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Abstract

Many real-life sampling problems are high-dimensional and require safety guarantee during
optimization. Current safe exploration algorithms ensure safety by conservatively expand-
ing the safe region, leading to inefficiency in large-scale input settings. In this paper, we
propose a practical method, which utilizes auto-encoder to link physical prior of certain
problems with index-based input space and also projects the original input space into a
low-dimensional subspace. The low-dimensional space can be viewed as a quasi-conformal
transformation of space with explicit physical meaning. An optimistic safe strategy to effi-
ciently optimize the utility function is carried in the low-dimensional space then. We show
in simulation that our method outperforms representative safe exploration algorithms while
sacrificing little safety. Clinically, our proposed method also achieved better or competitive
performance on two high-dimensional neural stimulation optimization tasks comparing to
human experts.

1. Introduction

High-dimensional safety-critical systems widely exist in real-world applications. Many of
them correspond to the problem of safe exploration, where we need to sequentially optimize
an unknown utility function while satisfying some unknown safety constraints. For example,
in clinical treatment, physicians need to choose among different therapies while avoiding
those that would hurt patients. Existing safe exploration methods discriminate safe regions
with estimated function lower confidence bound, ensuring safety with high probability. Such
a pessimistic strategy might be inefficient in high-dimensional and large-scale input settings,
which are common in real-life scenarios.

In this paper, we proposed a practical method which optimizes the objective function
using an optimistic safe strategy, discriminating safe regions with estimated function upper
confidence bound. To mitigate the high-dimensional issue, we trained an auto-encoder with
physics intuition as output and Gaussian process regularization terms to map the origi-
nal input space into a low-dimensional one. Tolerating a little number of unsafe sampling,
our proposed method outperforms current safe optimization methods on synthetic functions,
achieving comparable performance against representative unconstrained Bayesian optimiza-
tion methods.
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We also evaluated our method in optimizing spinal neuromodulation therapy for a para-
plegic patient. A high-density electrode array was implanted in the dorsal epidural space
to apply spinal stimulation. Optimized stimulation configurations can help the patient to
stand and walk voluntarily. Excluding the amplitude and frequency, only for the electrodes
configuration, there exists over 1015 possible selections, which are extremely difficult for hu-
man experts to optimize. Rather than selecting from the vast input space, human experts
are capable of recognizing unsafe configurations, and denying them before applying stim-
ulation. Our proposed method achieved competitive performance against human experts
over all missions in the clinical experiment and even better than human in single muscle
activation optimization.

2. Related Work

Bayesian optimization is often used for black-box optimization when the evaluations are
expensive. The sequential decision-making problem with safety constraints has been exten-
sively studied. To achieve full safety during exploratory sampling, several algorithms (Sui
et al. (2015, 2018); Turchetta et al. (2019)) have been proposed with theoretical guarantee
in near-optimality and safety with high probability. Baumann et al. (2021) and Sukhija
et al. (2022) achieved global safe exploration by introducing backup policies. Compared to
zero-toleration of unsafe actions, Marco et al. (2020) proposed a solution where a pre-defined
budget of failures are allowed. Using Lipschitz continuity of functions and confidence inter-
val estimated by Gaussian process (GP, Rasmussen (2003)), these algorithms discriminate
safe region of the input space, conservatively exploring functions. Concretely, actions are
labeled as safe when their estimated lower confidence bound is above the safety threshold.
Such pessimistic safe strategy might be inefficient when exploring large scale input space.

Safe exploration algorithms, as well as other Bayesian Optimization (BO) methods,
are restricted to low-dimensional problems, often below 20. The candidate selections grow
exponentially with the dimension, and is impossible to enumerate when maximizing the
acquisition function. To tackle the curse of dimensionality, many methods map the original
input space to low-dimensional subspace (Garnett et al. (2013); Wang et al. (2016); Nayebi
et al. (2019); Moriconi et al. (2020a,b)). They apply BO in feature space with feasible
dimension, and evaluate new candidates after reconstruction. Functions are assumed to
have intrinsic low-dimensional structure when applying these methods.

To the best of our knowledge, there does not exist any work about dimension reduction
in safe optimization problems, especially in high-dimensional space, as safety constraints
limit the efficiency of optimization in high-dimensional space significantly. Besides, the con-
siderably amount of data demand for auto-encoder is contradict with the original intention
of Bayesian Optimization.

3. Problem Formulation

Theoretically and practically, the elevation of dimension would lead current safety-constrained
algorithms to be more inefficient. On one hand, high-dimensional Bayesian optimization is
still an open problem. On the other hand, more samples would be wasted on the exploration
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of the safe region. Here, we propose an optimistic safe optimization algorithm for complex
hybrid high-dimensional systems, under a certain degree of safety restraint.

We aim to optimize an unknown reward function f : X → R with decision xt ∈ X
where t represents the tth round. Concretely, we pick a new decision point given current
decision’s feedback yt = f (xt) + nt and all the history. Besides, we can also get a noise-
perturbed observation of safety value from another unknown function g (xt)+nt. We call the
decisions that satisfy g (xt) ≥ h safe. In this paper, we wish to improve the sample efficiency
by slightly loosing the safety constraint that allow a small number of unsafe decision. In
this sense, we give a probabilistic version of safety constraint that,

Pr(g(xt) ≥ h) ≥ α for i = 1, . . . , n (1)

To be more specific, the input is formulated as hybrid variable xt =

[
dxt

cxt

]
∈ Rk+l, Where

dxt ∈ Rk is the discrete variable and cxt ∈ Rl is the continuous variable. We use an encoder
E : xt ∈ X → st ∈ S to reduce the dimension of input by nonlinear mapping and then carry
out optimistic safe optimization in space S.

More specific explanation of neural stimulation case is attached in Appendix.A.

4. Algorithm

The optimistic safe optimization algorithm intended to optimize the utility function under
probabilistic safety constraints. Unlike most safe optimization problems, we allow certain
extent of unsafe evaluations. The optimistic opinion towards safety allows more bold and
efficient samples of potential high value points. Obviously, the optimum gets better with
more arms in the pool as alternatives. Meanwhile, the optimistic safe method focuses on
the problem where the overall environment is safer, i.e., the safety threshold is lower than
the mean value of safety function g. Because the optimistic method guarantees the lower
bound of safe probability for each candidate point, the safety probability of the selected
point is always higher than the threshold α. Therefore, the overall occurrence frequency
of violation samples is much smaller than α. Compared to the original safe optimization
method, optimistic safe method allows exploration outside the pessimistic safe region which
also overcomes the pain point that the selection is always stuck in the isolated safe island of
the original safe seed and the disconnected safe regions can never be explored. In a word,
the optimistic safe algorithm solves the following problem

max
xt∈X

f(st) subject to Pr(g(xt) ≥ h) ≥ α for t = 1, . . . , n (2)

Compared to the original GP-UCB algorithm (Srinivas et al. (2010)), we define a safe-set
whose safety probability is above α, where α is usually smaller than 0.5. By choosing βO

which makes that Ψ(βO) = 1 − α. Then the candidate arms are the ones that satisfy
µt−1(s) + βOσt−1(x) ≥ h. An overview of optimistic safe exploration is illustrated in
Algorithm 1,Appendix.A. The experimental safety violation frequency depends on both
optimism βO and the safety threshold h. As for the regularized safety function, lower h
implies a smaller unsafe region.
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(a) Algorithm Pipeline (b) Clinical Pipeline

Figure 1: As shown in (a), at each round, the algorithm takes the feedback of the new
evaluation which could be processed value of data recorded or rating of performance from
therapist as shown in (b). Then the encoder takes the high-dimensional hybrid input and
generates low-dimensional representation. In the low-dimensional space we do optimistic
safe optimization and pass a recommended representation to ensemble decoding to get a
recommended output.

Applying the optimistic safe algorithm to the specific problem directly as in section 3 is
infeasible for the following reasons. Firstly, it is easy to notice that the underlying physical
meaning is not clear for the discrete value. Especially, their value may just stand for index,
which makes it difficult to select an appropriate kernel and construct the Gaussian process.
Secondly, the enormous scale of candidate set is also difficult to deal with. Both problems
remind us to learn a more appropriate representation for the high-dimensional hybrid space
X .

Here, we leverage an auto-encoder to carry out nonlinear mapping of the original space
and build the representation. In the encoder part, hybrid high-dimensional variable xt is
the input and the code is the low-dimensional representation st. As for the decoder part,
the target output is some prior knowledge of the domain. For the neural stimulation case,
a good target can be finite element method results or synthetic approximations for electric
field. Unlike the inequality of continuous value which implies explicit physical meaning,
the discrete variables are often index terms instead of value. After going through the
encoder, the outputted prior knowledge from the decoder endows the representation code
with reasonable physical meaning. We use simple Resnet as the network for the encoder and
decoder. After the encoder-decoder model being established, optimistic safe optimization
can be carried out in the low-dimensional representation space. The stimulation pattern
space writes as X , the low-d representation writes as S, and the Encoder writes as E : x ∈
X → s ∈ S.

The reconstruction loss Lossrec is defined as the MSE loss between the original variable
and the reconstructed one. The domain-knowledge integration loss LossKI is defined as the
MSE loss between the target prior knowledge and the one generated by the decoder. With
these two terms, the auto-encoder is forced to learn a representation with physical meaning.

In addition, we would like the representation space to be a Reproducing Kernel Hilbert
Space(RKHS) that we can easily apply Gaussian process regression. Therefore, the choice of
the kernel is fetal. Without any further constraint, the underlying Gaussian process on the
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Figure 2: Trainging procedure: After the input hybrid variable being transformed into code,
one decoder manages to reconstruct the original hybrid variable. The other managed to
approach the prior knowledge.

representation space is arbitrary and unpredictable, which is not limited to common RBF,
Matérn, e.t.c., Kernels. To shape and regular the space, we optimize the log-likelihood of
the Gaussian process with the processed target knowledge as y and the code as s. Here
we fix the kernel parameter and shaping the space to optimize the likelihood. Specifically,
LossGP = −log(P

(
y | X,β, θ, σ2

)
). The overall loss is the weighted sum of the three

Loss = Lossrec + 0.5 ∗ LossKI + 0.1 ∗ LossGP (3)

We call the above auto-encoder Gaussian Process Amendment Auto-encoder. It codes high-
dimensional hybrid parameters with prior domain knowledge and force the discrete variables
with similar physical meaning to be closer in the code space.

With the established autoencoder, we can complete the high-dimensional hybrid opti-
mistic safe optimization algorithm. Different from the vanilla Bayesian optimization setting
that generates the candidate set from SOBOL or just equidistant sampling, our candidate
set comes from both SOBOL sequence of the representation space and the coded local varia-
tion of current data. Then the autoencoder decodes the recommended st of each round. For
the ones come directly from encoded x, it is straightforward. While for an arbitrary point
in the representation space, we assemble two methods to get the nearest point for it. One
is the reconstruction decoder from the auto-encoder. Another method is quasi-gradient by
optimizing the discrete and continuous value of X with evolutionary algorithm and gradient
respectively in rotation. For each candidate st, assemble the two methods and choose the
better result. Eventually, we get a feasible test point in the original space.

5. Experiment

5.1 Synthetic Data

We compare our proposed method against two popular safe exploration algorithms: SafeOpt
and GoOSE. We also add GP-UCB into baselines, which neglects safety constraints. We
sampled 100 random functions from zero-mean GP with radial basis function kernel over in-
put space [−5, 5]4, setting safety threshold to −0.5. Fig 3 shows that our proposed methods
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outperforms SafeOpt and GoOSE with a large margin. The algorithm achieves com-
parable performance against GP-UCB, with much fewer unsafe selections. Our method
achieved efficient optimization while sacrificing little safety.

Figure 3: Algorithm performance on syn-
thetic data.

Figure 4: Optimization of Iliopsoas Mus-
cle Selectivity

5.2 Clinical Experiment

We applied our algorithm to neural stimulation therapy optimization. Our first patient
has motor complete spinal cord injury, no lower limb voluntary movement can be achieved
without stimulation. The patient achieved full-weight walking with a walking frame after
configuration optimization and training for a few months. The treatment/optimization
procedure is illustrated in Figure 1 (b). Pain feedback scored by the patient was taken
as safety function value. Clinicians can also deny recommendations they consider unsafe.
Algorithm performance was evaluated in two tasks: single muscle activation optimization
and standing/walking optimization. The results of the latter one are left to Appendix B.2.2
due to page limitation.

5.2.1 Muscle Selectivity Optimization

Swing is an important phase in the walking loop. To achieve such joint movement, the
iliopsoas muscle should be activated while antagonistic muscles (e.g. rectus femoris) need to
be suppressed. Selectivity Index (SI) is a measurement of single muscle activation calculated
from electromyographic (EMG) data (Eq 4). Larger SI indicates better muscle selectivity.
In this experiment, the patient was seated in a wheelchair and EMG data of 12 lower limb
muscles was recorded. Before formal optimization, we tried all single-cathode configurations
as the initial dataset and reference for restricting input space. Optimization performance
between the algorithm and human expert was compared when optimizing iliopsoas SI, shown
in Figure 4. Our algorithm outperformed human expert by 10.47% in SI optimization. Most
of the true values lie in the confidence region of GP prediction, indicating the correctness
of model estimation.
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6. Conclusion

We proposed a practical method to tackle high-dimensional safe exploration problems. We
used an autoencoder to learn a mapping between original input space and low-dimensional
subspace with physical intuition and Gaussian process regularization. Our optimistic safe
exploration strategy efficiently optimizes the objective function while sacrificing little safety.
On synthetic data, we demonstrated that our proposed method outperformed representative
safe exploration methods, achieving similar efficiency and fewer unsafe selections against
unconstrained algorithms. On clinical evaluations of neural stimulation optimization, our
methods achieved competitive performance compared to human experts, showing better
exploration behavior. The algorithm has the potential to be employed in many real-life
applications with high-dimensional settings and safety restrictions.
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Appendix A.

In the specific neural stimulation optimization, Rd contains the configuration of anode and
cathode, and Rc contains the other information as amplitude. Furthermore, anode, cathode,
and open circuit are denoted by 1,-1,0 respectively. Given eachX we observe yt = f (xt)+nt,
where f could be all kinds of missions, selectivity of single muscle, movement of specific
joint, performance of gait,etc. Generally speaking, neural stimulation is a safe and effective
clinical treatment, but there are a minority group of patterns that could bring short-term
side effect as mild labor pains or flatulence. Crucially, we want to avoid this kind of
’unsafe’ points. Meanwhile, the evaluation cost is significant, we don’t want the safety
constraint to lower the efficiency too much. To balance the trade-off, we urge that each
selected point is safe with the given extent of confidence. I.e., for all rounds t, it holds that
Pr(f(xt) ≤ h) ≥ α, whereh ∈ R s a mission-specific safety threshold. For the simplicity
of future proof for convergence, the interval Qt is set to be monotonic contracting for each
round.

Algorithm 1 Optimistic Safe Optimization in representation space

Input Sample set X ,Encoder E , Decoder D, GP prior (µ, k, σ0)
seed set S0 ∈ X , safety threshold h, safety probability α,safety constant βO

1: Calculate βO with CDF Ψ(βO) = 1− α
2: E(S0)→ SS

0

3: C0(s)← [h,∞),for all s ∈ SS
0

4: C0(s)← R,for all s ∈ S\SS
0

5: Q0(s)← R, for all s ∈ S
6: repeat
7: Ct(s)← Ct−1(s) ∩Qt−1(s)
8: SS

t ←
⋃

s∈SS
t−1

{
s′ ∈ S | µt−1(s) + βOσt−1(x) ≥ h

}
9: ŝt ← argmaxs∈SS

t
(ut(s))

10: xt ← Ensemble decoding ŝt
11: yt ← f (xt) + nt

12: Update the GPR model and Qt

13: until EPOCH ENDS

Appendix B.

.1 Synthetic Data

Since our proposed method and compared safe exploration method use different bound to
recognize safety, we set different β parameter. For GP-UCB and our method, we set β to
0.5. For SafeOpt and GoOSE, we set β to 2.

Figure 3: Blue bars show the mean utility performance, values normalized by maximum
value of each utility function. Red bars show the mean failures. Errorbars indicate one
standard error.
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.2 Clinical Experiment

.2.1 Muscle Selectivity

Selectivity Index (SI) is a measurement of single muscle activation, computed by the fol-
lowing equation:

SIi =
ai

1 +
∑m

j ̸=i aj
(4)

where m is the number of muscles, and ai is the activation of the i-th muscle, often
calculated from EMG. Error bar in plots shows GP estimated µ± σ. We set β to 1 during
optimization. Due to clinical constraints, double-blind experiment are not allowed to test
efficiency between human experts and our algorithm.

.2.2 Standing and Walking Optimization

During standing optimization, the patient was initially seated and practiced standing with a
standing frame to keep balance. Using muscle SI optimization results from section 5.2.1, we
tried several configuration combinations as the initial dataset. Score evaluated by patient
and expert was taken as utility function value. Our algorithm found configurations with
good scores, which could help the patient to support most of his weight with his feet. As
shown in Figure 5, our algorithm is capable to find multiple-cathode configurations and
exploring large-scale input space.

During walking optimization, the patients practiced walking with a walking frame under
stimulation. We want to optimize two main phases in the patient’s walking loop: swing and
stance, with two different configurations. Movement quality was scored by human experts,
and taken as utility values. We optimized configurations to achieve full-weight walking.
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(a) Algorithm (b) Human Expert

Figure 5: Configuration Comparison
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