, as expected, performs the
best. The stationary baseline performs comparably when ρ is small, while its performance
deteriorates for larger values. As expected, both MinC-Known and CGP-LCB incur higher
total costs than GP-MD when the movement cost is of the higher or same relative importance
as the service cost while the performance gap slowly decreases when the service cost becomes
dominant. We observe that GP-MD ’s performance is robust, i.e., it outperforms CGP-LCB
whenever the movement cost dominates the total cost objective, while it remains comparable
to CGP-LCB when the service cost dominates.

(a) Varying ρ

Figure 3: Total and movement cost performance of algorithms on synthetic functions for varying
importance of movement/service cost (i.e., different ρ values). GP-MD outperforms CGP-LCB
in terms of total incurred cost, and its performance closely follows one of the idealized benchmark
MD-Known. The performance of GP-MD remains robust when the movement cost importance
in the total cost objective diminishes (Fig. 3a).

23

	Introduction
	Problem Statement
	Gaussian Process Model
	Relation to Metrical Task Systems (MTS)
	The GP-MD Algorithm
	Experiments
	Metrical Task Systems (MTS)

	Hierarchically Separated Tree (HST) Metric
	-HST Metric
	FRT Algorithm
	Action Representation
	Action Randomization
	Sampling from Joint Distribution
	Randomized Action Representation in -HST
	Action Representation using Conditional Probabilities

	Algorithm
	Divergence and Optimization Calculations

	Proof of th: Theorem-1
	Costs in Terms of Conditional Distribution
	Bounding Learning Error
	Bounding the regret

	Synthetic Experiments

